[go: up one dir, main page]

JPS5915113B2 - Method for manufacturing dense β′-sialon sintered body - Google Patents

Method for manufacturing dense β′-sialon sintered body

Info

Publication number
JPS5915113B2
JPS5915113B2 JP51088718A JP8871876A JPS5915113B2 JP S5915113 B2 JPS5915113 B2 JP S5915113B2 JP 51088718 A JP51088718 A JP 51088718A JP 8871876 A JP8871876 A JP 8871876A JP S5915113 B2 JPS5915113 B2 JP S5915113B2
Authority
JP
Japan
Prior art keywords
sialon
powder
sintered body
main component
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51088718A
Other languages
Japanese (ja)
Other versions
JPS5314715A (en
Inventor
正章 森
法平 高井
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP51088718A priority Critical patent/JPS5915113B2/en
Publication of JPS5314715A publication Critical patent/JPS5314715A/en
Publication of JPS5915113B2 publication Critical patent/JPS5915113B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は緻密質β仁すイアロン焼結体の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a dense β-iron sintered body.

従来、β′−サイアロン(β仁5ialon ) 焼結
体の製造方法としては、種々の方法が提案されているが
、得られたβ′−サイアロン焼結体は緻密質とならず、
仮に緻密質になっても焼成時に亀裂が発生したり、不均
一収縮して屈曲し寸法精度が低下したり、焼結体の組織
が不均一でβ′−サイアロン特有の優れた性質を発揮し
得ない欠点があった。
Conventionally, various methods have been proposed for producing β'-sialon sintered bodies, but the obtained β'-sialon sintered bodies are not dense;
Even if it becomes dense, cracks may occur during firing, it may shrink unevenly and bend, reducing dimensional accuracy, and the structure of the sintered body may be uneven, resulting in the excellent properties unique to β'-sialon. There were disadvantages that I could not get.

本発明は上記欠点を解消するためになされたもので、緻
密質でかつ寸法安定性に優れていると共に、優れた耐熱
性、耐熱衝撃性、耐酸化性、耐摩耗性、耐酸性、耐アル
カリ酸を有する他、低熱膨張性の良好な緻密質β′〜サ
イアロン焼結体の製造方法を提供することを目的とする
The present invention was made in order to eliminate the above-mentioned drawbacks, and it is dense and has excellent dimensional stability, as well as excellent heat resistance, thermal shock resistance, oxidation resistance, abrasion resistance, acid resistance, and alkali resistance. It is an object of the present invention to provide a method for producing a dense β'-sialon sintered body that has an acid and also has low thermal expansion.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、次の方法にてメーサイアロン主成分素材(通常β
′−サイアロン70〜80重量%含有)を造る。
First, use the following method to prepare the maesiaron main component material (usually β
'-containing 70 to 80% by weight of Sialon).

(1)シリカ粉末70〜40重量%と金属アルミニウム
粉末30〜60重量%とを充分混合して出発原料粉とし
、この出発原料粉を種々の成形法、たとえば金型プレス
法、ラバープレス法、スリップキャスティング法、押出
成形法により肉厚5crfL以下、好ましくは2cm以
下の任意形状の圧粉体とした後、この圧粉体を窒素含有
非酸化性ガス雰囲気中で1400〜1700℃に加熱反
応せしめて固溶状態のβ′−サイアロン主成分素材を造
る。
(1) 70 to 40% by weight of silica powder and 30 to 60% by weight of metal aluminum powder are thoroughly mixed to obtain a starting raw material powder, and this starting raw material powder is molded by various molding methods, such as mold pressing method, rubber pressing method, After forming a green compact into an arbitrary shape with a wall thickness of 5 crfL or less, preferably 2 cm or less by slip casting or extrusion molding, this green compact is subjected to a heating reaction at 1400 to 1700°C in a nitrogen-containing non-oxidizing gas atmosphere. A β'-Sialon main component material in a solid solution state is produced using the following steps.

(2)シリカ粉末70〜40重量%と金属アルミニラム
粉末30〜60重量%とを混合した出発原料粉を一旦粉
砕して平均粒径3μ以下、好ましくは1.5μ以下にし
、この微粉末原料を耐熱性容器に深さ5crrL以下、
好ましくは2CrrL以下に充填した後、該微粉末原料
を窒素含有非酸化性ガス雰囲気中で1400〜1700
℃の温度下にて加熱反応せしめて固溶状態のβ′−サイ
アロン主成分素材を造る。
(2) A starting raw material powder, which is a mixture of 70 to 40% by weight of silica powder and 30 to 60% by weight of metal aluminum powder, is once pulverized to an average particle size of 3μ or less, preferably 1.5μ or less, and this fine powder raw material is In a heat-resistant container with a depth of 5 crrL or less,
Preferably, after filling to 2 CrrL or less, the fine powder raw material is heated to 1400 to 1700 CrrL in a nitrogen-containing non-oxidizing gas atmosphere.
A heating reaction is carried out at a temperature of °C to produce a β'-SiAlON main component material in a solid solution state.

(3)シリカ粉末70〜40重量%と金属アルミニウム
粉末30〜60重量%とからなる混合粉末100重量部
に、鉄粉、銅粉、コバルト粉、マンガン粉等の金属粉或
いはそれらの酸化物粉、もしくはフッ化カルシウム、フ
ッ化アルミニウム、フッ化マグネシウム粉、フッ化マン
ガン粉等の弗化物粉の群から選ばれる1種または2種以
上の添加剤を0.1〜10重量部添加混合して出発原料
粉とし、この出発原料粉を前記(1)の方法に準じて圧
粉体とするか、もしくは前記(2)の方法に準じて微粉
末状原料とするかした後、窒素含有非酸化性雰囲気中で
1200〜1700℃の温度にて加熱せしめて固溶状態
のβ′−サイアロン主成分素材を造る。
(3) Metal powders such as iron powder, copper powder, cobalt powder, manganese powder, or their oxide powders are added to 100 parts by weight of a mixed powder consisting of 70 to 40% by weight of silica powder and 30 to 60% by weight of metal aluminum powder. or by adding and mixing 0.1 to 10 parts by weight of one or more additives selected from the group of fluoride powders such as calcium fluoride, aluminum fluoride, magnesium fluoride powder, manganese fluoride powder, etc. The starting raw material powder is made into a green compact according to the method (1) above, or into a fine powder raw material according to the method (2) above, and then processed into a nitrogen-containing non-oxidized powder. The material is heated at a temperature of 1,200 to 1,700° C. in a neutral atmosphere to produce a β'-sialon-based material in a solid solution state.

上記(1)〜(3)の方法における加熱中の化学反応、
化学変化の詳細は不明であるが、基本的には次の反応が
起こっていると考えられる。
Chemical reaction during heating in the methods (1) to (3) above,
Although the details of the chemical change are unknown, it is thought that the following reaction basically occurs.

j)1000℃以下では、 3Si02+4A7→3 S i +2A7203
・・・(1)2AA十N2→2AAN
・・・(II)ji)1000℃以上では、 3Si+2N2→β−8i 3N4 ・・・
(IIDβ−8i3N、へのAA203.AANの固溶
→β′−サイアロン主成分素材* ・・・(IV)
*β′−サイアロン主成分素材;β′−サイアロンが主
成分であるが、他に未固溶のAl2O3。
j) Below 1000℃, 3Si02+4A7→3S i +2A7203
...(1) 2AA10N2 → 2AAN
...(II)ji) At 1000℃ or higher, 3Si+2N2→β-8i 3N4...
(Solid solution of AA203.AAN in IIDβ-8i3N → β'-Sialon main component material * ... (IV)
*β'-sialon main component material; β'-sialon is the main component, but Al2O3 is not solidly dissolved in other materials.

Y−相ササイアロンAAN構造中にSi、Oが入り、金
属:非金属原子比が5二6になっている化学式(Si、
Al)5(0,N)6で表わされるものの)、AAN等
が含有する。
The chemical formula (Si,
Al)5(0,N)6), AAN, etc.

上記(1)〜(3)の方法に使用するシリカ粉末として
は、水晶粉末、珪砂粉末、石英ガラス粉末、蒸発シリカ
(volatiled −5ilica)s化学沈殿法
シリカ、気相法シリカ等を挙げることができ、とくに蒸
発シリカはβ′−サイアロン主成分素材の生成収率が最
も良好である。
Examples of the silica powder used in the methods (1) to (3) above include quartz powder, silica sand powder, quartz glass powder, evaporated silica, chemical precipitation silica, and vapor phase silica. In particular, evaporated silica has the best yield of β'-sialon-based material.

