[go: up one dir, main page]

JPS5915100B2 - Glass fiber for optical communication - Google Patents

Glass fiber for optical communication

Info

Publication number
JPS5915100B2
JPS5915100B2 JP51077411A JP7741176A JPS5915100B2 JP S5915100 B2 JPS5915100 B2 JP S5915100B2 JP 51077411 A JP51077411 A JP 51077411A JP 7741176 A JP7741176 A JP 7741176A JP S5915100 B2 JPS5915100 B2 JP S5915100B2
Authority
JP
Japan
Prior art keywords
glass
weight
component
core
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51077411A
Other languages
Japanese (ja)
Other versions
JPS533354A (en
Inventor
国英 沢村
武止 高野
光男 加曾利
直彦 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51077411A priority Critical patent/JPS5915100B2/en
Publication of JPS533354A publication Critical patent/JPS533354A/en
Publication of JPS5915100B2 publication Critical patent/JPS5915100B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は芯ガラスと被覆ガラスとからなるステップ型の
光通信用ガラス繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a step-type glass fiber for optical communication comprising a core glass and a coated glass.

一般に、この種の光通信用ガラス繊維は芯上にそれより
もほんの僅か小さい屈折率を有する被覆15が設けられ
ているもので、ガラス繊維の一端から芯内へ入射させた
光情報を芯と被覆との境界面で全反射させながら他端ま
で伝送させようとするものである。ところで、この種の
ガラス繊維における芯材料、クo 被覆材料としては種
々のガラスが検討されている。
Generally, this type of glass fiber for optical communication has a core provided with a coating 15 having a slightly smaller refractive index than the core, and optical information incident into the core from one end of the glass fiber is transmitted to the core. The idea is to transmit it to the other end while causing total reflection at the interface with the coating. By the way, various glasses have been studied as core materials and coating materials for this type of glass fiber.

たとえば実験室的には(1)SiO2、Na2Oおよび
CaOの組成からなる多成分系ガラス、(2)SiO2
、Na2OおよびB2O3からなる多成分系ガラス、(
3)SiO2、Na2OおよびPbOからなる多成分系
ガク5 ラス、(4)SiO2、Na2OおよびTiO
2からなる多成分系ガラスを用い、各多成分系ガラスの
組成割合を適宜変えることにより芯ガラス或いは被覆ガ
ラスとして使用することが行なわれている。しかし、前
記(1)〜(4)の多成分系ガラスよりなる30芯ガラ
ス、被覆ガラスは次のような欠点がある。すなわち、前
記(1)の多成分系ガラスよりなる芯ガラス、被覆ガラ
スは耐水性が劣るため、これらにより形成されたガラス
繊維は使用雰囲気が制限される。また前記(2)の多成
分系ガラスよりなる芯35ガラス、被覆ガラスは溶融工
程での蒸発が高いため、散乱損失の低いガラス繊維が得
られない。さらに前記(3)の多成分系ガラスよりなる
芯ガラス、ハ。被覆ガラスはPbOが含有するため、散
乱損失の低いガラス繊維が得られない。
For example, in the laboratory, (1) multi-component glass consisting of SiO2, Na2O and CaO, (2) SiO2
, a multicomponent glass consisting of Na2O and B2O3, (
3) Multi-component glass consisting of SiO2, Na2O and PbO, (4) SiO2, Na2O and TiO
A multi-component glass consisting of two components is used as a core glass or a covering glass by appropriately changing the composition ratio of each multi-component glass. However, the 30-core glass and coated glass made of the multi-component glass described in (1) to (4) above have the following drawbacks. That is, since the core glass and the covering glass made of the multi-component glass described in (1) above have poor water resistance, the atmosphere in which the glass fibers formed from these can be used is restricted. Furthermore, since the core 35 glass and the covering glass made of the multi-component glass described in (2) have high evaporation during the melting process, glass fibers with low scattering loss cannot be obtained. Furthermore, a core glass made of the multi-component glass of (3) above. Since the coated glass contains PbO, glass fibers with low scattering loss cannot be obtained.