この場合、シリカ粉としてシラスを用いることも可能で
あるが、アルカリ成分の含有率が高いために加熱時に加
熱炉の炉芯管、ライニング耐火物、断熱耐火物、抵抗発
熱体などを汚染、劣化するため好ましくない。
In this case, it is possible to use shirasu as the silica powder, but due to the high content of alkaline components, it may contaminate and deteriorate the furnace core tube, lining refractory, insulation refractory, resistance heating element, etc. during heating. It is not desirable because

上記(1)〜(3)の方法に使用するアルミニウム粉末
としては、アルミニウムの涙滴状アトマイズ粉(噴霧粉
)、鱗片状搗砕粉のどちらでも効果は同じであるが、と
くに50メツシユより細かい粉末を用いることが望まし
い。
The aluminum powder used in methods (1) to (3) above can be either teardrop-shaped atomized powder (sprayed powder) or scale-shaped ground powder, but the effect is the same, especially finer than 50 mesh. It is preferable to use powder.

上記(1)〜(3)の方法におけるシリカ粉末とアルミ
ニウム粉末との比(Si02粉末/Al粉末)を上記範
囲に限定した理由は、5i02粉末/All粉末の比を
40/60 (重量割合)より小さくすると、未反応の
A7が残存したりSi、AlNが生成したりしてβ′−
サイアロン主成分素材中のβ′−サイアロン生成量が減
少し、一方その比が70/30より多いと、未反応のS
iO2が残存したり、ムライトが生成したりして該主成
分素材中のβ仁すイアロン生成量が減少するからであり
、好ましい比は5i02粉末/Al!粉末が60/40
付近である。
The reason why the ratio of silica powder to aluminum powder (Si02 powder/Al powder) in methods (1) to (3) above is limited to the above range is that the ratio of 5i02 powder/All powder is 40/60 (weight ratio). If it is made smaller, unreacted A7 may remain or Si and AlN may be generated, resulting in β'-
The amount of β'-sialon produced in the sialon main component material decreases, and on the other hand, if the ratio is more than 70/30, unreacted S
This is because iO2 remains or mullite is generated, which reduces the amount of β-iron produced in the main component material, and the preferred ratio is 5i02 powder/Al! 60/40 powder
It's nearby.

また、上記(1) 、 (3)の方法において圧粉体の
厚さを限定した理由はその肉厚が5crrLを越えると
、加熱時該圧粉体中に窒素ガスが充分浸入せず、β′−
サイアロンの生成率の高いβ′−サイアロン主成分素材
が得られないからである。
The reason for limiting the thickness of the green compact in methods (1) and (3) above is that if the wall thickness exceeds 5 crrL, nitrogen gas will not penetrate sufficiently into the green compact during heating, and β ′−
This is because a β'-sialon main component material with a high sialon production rate cannot be obtained.

上記(2) 、 (3)の方法において微粉末状原料の
充填深さを限定した理由は、その充填深さが5+:’m
を越えると、加熱時該充填原料中に窒素ガスが充分浸入
せず、β′−サイアロンの生成率の高いβ′−サイアロ
ン主成分素材が得られないからである。
The reason why the filling depth of the fine powder raw material is limited in the methods (2) and (3) above is that the filling depth is 5+:'m.
This is because, if it exceeds this amount, nitrogen gas will not penetrate sufficiently into the charged raw material during heating, and a β'-sialon-based material with a high production rate of β'-sialon will not be obtained.

この場合使用される容器としては、通常黒鉛質、窒化珪
素質、アルミナ質のものであるが、とくに黒鉛質容器を
用いるには炭化珪素の生成を防止する目的からその内面
に窒化アルミニウム粉末或いは窒化硼素粉末を被覆する
ことが望ましい。
The containers used in this case are usually made of graphite, silicon nitride, or alumina, but when using a graphite container, the inner surface is coated with aluminum nitride powder or nitride to prevent the formation of silicon carbide. Coating with boron powder is desirable.

上記(3)の方法においてシリカ粉末とアルミニウム粉
末とからなる混合粉末に添加する添加剤の量を上述した
範囲に限定した理由は、添加剤の量を0.1重量部未満
にすると、上記(I)〜(IV)式の反応を促進する効
果が期待できず、一方その量が10重量部を越えると、
得られたβ′−サイアロン主成分素材の純度を阻害する
からである。
The reason for limiting the amount of additives added to the mixed powder consisting of silica powder and aluminum powder in the method (3) above is that if the amount of additives is less than 0.1 part by weight, the above ( The effect of promoting the reactions of formulas I) to (IV) cannot be expected, and on the other hand, if the amount exceeds 10 parts by weight,
This is because it impedes the purity of the obtained β'-sialon main component material.

さらに、上記(1) 、 (2)の方法において加熱処
理温度を限定した理由は、加熱処理温度を1400℃よ
り低くすると、未反応Siが残ってβ′−サイアロン主
成分素材中のβ′−サイアロンの生成率が低下し、一方
その温度が1700℃を越えると、Y−Phase サ
イアロンが増加してβ′−サイアロン主成分素材中のβ
′−サイアロンの生成率が低下するからである。
Furthermore, the reason for limiting the heat treatment temperature in methods (1) and (2) above is that if the heat treatment temperature is lower than 1400°C, unreacted Si remains and the β'-SiAlON main component material is When the production rate of sialon decreases and the temperature exceeds 1700°C, Y-Phase sialon increases and β'-sialon in the main component material
This is because the production rate of ′-Sialon decreases.

また、上記(3)の方法においては加熱処理温度を上記
(1) 、 (2)の方法の温度より200℃低い12
00℃の温度下でも可能となる。
In addition, in method (3) above, the heat treatment temperature is 200°C lower than the temperature in methods (1) and (2) above.
This is possible even at temperatures as low as 00°C.

望ましい加熱処理方法は、600°C/Hr間以下、好
ましくは200℃/Hr以下の昇温速度で1400〜1
500℃、或いは1200〜15oO℃の温度まで加熱
し、その保持温度を5時間以上保持する(これを第1段
加熱処理と称す)。
A desirable heat treatment method is a heating rate of 1400 to 1
It is heated to a temperature of 500° C. or 1200 to 150° C. and held at that temperature for 5 hours or more (this is referred to as the first stage heat treatment).

これで熱処理の目的は達せられるが、さらにβ′−サイ
アロンの生成率を向上させるには、第1段加熱処理さら
に1500〜1700℃の間の所定温度まで昇温しで3
時間以上加熱処理する(これを第2段加熱処理と称す)
This achieves the purpose of the heat treatment, but in order to further improve the production rate of β'-Sialon, the temperature must be raised to a predetermined temperature between 1500 and 1700°C in the first stage heat treatment.
Heat treatment for more than an hour (this is called second stage heat treatment)
.

しかるに、前記(1)の方法にあっては、上述した組成
割合の出発原料粉を成形して圧粉体とし、かつ該圧粉体
の厚さを規定することによりシリカ粉末とアルミニウム
粉末との接触状況が良好となると共に各粉末に対する窒
素ガスの接触度合も改善するため、上述した(1)〜■
式の反応が促進され、β仁すイアロンの含有率の高いβ
′−サイアロン主成分素材が得られる。
However, in the method (1) above, the starting raw material powder having the above-mentioned composition ratio is molded into a green compact, and the thickness of the green compact is specified, so that the silica powder and the aluminum powder are combined. In order to improve the contact situation and improve the degree of contact of nitrogen gas with each powder, the above-mentioned (1) to
The reaction of the formula is promoted, and the high content of β
'-SiAlON main component material is obtained.

また、前記(2)の方法にあっては、上述した組成割合
の出発原料粉を粉砕して微粉末状原料とすると共に該原
料の容器への充填深さを規定することにより、粉砕、混
合中に展延性の優れたアルミニウム粉末がシリカ粉末を
被覆してアルミニウム被膜を形成し、アルミニウムとシ
リカとの接触状況が良好となり、かつ各原料に対する窒
素ガスの接触度合も向上するため、上述した(1)〜(
IV)の反応が促進され、β′−サイアロンの含有率の
高いβ′−サイアロン主成分素材が得られる。
In addition, in the method (2) above, the starting raw material powder having the above-mentioned composition ratio is pulverized into a finely powdered raw material, and the filling depth of the raw material into the container is specified, so that the pulverization and mixing are performed. The aluminum powder with excellent malleability coats the silica powder to form an aluminum film, which improves the contact between aluminum and silica and improves the degree of contact of nitrogen gas with each raw material. 1)~(
The reaction IV) is promoted, and a β'-sialon-based material with a high β'-sialon content can be obtained.

さらに、前記(3)の方法にあっては、出発原料粉を成
形、もしくは粉砕する他、該原料粉中に鉄、マグネシウ
ム等の添加剤を混入するため、上述した(1) 、 (
2)の方法よりさらに反応の促進化が助長され極めてβ
′−サインロンの含有率の高いβ′−サイアロン主成分
素材が得られる。
Furthermore, in the method (3) above, in addition to molding or pulverizing the starting raw material powder, additives such as iron and magnesium are mixed into the raw material powder.
The reaction is further accelerated than method 2), and the β
A β'-Sialon main component material with a high content of '-Sialon can be obtained.

なお、上記(1)〜(3)の製造方法において使用する
出発原料はシリカ粉とアルミニウム粉とからなるものに
限らず、たとえばシリカ、金属珪素、金属アルミニウム
、アルミナ、窒化珪素、窒化アルミニウム等を適宜組合
せ、窒化処理によってβ′−サイアロン主成分素材とな
る組成に配合したものを使用してもよく、場合によって
は出発原料をそのままβ′−サイアロン主成分素材と1
使用してもよい。
Note that the starting materials used in the manufacturing methods (1) to (3) above are not limited to those consisting of silica powder and aluminum powder, but may also include, for example, silica, metallic silicon, metallic aluminum, alumina, silicon nitride, aluminum nitride, etc. Appropriate combinations may be used that are blended into a composition that becomes a β'-sialon main component material by nitriding treatment, or in some cases, the starting materials can be used as they are with the β'-sialon main component material.
May be used.

次いで、上述した方法により得たβ′−サイアロン主成
分素材を、平均粒径(フィッシャー・サブシーブサイザ
ーで測定)が1.6μ以下、好ましくは1.2μ以下に
なるまで微粉砕してβ′−サイアロン主成分素材粉とす
る。
Next, the β'-sialon main component material obtained by the method described above is finely pulverized until the average particle size (measured with a Fisher subsieve sizer) is 1.6 μ or less, preferably 1.2 μ or less, to obtain β' - Sialon main ingredient material powder.

粉砕法としては、湿式粉砕法、乾式粉砕法が採用される
が、とくにアルコール中にタングステンカーバイド製、
或いはアルミナ製のボールミルを入れる方式の湿式粉砕
法は短時間で粉砕できるため有効である。
Wet and dry pulverization methods are used for pulverization, but in particular, tungsten carbide,
Alternatively, a wet grinding method using an alumina ball mill is effective because it can grind in a short time.

つづいて、上記β′−サイアロン主成分素材粉を種々の
成形法、たとえば金型プレス、ラバープレス、スリップ
キャスティング、押出成形などにより密度が1.7g/
d以上となるように所望形状に成形した後、この成形体
を窒素含有非酸化性ガス雰囲気中(大気とほぼ同圧)で
1600〜2000℃の温度にて一次焼成し、さらに同
雰囲気中で該−次焼成温度より30℃以上低く、かつ1
500〜1750°Cの温度範囲にて1時間以上、好ま
しくは4時間以上二次焼成せしめて緻密質β′−サイア
ロン焼結体を得る。
Subsequently, the above β'-sialon main component material powder was molded using various molding methods, such as mold pressing, rubber pressing, slip casting, and extrusion molding to a density of 1.7 g/
After molding into a desired shape so that the temperature is d or more, this molded body is primarily fired at a temperature of 1600 to 2000°C in a nitrogen-containing non-oxidizing gas atmosphere (approximately the same pressure as the atmosphere), and further in the same atmosphere. 30°C or more lower than the second firing temperature, and 1
Secondary firing is performed at a temperature range of 500 to 1750°C for 1 hour or more, preferably 4 hours or more to obtain a dense β'-sialon sintered body.

本発明においてβ′−サイアロン主成分素材粉の粒径を
限定した理由は、該主成分素材粉の粒径が1.6μを越
えると、気孔率の低い緻密質β仁すイアロン焼結体が得
られないからである。
The reason why the particle size of the β'-sialon main component material powder is limited in the present invention is that if the particle size of the main component material powder exceeds 1.6μ, a dense β'-sialon sintered body with low porosity will form. Because you can't get it.

本発明において成形体の密度を限定した理由は、その密
度を1.7 g/cvi未滴にすると、気孔率の低い緻
密質I−サイアロン焼結体が得られないからである。
The reason why the density of the molded body is limited in the present invention is that if the density is set to 1.7 g/cvi, a dense I-Sialon sintered body with low porosity cannot be obtained.

本発明に使用する窒素含有非酸化性ガス雰囲気とは、窒
素ガス単独、或いは窒素ガスとアルゴンガス、ネオンガ
ス等の不活性ガスとの混合ガスなどの雰囲気である。
The nitrogen-containing non-oxidizing gas atmosphere used in the present invention is an atmosphere of nitrogen gas alone or a mixed gas of nitrogen gas and an inert gas such as argon gas or neon gas.

この場合、窒素ガス単独の雰囲気にするか、もしくは混
合ガスの雰囲気(こするかは、成形体中のβ′−サイア
ロンの含有率、焼成温度等により適宜選定すればよい。
In this case, whether to use an atmosphere of nitrogen gas alone or a mixed gas atmosphere (rubbing) may be selected as appropriate depending on the content of β'-sialon in the compact, firing temperature, etc.

本発明における一次焼成温度を上記範囲に限定した理由
は、焼成温度を1600℃未満の低い温度にすると、成
形体の焼結速度が遅くなり、β仁サイアロン焼結体を得
るのに長時間要し、一方その温度が2000℃を越える
高い温度にすると、β′−サイアロンの一部がY−相サ
サイアロン変換され、β仁すイアロン含有率の高い緻密
質β′−サイアロン焼結体が得られないからである。
The reason why the primary firing temperature in the present invention is limited to the above range is that if the firing temperature is set to a low temperature below 1600°C, the sintering speed of the compact becomes slow, and it takes a long time to obtain the β-nit sialon sintered body. On the other hand, when the temperature is raised to a high temperature exceeding 2000°C, a part of β'-sialon is converted into Y-phase sasialon, and a dense β'-sialon sintered body with a high content of β-sialon is obtained. That's because there isn't.

このような一次焼成温度下での保持時間は通常0.5〜
5時間にすることが望ましい。
The holding time under such primary firing temperature is usually 0.5~
It is desirable to make it 5 hours.

この理由は、保持時間を0.5時間未満にすると、成形
体を十分−次焼結できず、一方保持時間が5時間を越え
ると、焼結体の粒子生長が進み過ぎ、得佼≠β−サイア
ロン焼結体の特性(とくに強度)が劣化するからである
また本発明における二次焼成温度を上記範囲に限定した
理由は、二次焼成温度が一次焼成温度(1600〜20
00°C)より30℃未満の低い温度にすると、焼結体
の粒子生長が進み過ぎて急激な固体拡散が行なわれるた
め粒界の結晶化を均一にできず、緻密質で寸法安定性の
優れたβ′−サイアロン焼結体が得られないからである
The reason for this is that if the holding time is less than 0.5 hours, the molded body cannot be sintered sufficiently, while if the holding time exceeds 5 hours, the grain growth of the sintered body will progress too much, resulting in - This is because the characteristics (especially strength) of the Sialon sintered body deteriorates.The reason why the secondary firing temperature in the present invention is limited to the above range is that the secondary firing temperature is the same as the primary firing temperature (1600 to 20
If the temperature is lower than 30°C (00°C), grain growth in the sintered body will progress too much and rapid solid diffusion will occur, making it impossible to uniformly crystallize the grain boundaries, resulting in a dense and dimensionally stable product. This is because an excellent β'-sialon sintered body cannot be obtained.