さらにまた前記(4)の多成分系ガラスよりなる芯ガラ
ス、被覆ガラスはTi3+の含有によつて光吸収を起こ
すため、光吸収損失の低いガラス繊維が得られない。一
方、ステツプ型の光通信用ガラス繊維の製造方法は、主
として二重ルツボ法が採用されている。
Furthermore, since the core glass and the covering glass made of the multi-component glass described in (4) above absorb light due to the inclusion of Ti3+, a glass fiber with low light absorption loss cannot be obtained. On the other hand, the double crucible method is mainly adopted as a method for producing step-type glass fibers for optical communication.

この方法は同心円状に配置した内管端部および外管端部
のオリフイスから夫々溶融した芯ガラス、被覆ガラスを
同時に自然流下させ、線引きして光通信用ガラス繊維を
造るものである。しかし、この方法は得引き作業温度、
つまり芯ガラス、被覆ガラスの溶融温度を高くして粘性
を低く抑さえ(通常粘度が106〜103ポイズ)、オ
リフイスからの各ガラスの自然流下を容易にならしめる
必要がある。しかし、従来の芯材料、被覆材料としての
各種多成分系ガラスを二重ルツボ法にて光通信用ガラス
繊維を製造する場合、その多成分系ガラスを上述した粘
度範囲となるように線引き作業温度を高くすると、その
多成分系ガラス固有のガラス液相温度(ガラスの結晶化
温度)は低く、その線引き作業温度に近似してくる。こ
のため線引き作業に際し、ガラスの一部に結晶を生じ易
くなり、この結晶化によつて得られたガラス繊維の光伝
送損失の増加、引張り強度の低下を招く欠点があつた。
このようなことから、本発明者は上記欠点を解消するた
め鋭意研究を重ねた結果、芯材料としてSiO2,Ae
2O3、アルカリ金属酸化物、CaO,SrOとBaO
の合量物の成分からなり、かつそれらの成分値を限定し
た多成分系ガラスを使用し、一方被覆材料としてSiO
2,Ae2O3、アルカリ金属酸化物およびCaOの成
分からなり、かつそれらの成分値を限定した多成分系ガ
ラスを使用することにより、1耐水性、耐酸性、耐アル
カリ性等の耐化学的性質が良好で、2ガラス液相温度が
線引き作業温度より十分に高く、その作業時に失透を起
こさず、3芯用多成分系ガラスと被覆用多成分系ガラス
との膨張係数の差(Δα)が小さく、かつ線引き作業温
度(600〜1000℃)において両多成分系ガラスの
粘性特性が類似しているのでルツボ法で線引きしたフア
イバ一が優れた寸法安定性を有し、しかも4芯の屈折率
が1.5300〜1.57001被覆の屈折率が1.4
800〜1.5250の範囲におさめられる等種々優れ
た特性を有する光通信用ガラス繊維を見い出した。
In this method, molten core glass and coating glass are allowed to flow down simultaneously from orifices at the ends of the inner tube and the outer tube arranged concentrically, respectively, and drawn to produce glass fibers for optical communications. However, this method benefits from working temperature,
In other words, it is necessary to raise the melting temperature of the core glass and the coating glass to keep the viscosity low (usually the viscosity is 10 6 to 10 3 poise), and to facilitate the natural flow of each glass from the orifice. However, when manufacturing optical communication glass fiber using the double crucible method using various multi-component glasses as conventional core materials and coating materials, the drawing operation temperature is When the temperature is increased, the glass liquidus temperature (glass crystallization temperature) specific to the multicomponent glass is low and becomes close to the drawing temperature. For this reason, during the drawing operation, crystals tend to form in a part of the glass, and this crystallization has the disadvantage of increasing optical transmission loss and decreasing tensile strength of the glass fiber obtained.
In view of this, the inventors of the present invention have conducted extensive research to eliminate the above drawbacks, and have found that SiO2, Ae and SiO2 can be used as core materials.
2O3, alkali metal oxides, CaO, SrO and BaO
A multi-component glass consisting of a composite of components with limited values of these components is used, while SiO is used as a coating material.
2. By using a multi-component glass consisting of Ae2O3, alkali metal oxides and CaO, and with limited values of these components, 1. Good chemical resistance such as water resistance, acid resistance and alkali resistance. The liquidus temperature of the two glasses is sufficiently higher than the wire drawing temperature, devitrification does not occur during the drawing operation, and the difference in expansion coefficient (Δα) between the three-core multi-component glass and the coating multi-component glass is small. , and the viscosity properties of both multi-component glasses are similar at the drawing temperature (600 to 1000°C), so the fiber drawn by the crucible method has excellent dimensional stability, and the refractive index of the four cores is 1.5300-1.57001 The refractive index of the coating is 1.4
We have found a glass fiber for optical communications that has various excellent properties, such as having a molecular weight within the range of 800 to 1.5250.