しかも。二次焼成温度を1500℃禾満の低い温度にす
ると、固体拡散が十分性なわれず、粒界の結晶化が不十
分となり、一方その温度が1750℃を越える高い温度
にすると、粒子生長が進み過ぎて急激な固体拡散が行な
われ粒界の均一な結晶化を阻害するからである。
Moreover. If the secondary firing temperature is as low as 1,500°C, solid diffusion will not be sufficient and crystallization of grain boundaries will be insufficient.On the other hand, if the secondary firing temperature is higher than 1,750°C, grain growth will be impaired. This is because if it progresses too much, rapid solid diffusion occurs and uniform crystallization of grain boundaries is inhibited.

また、二次焼成温度下での保持時間を限定した理由は、
保持時間を1時間未満の短い時間にすると、固体拡散が
十分性なわれず、粒界の結晶化が不十分となり特性の優
れたβ′−サイアロン焼結体が得られないからである。
In addition, the reason for limiting the holding time under the secondary firing temperature is as follows.
This is because if the holding time is short, less than 1 hour, solid diffusion will not be sufficient, crystallization of grain boundaries will be insufficient, and a β'-sialon sintered body with excellent properties will not be obtained.

なお、一次および二次焼成時に使用する焼成炉は通常黒
鉛製抵抗ヒータ、高周波誘導加熱方式の黒鉛製ライニン
グの炉が用いられるが、この焼成炉にあっては焼成時該
黒鉛製ヒータ等から多少のCOガスが発生するため、得
られたメーサイアロン焼結体の表面が炭化されて炭化珪
素膜が生じ易い。
The firing furnace used for the primary and secondary firing is usually a graphite resistance heater or a high-frequency induction heating furnace with a graphite lining. Since CO gas is generated, the surface of the obtained Maesiaron sintered body is likely to be carbonized and a silicon carbide film is likely to be formed.

また焼成時、成形体を同一温度で均一に焼結せしめるこ
とは難しく、その結果焼結体に亀裂や変形を生じる虞れ
がある。
Furthermore, during firing, it is difficult to uniformly sinter the molded body at the same temperature, which may result in cracks or deformation in the sintered body.

しかるに、このような問題を解消するには窒化硼素粉(
BN)、窒化アルミニウム粉(A#N)からなる詰粉を
充填した黒鉛製容器に前述した成形体を埋設して黒鉛製
容器ごと炉内に入れ、焼成を均一に行なうと共に、焼結
体表面に炭化珪素膜が生成するのを阻止することが望ま
しい。
However, to solve this problem, boron nitride powder (
The above-mentioned compact is buried in a graphite container filled with powder made of aluminum nitride powder (A#N), and the graphite container is placed in a furnace to uniformly sinter the surface of the sintered compact. It is desirable to prevent the formation of a silicon carbide film.

次に、本願第2の発明を説明する。Next, the second invention of the present application will be explained.

まず、本願第1の発明と同様β′−サイアロン主成分素
材を、平均粒径(フィッシャー・サブシーブサイザーで
測定)が1.6μ以下、好ましくは1.2μ以下になる
まで微粉砕してβ′〜サイアロン主成分素材粉とする。
First, as in the first invention of the present application, β'-Sialon main component material is finely pulverized until the average particle size (measured with a Fisher subsieve sizer) is 1.6μ or less, preferably 1.2μ or less. '~ Sialon is the main ingredient material powder.

つづいて、該β仁すイアロン主成分素材粉に窒化珪素粉
および窒化アルミニウム粉のうちのいずれか1種以上を
0.5〜40重量%配合し、混合してβ′−サイアロン
混合素材粉とし、これを種々の成形法により密度が1.
7fi/d以上となるように所望形状に成形した後、こ
の成形体を前記第1の発明と同様窒素含有非酸化性ガス
雰囲気中で一次焼成、二次焼成せしめて緻密質β仁すイ
アロン焼結体を得る。
Subsequently, 0.5 to 40% by weight of at least one of silicon nitride powder and aluminum nitride powder is added to the β'-sialon main component material powder and mixed to obtain a β'-sialon mixed material powder. This is then molded using various molding methods to a density of 1.
After molding into a desired shape so as to have a fi/d of 7 fi/d or more, this molded body is first fired and second fired in a nitrogen-containing non-oxidizing gas atmosphere as in the first invention to obtain a dense β-iron iron sinter. Obtain a body.

土述した如く、β仁すイアロン主成分素材粉に窒化珪素
粉および/または窒化アルミニウム粉を配合したβ′−
サイアロン混合素材粉を用いることによって、焼成時に
おける成形体の焼結性を促進するとともに粒界結合相を
、一次焼成および二次焼成との相互作用によ。
As mentioned above, β′- is a mixture of silicon nitride powder and/or aluminum nitride powder with β-iron main component material powder.
By using Sialon mixed raw material powder, the sinterability of the molded body during firing is promoted and the grain boundary bonding phase is improved by interaction with primary firing and secondary firing.

すβ′−サイアロン(Si6−2A1.Z、0ZN8−
2;O<Zく5)の含有率が高い結晶相に改質できるた
め、緻密性、寸法安定性に優れ、しかもとくに耐アルカ
リ性、耐熱衝撃性、耐摩耗性低熱膨張性、耐化学的安定
性、機械的強度を改善したβ′−サイアロン焼結体を得
ることができる。
β'-Sialon (Si6-2A1.Z, 0ZN8-
2; Since it can be modified to a crystalline phase with a high content of O < Z 5), it has excellent compactness and dimensional stability, and is particularly alkali resistant, thermal shock resistant, abrasion resistant, low thermal expansion, and chemically resistant. A β'-sialon sintered body with improved properties and mechanical strength can be obtained.

とくに、窒化珪素粉と窒化アルミニウム粉を併用したβ
′−サイアロン混合素材粉を使用することにより、粒界
を、はとんどβ′−サイアロンに近似した結晶相に改質
できるため、著しく耐アルカリ性、耐熱衝撃性、耐摩耗
性、低熱膨張性、耐化学的安定性、機械的強度の他耐食
性が著しく優れ、β′−サイアロンの単−相からなる高
品質の緻密質β′−サイアロン焼結体を得ることができ
る。
In particular, β using a combination of silicon nitride powder and aluminum nitride powder
By using ′-Sialon mixed material powder, the grain boundaries can be modified to a crystalline phase that is almost similar to β′-Sialon, resulting in outstanding alkali resistance, thermal shock resistance, abrasion resistance, and low thermal expansion. It is possible to obtain a high-quality dense β'-sialon sintered body that has excellent chemical stability, mechanical strength, and corrosion resistance, and is composed of a single phase of β'-sialon.

本願第2の発明に使用する窒化珪素粉、窒化アルミニウ
ム粉の粒径は通常1〜5μにすることが望ましい。
It is desirable that the particle size of the silicon nitride powder and aluminum nitride powder used in the second invention of the present application is usually 1 to 5 μm.

また、β仁すイアロン混合素材粉中の窒化珪素粉および
/または窒化アルミニウム粉の配合割合を上記範囲に限
定した理由は、その量を0.5重量%未滴にすると、焼
結性の促進作用、粒界結合相の改質効果が十分発揮でき
ず、一方その量が40重量%を越えると、得られたβ仁
すイアロン焼結体の構成相に窒化珪素、或いはY−相サ
サイアロン含まれて物性低下を招来するばかりか、コス
ト高となるからである。
In addition, the reason why the blending ratio of silicon nitride powder and/or aluminum nitride powder in the β-iron mixed material powder was limited to the above range is that if the amount is less than 0.5% by weight, sinterability will be promoted. On the other hand, if the amount of the grain boundary binding phase exceeds 40% by weight, the constituent phases of the obtained β-iron sintered body may contain silicon nitride or Y-phase sasialon. This is because not only does this lead to a decrease in physical properties, but also an increase in cost.

なお、上述した粒径1.6μ以下のβ′−サイアロン主
成分素材粉(微粉末)と第1.第2の発明で得た緻密質
β′−サイアロン焼結体を再粉砕して篩分けした中粒と
粗粒とを適当な配合割合で混合し、これを常法に従って
成形した後、この成形体を窒素含有非酸化性ガス雰囲気
中で1600〜2000℃の温度にて焼成せしめて緻密
質β′−サイアロン焼結体を製造してもよい。
In addition, the above-mentioned β'-SiAlON main component material powder (fine powder) with a particle size of 1.6μ or less and the first. The dense β'-SiAlON sintered body obtained in the second invention is re-pulverized and sieved, and medium grains and coarse grains are mixed in an appropriate mixing ratio, and this is molded according to a conventional method. A dense β'-sialon sintered body may be produced by firing the body at a temperature of 1,600 to 2,000° C. in a nitrogen-containing non-oxidizing gas atmosphere.

このような方法によれば、焼成中における成形体の収縮
がわずかとなるため、得られた焼結体の変形、亀裂を皆
無ならしめ、大型形状物の製造を可能にし、さらに寸法
安定性を向上させる他、耐熱衝撃性のとくに優れた緻密
質β′−サイアロン焼結体を得ることができる。
According to this method, the shrinkage of the molded body during firing is slight, so there is no deformation or cracking of the obtained sintered body, making it possible to manufacture large-sized objects, and further improving dimensional stability. In addition to improving the thermal shock resistance, a dense β'-sialon sintered body with particularly excellent thermal shock resistance can be obtained.

しかして、本発明は平均粒径を規定した微細なβ′−サ
イアロン主成分素材粉を、所定密度に成形し、これを窒
素含有非酸化性ガス雰囲気中で所定温度範囲に規定した
一次焼成、二次焼成をせしめることにより、−次焼成時
、成形体中のβ′−サイアoン以外の物質の一部をβ仁
すイアロンに変換できるとともに、成形体中の微細化さ
れた主成分素材粉同志を容易に焼結して亀裂、変形を生
じるのを阻止できるため、β′−サイアロンの含有率が
著しく高く、かつ寸法安定性の優れた緻密質β′−サイ
アロン焼結体を得をことができる。
Therefore, the present invention involves forming fine β'-SiAlON main component material powder with a defined average particle size to a predetermined density, and performing primary firing at a predetermined temperature range in a nitrogen-containing non-oxidizing gas atmosphere. By performing the secondary firing, it is possible to convert a part of the substances other than β'-siaon in the molded body into β'-siaron during the secondary firing, and at the same time, the main component material in the molded body is refined. Since it is possible to easily sinter the powder together and prevent cracks and deformation from occurring, it is possible to obtain a dense β'-sialon sintered body with an extremely high content of β'-sialon and excellent dimensional stability. be able to.

また、二次焼成過程において、β′−サイアロンを主成
分とする微細粉の粒子生長を抑制しつつ適度に固体拡散
されて緻密な結晶質相を形成するとともに粒界相にβ仁
すイアロンを多量拡散させて結晶比相を形成しその粒界
相を著しく改質化し、これによって構成相がほぼβ′−
サイアロンの単−相になるため、耐化学的安定性(特に
耐アルカリ性)、耐熱性、耐熱衝撃性、低熱膨張性、機
械的強度、耐摩耗性の優れた緻密質β′−サイアロン焼
結体を得ることができる。
In addition, during the secondary firing process, grain growth of the fine powder mainly composed of β'-sialon is suppressed, and it is appropriately dispersed into the solid to form a dense crystalline phase, and β'-sialon is added to the grain boundary phase. By diffusing a large amount, a crystalline ratio phase is formed, and the grain boundary phase is significantly modified, whereby the constituent phases are almost β'-
Dense β'-Sialon sintered body with excellent chemical stability (especially alkali resistance), heat resistance, thermal shock resistance, low thermal expansion, mechanical strength, and abrasion resistance because it is a single phase of Sialon. can be obtained.

したがって、本発明方法により得た緻密質メーサイアロ
ン焼結体は寸法安定性に優れる他、種々の特性を有する
ため、次に示す多種多様の分野に応用できる。
Therefore, the dense Maesiaron sintered body obtained by the method of the present invention has excellent dimensional stability and various other properties, so that it can be applied to a wide variety of fields as shown below.

■ 溶融非鉄金属用耐火物 溶融炉ライニング材、溶融非鉄金属輸送用パイプ、溶融
非鉄金属測温用熱電対保護管、低圧鋳造用ストーク、連
続鋳造用ノズル、タップホール用インサートノズル、溶
融非鉄金属流量調整弁、溶融非鉄金属用ポンプ摺動部材
(ホントチャンバーのピストン、シリンダー)、グーズ
ネツク、ゲルマニウム或いはシリコン等の半導体溶融用
ルツボ ■ 溶鋼用耐火物 連続鋳造用各種ノズル、スライディングノズル用フレー
ト、イマージョンパイプ ■ 機械部品 熱交換器、ピストンエンジンにおけるピストンヘッド、
およびシリンダー、ガスタービンエンジンの燃焼室構造
材(ロータ、ステータ、シュラウド等)、ロケットノズ
ル ■ 耐蝕材料 耐酸、耐アルカリ容器、塩素、硫化水素ガス輸送用パイ
プ、塩素ガス吹込管、プラスチックなどの焼成炉の内張
材。
■ Refractory melting furnace lining materials for molten nonferrous metals, pipes for transporting molten nonferrous metals, thermocouple protection tubes for temperature measurement of molten nonferrous metals, stalks for low pressure casting, nozzles for continuous casting, insert nozzles for tap holes, flow rate of molten nonferrous metals Regulating valves, sliding parts of pumps for molten nonferrous metals (pistons and cylinders of real chambers), crucibles for melting semiconductors such as goosenecks, germanium, and silicon ■ Various nozzles for continuous casting of refractories for molten steel, flats for sliding nozzles, and immersion pipes ■ Mechanical parts heat exchangers, piston heads in piston engines,
and cylinders, combustion chamber structural materials for gas turbine engines (rotors, stators, shrouds, etc.), rocket nozzles ■ Corrosion-resistant materials, acid- and alkali-resistant containers, chlorine and hydrogen sulfide gas transport pipes, chlorine gas blowing pipes, firing furnaces for plastics, etc. lining material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1〜2及び比較例1〜2 蒸発シリカ粉末60重量%とアルミニウムのアトマイズ
粉(250メツシユ以下)40重量%とを■ミキサーで
乾式混合した出発原料粉を、ラバープレス(1ton/
ff1) により肉厚5閑のチューブ状圧粉体とした後
、この圧粉体を窒素雰囲気中で昇温速度200°C/H
r (7)条件下にTl500℃才で高め、その温度下
で10時間保持して加熱処理せしめβ′−サイアロン主
成分素材を造った。
Examples 1 to 2 and Comparative Examples 1 to 2 60% by weight of evaporated silica powder and 40% by weight of aluminum atomized powder (250 mesh or less) were dry mixed in a mixer, and the starting material powder was mixed in a rubber press (1 ton/
ff1) to form a tubular powder compact with a wall thickness of 5 mm, and then heat the compact in a nitrogen atmosphere at a heating rate of 200°C/H.
Under (7) conditions, T1 was raised to 500°C and heat treated by holding at that temperature for 10 hours to produce a β'-sialon main component material.

このβ′−サイアロン主成分素材をX線粉末回折法で調
べたところ、β′−サイアロンの大きなピークとα−A
1203およびY−相ササイアロン小さなピークとが確
認され、はぼβしサイアロンからなることが判った。
When this β'-Sialon main component material was examined by X-ray powder diffraction, it was found that a large peak of β'-sialon and α-A
1203 and Y-phase sialon small peaks were confirmed, and it was found that the sample consisted of almost β-sialon.

次いで、上記β′−サイアロン主成分素材を予めショー
クラッシャーで粗砕し、さらにハンマークラッシャーで
細粉砕した後、この細粉を■アルコール中にアルミナ製
ボールミルを混入した湿式粉砕法にて70時間粉砕し、
また■同温式粉砕法にて24時間粉砕して平均粒径1.
2μのβ′−サイアロン主成分素材粉(実施例1及び比
較例2)、平均粒径1.6μのβ′−サイアロン主成分
素材粉(実施例2)を造った。
Next, the above β'-Sialon main component material was preliminarily crushed with a show crusher, and then finely crushed with a hammer crusher, and then this fine powder was crushed for 70 hours using a wet crushing method using an alumina ball mill mixed in alcohol. death,
In addition, the average particle size was 1.0% by pulverizing for 24 hours using the isothermal pulverization method.
A β'-Sialon main component material powder (Example 1 and Comparative Example 2) having a particle diameter of 2 μm and a β′-Sialon main component material powder (Example 2) having an average particle size of 1.6 μm were prepared.

なお、比較例1として、上記細粉を■アルミナ製ボール
ミルの乾式粉砕法にて24時間粉砕して平均粒径1.8
μのβ′−サイアロン主成分素材粉を造った。
In addition, as Comparative Example 1, the above fine powder was pulverized for 24 hours using the dry pulverization method using an alumina ball mill to obtain an average particle size of 1.8.
A material powder with the main component of μ β′-sialon was prepared.

その後、上記3種のβ仁すイアロン主成分素材粉に夫々
酢酸ビニルを20重量%添加混練し、50メツシユのナ
イロン篩を通過させて造粒した後、一旦乾燥してから金
型プレスにより550kg/dの圧力条件で成形して3
種の板状成形体(寸法40w×70L×9TrILm)
を造った。
Then, 20% by weight of vinyl acetate was added and kneaded to each of the above three kinds of β-iron main component powders, passed through a 50-mesh nylon sieve to granulate, dried once, and then molded into 550 kg. /d pressure condition 3
Seed plate-shaped molded body (dimensions 40w x 70L x 9TrILm)
was created.

コレラ成形体を400℃の大気中で12時間加熱処理し
てバインダー(酢酸ビニル)を揮散除去し、除去後の各
成形体の密度を調べた。
The cholera molded bodies were heat-treated in the atmosphere at 400° C. for 12 hours to volatilize and remove the binder (vinyl acetate), and the density of each molded body after removal was examined.

その結果、実施例Iに用いる成形体は1.92 g /
crtt、実施例2の成形体は1.959/criL1
比較例Iの成形体は1.94g/crriであった。
As a result, the molded product used in Example I weighed 1.92 g/
crtt, the molded product of Example 2 was 1.959/criL1
The molded article of Comparative Example I had a weight of 1.94 g/crri.

つづいて、実施例1,2及び比較例1の成形体を夫々黒
鉛製容器内の窒化硼素詰粉中に埋設し、これら容器ごと
窒素雰囲気の焼成炉に入れ昇温速度400℃/Hrの条
件下で1700℃まで高め、その温度下で4時間保持し
て一次焼成せしめた後、さらに同雰囲気下で1650℃
の温度にて15時間保持して二次焼成せしめ3種のβ仁
すイアロン焼結体を得た。
Subsequently, the molded bodies of Examples 1 and 2 and Comparative Example 1 were each embedded in boron nitride packed powder in graphite containers, and the containers were placed in a firing furnace with a nitrogen atmosphere under conditions of a temperature increase rate of 400°C/Hr. After raising the temperature to 1700℃ under the same atmosphere and holding it at that temperature for 4 hours for primary firing, it was further heated to 1650℃ under the same atmosphere.
The mixture was held at a temperature of 15 hours for secondary firing to obtain three types of β-iron sintered bodies.

なお、比較例2の成形体は黒鉛製容器内の窒化硼素詰粉
中に埋設し、窒素雰囲気の焼成炉に入れ昇温速度400
°C/Hrの条件下で1700℃まで高め、その温度下
で4時間保持して焼成せしめβ仁すイアロン焼結体を得
た。
The compact of Comparative Example 2 was embedded in boron nitride packed powder in a graphite container and placed in a firing furnace in a nitrogen atmosphere at a heating rate of 400.
The temperature was raised to 1700°C under the conditions of °C/Hr, and the temperature was maintained for 4 hours to obtain a β-iron sintered body.

得られたβ仁すイアロン焼結体をX線粉末回折法により
同定したところ、実施例1,2及び比較例2のβ′−サ
イアロン焼結体はβ仁すイアロンに微量のα−A120
3を含むのに対し、比較例1の焼結体はβ仁すイアロン
に少量のα−A1203を含むものであった。
When the obtained β-SiAlON sintered bodies were identified by X-ray powder diffraction method, it was found that the β'-sialon sintered bodies of Examples 1 and 2 and Comparative Example 2 contained a trace amount of α-A120 in β-SiAlON.
In contrast, the sintered body of Comparative Example 1 contained a small amount of α-A1203 in β-iron.

また、各β仁すイアロン焼結体の気孔率を調べたところ
、実施例1の焼結体は2%、比較例2の焼結体は4%、
実施例2の焼結体は6%と極めて緻密質であるのに対し
、比較例1の焼結体は13%と気孔率が高いものであっ
た。
In addition, when the porosity of each β-iron sintered body was investigated, the porosity of the sintered body of Example 1 was 2%, the sintered body of Comparative Example 2 was 4%,
The sintered body of Example 2 had a very dense porosity of 6%, whereas the sintered body of Comparative Example 1 had a high porosity of 13%.

このようなことから緻密質βしサイアロン焼結体を得る
には、β′−サイアロン主成分素材粉の平均粒径が重要
な要素になることがわかる。
From these facts, it can be seen that the average particle size of the β'-sialon main component material powder is an important factor in obtaining a dense β-sialon sintered body.

また、上記実施例1及び比較例2のメーサイアロン焼結
体を用いて次のような試験を行なった。
Further, the following tests were conducted using the Maesiaron sintered bodies of Example 1 and Comparative Example 2.

A);1000℃の溶融アルミニウムに5日間浸漬。A): Immersed in molten aluminum at 1000°C for 5 days.

B);1300℃の溶融鋼中に3時間浸漬。B): Immersed in 1300°C molten steel for 3 hours.

C);濃硫酸、濃塩酸中に5時間煮沸浸漬。C): Boiling immersion in concentrated sulfuric acid and concentrated hydrochloric acid for 5 hours.

D);1200°Cの大気中に40時間加熱。D): Heated in the atmosphere at 1200°C for 40 hours.

E);NaOH50%水溶液中で5時間煮沸。E); Boiled in 50% NaOH aqueous solution for 5 hours.

その結果、実施例1及び比較例2のβ′〜サイアロン焼
結体は共に上記^〜(0の試験において全く浸蝕は認め
られなかった。
As a result, no corrosion was observed in both the β'~sialon sintered bodies of Example 1 and Comparative Example 2 in the above ^~(0 test).

しかし、試験(D)での酸化増量は実施例1の焼結体が
3.5 rr19/crltと極めて少なかったのに対
し、比較例2の焼結体は4.5η/cr!と高いもので
あった。
However, in test (D), the sintered body of Example 1 had a very small oxidation weight gain of 3.5 rr19/crlt, whereas the sintered body of Comparative Example 2 had a weight gain of 4.5 η/cr! It was very expensive.

更に、試験(匂での重量減少は実施例1の焼結体が9.
2%と極めて低く耐アルカリ性に優れているのに対し、
比較例2の焼結体は10.8%であった。
Furthermore, in the test (weight loss due to odor), the sintered body of Example 1 was 9.
It is extremely low at 2% and has excellent alkali resistance.
The sintered body of Comparative Example 2 had a content of 10.8%.

こうしたことより、一次焼成のみを施した比較例2の焼
結体と二次焼成まで行なった本発明の焼結体(実施例1
)とを比較すると、焼結体の密度(緻密性)及び耐化学
的反応性の点において本発明の焼結体は優れた特性を有
することがわかる。
For these reasons, the sintered body of Comparative Example 2, which underwent only primary firing, and the sintered body of the present invention, which underwent secondary firing (Example 1)
), it can be seen that the sintered body of the present invention has excellent properties in terms of density (compactness) and chemical reactivity resistance.

実施例3及び比較例3〜4 上記実施例1で用いたβ′−サイアロン主成分素材粉(
平均粒径1.2μ)に酢酸ビニルを添加混練し、50メ
ツシユのナイロン篩を通過させて造粒した後、一旦乾燥
してから金型プレスにより600ゆ肩(実施例3)、1
10kg/ff1(比較例3)55 kg/cyrr
(比較例4)の条件下で成形して3種の板状成形体(寸
法40W×7OL×9Tr/Lm)を造った。
Example 3 and Comparative Examples 3 to 4 β'-SiAlON main component material powder used in Example 1 above (
After kneading vinyl acetate (average particle size 1.2μ) and passing it through a 50-mesh nylon sieve to granulate it, once it was dried, it was molded into a 600-mesh powder (Example 3).
10kg/ff1 (comparative example 3) 55 kg/cyrr
Three types of plate-shaped molded bodies (dimensions: 40 W x 7 OL x 9 Tr/Lm) were produced by molding under the conditions of (Comparative Example 4).

これら成形体を400℃の大気中で12時間加熱処理し
てバインダー(酢酸ビニル)を揮散除去し、除去後の各
成形体の密度を調べたところ、実施例3に用いる成形体
は1.92g/=比較例3の成形体は1.6897ar
t、比較例4の成形体は1.53.p/7であった。
These molded bodies were heat-treated in the atmosphere at 400°C for 12 hours to volatilize and remove the binder (vinyl acetate), and the density of each molded body after removal was examined. The molded body used in Example 3 was 1.92 g. /=The molded body of Comparative Example 3 is 1.6897ar
t, and the molded product of Comparative Example 4 was 1.53. It was p/7.

つづいて、これら成形体を前記実施例1と同様な方法に
て一次焼成、二次焼成せしめて3種のβ′−サイアロン
焼結体を得た。
Subsequently, these molded bodies were subjected to primary firing and secondary firing in the same manner as in Example 1 to obtain three types of β'-sialon sintered bodies.

得られた各β仁すイアロン焼結体の気孔率を調べた。The porosity of each of the obtained β-iron sintered bodies was examined.

その結果、本発明(実施例3)の焼結体は2%と極めて
緻密質であるのに対し、比較例3の焼結体は10%、比
較例4の焼結体は19%と気孔率の高いものであった。
As a result, the sintered body of the present invention (Example 3) was extremely dense with 2%, while the sintered body of Comparative Example 3 had 10% pores, and the sintered body of Comparative Example 4 had 19%. The ratio was high.

このようなことから緻密質β仁すイアロン焼結体を得る
には、成形体の密度も重要な要素になることが判る。
From these facts, it can be seen that the density of the compact is also an important factor in obtaining a dense β-iron sintered body.

また、上記実施例3のβ′−サイアロン焼結体における
耐溶損性、耐酸性、耐酸化性および耐アルカリ性を前記
^〜(E)の試験法に準じて行なったところ、実施例1
と同様優れた特性を有することが認められた。
In addition, the corrosion resistance, acid resistance, oxidation resistance, and alkali resistance of the β'-sialon sintered body of Example 3 were tested according to the test method of ^~(E) above, and it was found that Example 1
It was recognized that it had similar excellent properties.

実施例 4 蒸発シリカ粉末60重量%とアルミニウムのアトマイズ
粉(250メツシユ)40重量%とを混合した出発原料
粉を、アルコール中にアルミナ製ボールミルを混入した
湿式粉砕法により48時間粉砕し、平均粒径1.3μの
微粉末原料とし、これを窒化珪素質容器に深さ約1.5
crr1.まで充填した後。
Example 4 Starting material powder, which is a mixture of 60% by weight of evaporated silica powder and 40% by weight of atomized aluminum powder (250 mesh), was ground for 48 hours by a wet grinding method using an alumina ball mill mixed in alcohol to obtain an average particle size. A fine powder raw material with a diameter of 1.3 μm was placed in a silicon nitride container at a depth of approximately 1.5 μm.
crr1. After filling up to.

該微粉末原料を窒素雰囲気中で1500℃の温度にて1
0時間保持して加熱処理せしめβ′〜サイアロン主成分
素材を造った。
The fine powder raw material was heated at a temperature of 1500°C in a nitrogen atmosphere for 1
The mixture was held for 0 hours and heat treated to produce a β'-SiAlON main component material.

このβ′−サイアロン主成分素材をX線粉末回折法で調
べたところ、β′−サイアロンに少量のα−A1203
、Y−相ササイアロン微量のAINを含むことが判った
When this β'-sialon main component material was examined by X-ray powder diffraction, it was found that β'-sialon contained a small amount of α-A1203.
It was found that the Y-phase sashyalon contained trace amounts of AIN.

次いで、上記β′−サイアロン主成分素材を予めショー
クラッシャーで粗砕し、さらにハンマークラッシャーで
細粉砕した後、この細粉をアルコール中にタングステン
カーバイド製ボールミルを混入した湿式粉砕法にて96
時間粉砕して平均粒径0.7μのβ′−サイアロン主成
分素材粉を造った。
Next, the above-mentioned β'-sialon main component material was preliminarily crushed with a show crusher, and further finely crushed with a hammer crusher, and then this fine powder was subjected to a wet crushing method in which a tungsten carbide ball mill was mixed in alcohol.
By time-pulverizing, a β'-SiAlON main component material powder having an average particle size of 0.7 μm was prepared.

その後このβ′−サイアロン主成分素材粉に前記実施例
1と同様酢酸ビニールを添加混練、造粒、金型プレス(
550kg/i) t、で成形し、その成形体中のバイ
ンダーを揮散除去して密度1.86.9/dの成形体を
造った。
Thereafter, vinyl acetate was added to this β'-Sialon main component material powder as in Example 1, kneaded, granulated, and mold pressed (
550 kg/i)t, and the binder in the molded body was removed by volatilization to produce a molded body having a density of 1.86.9/d.

つづいて、この成形体を黒鉛製容器内の窒化硼素詰粉中
に埋設し、この容器ごと窒素雰囲気の焼成炉に入れ、昇
温速度180’C/Hrの条件下で1700℃まで高め
、その温度下で3時間保持して一次焼成した後、さらに
同雰囲気下で1550℃の温度にて15時間保持して二
次焼成せしめβ′−サイアロン焼結体を得た。
Next, this molded body was buried in boron nitride packed powder in a graphite container, and the container was placed in a firing furnace with a nitrogen atmosphere, and the temperature was raised to 1700°C at a temperature increase rate of 180'C/Hr. After primary firing by holding at a temperature of 3 hours, secondary firing was performed by holding at a temperature of 1550° C. for 15 hours in the same atmosphere to obtain a β'-sialon sintered body.

得られたβ仁すイアロン焼結体をX線粉末回折法で同定
したところ、メーサイアロンに微量のα−A1203を
含むものであった。
When the obtained β-A1203 sintered body was identified by X-ray powder diffraction method, it was found that the β-A1203 contained a trace amount of α-A1203.

また、β′−サイアロン焼結体は気孔率が2%と極めて
緻密質のものであった。
Further, the β'-sialon sintered body was extremely dense with a porosity of 2%.

さらにこのβ′−サイアロン焼結体における耐溶損性、
耐酸化性および耐アルカリ性を前記w〜(E)の試験法
に準じて行なったところ、実施例1と同様優れた特性を
有することが認められた。
Furthermore, the corrosion resistance of this β′-SiAlON sintered body,
When the oxidation resistance and alkali resistance were tested according to the test methods w to (E) above, it was found that the material had excellent properties similar to those of Example 1.

実施例 5 上記実施例1で用いたβ′−サイアロン主成分素材粉(
平均粒径1,2μ)に300メツシユの窒化珪素粉を1
0重量%添加混合してβ仁すイアロン混合素材粉とし、
これを実施例1と同様成形しく成形体密度1.929/
cyit )、一次焼成、二次焼成せしめてβ′〜サイ
アロン焼結体を得た。
Example 5 β'-Sialon main component material powder used in Example 1 above (
300 mesh silicon nitride powder is added to the average particle size of 1.2μ).
0% by weight is added and mixed to make β-iron mixed material powder,
This was molded in the same manner as in Example 1, and the density of the molded product was 1.929/
cyit), primary firing, and secondary firing to obtain a β'~Sialon sintered body.

得られたβ′−サイアロン焼結体をX線粉末回折法によ
り同定したところ、はとんどβ仁すイアロンのみからな
ることが確認された。
When the obtained β'-sialon sintered body was identified by X-ray powder diffraction method, it was confirmed that it consisted almost exclusively of β′-sialon.

また、このβ′−サイアロン焼結体は気孔率が1%と極
めて緻密質のものであった。
Further, this β'-sialon sintered body was extremely dense with a porosity of 1%.

さらにこのβ仁すイアロン焼結体における耐溶損性、耐
酸化性および耐アルカリ性を前記穴〜(Diの試験法に
準じて調べた。
Further, the corrosion resistance, oxidation resistance, and alkali resistance of this β-iron sintered body were investigated according to the test method of Di.

その結果、本発明のβ仁すイアロン焼結体は溶融金属、
酸に浸蝕されず、かつ酸化による重量減少も少なく、し
かもNaOH50%水溶液による重量減少が25%と極
めて耐アルカリ性に優れていることが認められた。
As a result, the β-iron sintered body of the present invention contains molten metal,
It was found that it was not corroded by acids, had little weight loss due to oxidation, and had extremely excellent alkali resistance, with a weight loss of 25% when treated with a 50% NaOH aqueous solution.

実施例 6 上記実施例1で用いたβ′−サイアロン主成分素材粉(
平均粒径1.2μ)に325メツシユの窒化珪素粉10
重量%および250メツシユの窒化アルミニウム粉3重
量%を添加混合してβ′−サイアロン混合素材粉とし、
これを実施例1と同様成形しく成形体密度1.91,9
/i)、一次焼成、二次焼成せしめてメーサイアロン焼
結体を得た。
Example 6 The β'-sialon main component material powder used in Example 1 above (
325 mesh silicon nitride powder (average particle size 1.2μ) 10
% by weight and 3% by weight of 250 mesh aluminum nitride powder are added and mixed to obtain β'-sialon mixed material powder,
This was molded in the same manner as in Example 1, and the density of the molded product was 1.91.9.
/i), primary firing and secondary firing were performed to obtain a Maesiaron sintered body.

得られたβ仁すイアロン焼結体をX線粉末回折法により
同定したところ、β′−サイアロンの単−相からなるこ
とが確認された。
When the obtained β-sialon sintered body was identified by X-ray powder diffraction method, it was confirmed that it consisted of a single phase of β'-sialon.

また、このβ′−サイアロン焼結体は気孔率が1%と極
めて緻密性に富むことが判った。
It was also found that this β'-sialon sintered body had a porosity of 1% and was extremely dense.

さらに、このβしサイアロン焼結体における耐溶損性、
耐酸性、耐酸化性および耐アルカリ性を前記穴〜(E)
の試験法に準じて調べた。
Furthermore, the corrosion resistance of this β-SiAlON sintered body,
Acid resistance, oxidation resistance and alkali resistance
The test was conducted according to the test method.

その結果、本発明のβ′−サイアロン焼結体は溶融金属
、酸に全く浸蝕されず、かつ酸化による重量減少も著し
く少なく、しかもNaOH50%水溶液による重量減少
が1.3%と著しく耐アルカリ性に優れていることが認
められた。
As a result, the β'-Sialon sintered body of the present invention is not corroded by molten metal or acid at all, and its weight loss due to oxidation is extremely small. Furthermore, the weight loss due to 50% NaOH aqueous solution is only 1.3%, and it is extremely resistant to alkali. Recognized as excellent.

以上詳述した如く、本発明によれば焼成特に亀裂の発生
がなく、かつ気孔率が著しく低く、シかも寸法安定性に
優れるとともに耐熱性、耐熱衝撃性、耐酸化性、耐酸性
、耐アルカリ性、耐摩耗性、低熱膨張性に優れ、溶融非
鉄金属用耐火物、耐鋼用耐大物、機械部品、耐蝕材料等
広範囲の分野に有効に使用できる緻密質β′−サイアロ
ン焼結体を提供できるものである。
As detailed above, according to the present invention, there is no cracking during firing, the porosity is extremely low, the dimensional stability is excellent, and the heat resistance, thermal shock resistance, oxidation resistance, acid resistance, and alkali resistance are excellent. We can provide a dense β'-SiAlON sintered body that has excellent wear resistance and low thermal expansion and can be effectively used in a wide range of fields such as refractories for molten nonferrous metals, large-sized materials for steel, mechanical parts, and corrosion-resistant materials. It is something.

また、本願第2の発明によれば上述した緒特性のうちの
耐アルカリ性を著く同士できる他機械的強度の優れた緻
密質β′−サイアロン焼結体を提供できる。
Further, according to the second invention of the present application, it is possible to provide a dense β'-sialon sintered body which has excellent alkali resistance among the above-mentioned properties and also has excellent mechanical strength.

Claims (1)

【特許請求の範囲】 1 β仁すイアロン主成分素材を平均粒径1.6μ以下
に粉砕してβ′−サイアロン主成分素材粉とし、該主成
分素材粉を密度1.797cd以上となるように成形し
て成形体とした後、該成形体を窒素含有非酸化性ガス雰
囲気中で1600〜2000℃の温度下で一次焼成し、
さらに同雰囲気中で該−次焼成温度より30℃以上低い
1500〜1750℃の温度下で1時間以上二次焼成せ
しめることを特徴とする緻密質β仁すイアロン焼結体の
製造方法。 2 β仁すイアロン主成分素材を平均粒径1.6μ以下
に粉砕してβ仁すイアロン主成分素材粉とし、該主成分
素材粉に窒化珪素粉および窒化アルミニウム粉の1種以
上0.5〜40重量%を配合混合してβ′−サイアロン
混合素材粉とし、これを密度1.7g/cd以上となる
ように成形して成形体とした後、該成形体を窒素含有非
酸化性ガス雰囲気中で1600〜2000℃の温度下で
一次焼成し、さらに同雰囲気中で該−次焼成温度より3
0°C以上低い1500〜1750℃の温度下にて二次
焼成せしめることを特徴とする緻密質β′−サイアロン
焼結体の製造方法。
[Scope of Claims] 1 β'-Sialon main component material is ground to an average particle size of 1.6μ or less to obtain β'-Sialon main component material powder, and the main component material powder is made to have a density of 1.797 cd or more. After molding into a molded body, the molded body is primarily fired at a temperature of 1600 to 2000 ° C. in a nitrogen-containing non-oxidizing gas atmosphere,
A method for producing a dense β-iron sintered body, which further comprises performing secondary firing in the same atmosphere at a temperature of 1,500 to 1,750°C, which is 30°C or more lower than the secondary firing temperature, for 1 hour or more. 2. Beta Nisu Iron main component material is ground to an average particle size of 1.6μ or less to obtain β Nisu Iron main component material powder, and 0.5% of one or more of silicon nitride powder and aluminum nitride powder is added to the main component material powder. ~40% by weight is mixed to obtain β'-Sialon mixed material powder, which is molded to a density of 1.7 g/cd or more to form a molded body, and then the molded body is heated with a nitrogen-containing non-oxidizing gas. Primary firing is performed at a temperature of 1,600 to 2,000°C in an atmosphere, and then 3 times higher than the temperature of the second firing in the same atmosphere.
A method for producing a dense β'-sialon sintered body, which comprises performing secondary firing at a temperature of 1500 to 1750°C, which is lower than 0°C.
JP51088718A 1976-07-27 1976-07-27 Method for manufacturing dense β′-sialon sintered body Expired JPS5915113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51088718A JPS5915113B2 (en) 1976-07-27 1976-07-27 Method for manufacturing dense β′-sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51088718A JPS5915113B2 (en) 1976-07-27 1976-07-27 Method for manufacturing dense β′-sialon sintered body

Publications (2)

Publication Number Publication Date
JPS5314715A JPS5314715A (en) 1978-02-09
JPS5915113B2 true JPS5915113B2 (en) 1984-04-07

Family

ID=13950673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51088718A Expired JPS5915113B2 (en) 1976-07-27 1976-07-27 Method for manufacturing dense β′-sialon sintered body

Country Status (1)

Country Link
JP (1) JPS5915113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015204A (en) * 2015-07-02 2017-01-19 株式会社プラズマ Manufacturing method of baring ball made of beta sialon and product thereof

Also Published As

Publication number Publication date
JPS5314715A (en) 1978-02-09

Similar Documents

Publication Publication Date Title
US4243621A (en) β&#39;-Sialon sintered body and a method for manufacturing the same
US2618565A (en) Manufacture of silicon nitride-bonded articles
JPH0139989B2 (en)
JPS6128627B2 (en)
JPH0680470A (en) Method for manufacturing silicon nitride sintered body
JP3311755B2 (en) Reaction-bonded silicon carbide refractory products
Ma et al. Synthesis mechanism of AlN–SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al–Si3N4–Al2O3 compact at 1500° C
JP2004043241A (en) High purity silicon carbide sintered compact and its forming method
JPS6210954B2 (en)
JPH06135771A (en) High heat conductivity silicon nitride sintered compact and its production
GB2567660A (en) Refractory material
JPS629548B2 (en)
JPS5915113B2 (en) Method for manufacturing dense β′-sialon sintered body
JPS5943436B2 (en) Method for manufacturing dense β′-sialon sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JPS632913B2 (en)
JPH01264973A (en) Production of sintered body of beta-sialon
JPS6253473B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPS638069B2 (en)
JPS6335593B2 (en)
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPH0224789B2 (en)
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JPH055150A (en) Boron Carbide-Reactive Metal Thermite