また、上述した各多成分系ガラス組成物に夫々所定量の
MgOを添加することにより、上記種々の優れた特性の
他、さらに耐風化性の優れた光通信用ガラス繊維が得ら
れることを見い出した。以下、本発明を詳細に説明する
。本発明の光通信用ガラス繊維は、 (4)重量比にて、SlO255〜65(Ff)、Ae
2O3l〜5%、アルカリ金属酸化物14〜21%,C
aOl〜7%およびSrOとBaOの両者を含む合量物
11〜20%からなる芯用多成分系ガラスと、(B)重
量比にて、SlO27O〜76係,Al2O3l〜50
!),Na2Oを主体とするアルカリ金属酸化物17〜
23%およびCaOl〜5(?l)からなる被覆用多成
分系ガラスと、から形成されるものである。
Furthermore, it has been discovered that by adding a predetermined amount of MgO to each of the above-mentioned multi-component glass compositions, it is possible to obtain glass fibers for optical communications that have not only the above-mentioned various excellent properties but also excellent weathering resistance. Ta. The present invention will be explained in detail below. The glass fiber for optical communication of the present invention has (4) weight ratio of SlO255 to 65 (Ff), Ae
2O3l~5%, alkali metal oxide 14~21%, C
A multi-component glass for the core consisting of ~7% aOl and 11~20% of a total amount containing both SrO and BaO, and (B) a weight ratio of SlO27O~76, Al2O3l~50
! ), alkali metal oxides mainly composed of Na2O 17~
23% and a coating multicomponent glass consisting of ~5(?l) CaOl.

次に、上記芯用多成分系ガラスの各成分値を限定した理
由について述べる。
Next, the reason for limiting the values of each component of the multi-component glass for the core will be described.

1A) SlO2 SiO2は芯の透明性を与えるのに不可欠のものである
SiO2の含有量が55重量%未満では、耐酸性が低
下し、一方その含有量が65重量%を越えると、屈折率
が低くなり過ぎるからであり、好ましい範囲は56〜6
3重量%である。
1A) SlO2 SiO2 is essential for providing transparency to the core. If the content of SiO2 is less than 55% by weight, the acid resistance will decrease, while if the content exceeds 65% by weight, the refractive index will decrease. This is because it becomes too low, and the preferable range is 56 to 6.
It is 3% by weight.

2A) Ae2O3 A′203は芯の耐水性の改善化効果がある。2A) Ae2O3 A'203 has the effect of improving the water resistance of the core.

Al2O3の含有量が1重量%未満では、耐水性の改善
化が期待できず、一方その含有量が5重量%を越えると
、失透し易くなるからであり、好ましい範囲は1〜4重
量%である。3A) アルカリ金属酸化物 このアルカリ金属酸化物はLi2Oが8〜30重量%含
み、残部がNa2OおよびK2Oからなるもので、作業
性の改善化効果を有するものである。
If the content of Al2O3 is less than 1% by weight, no improvement in water resistance can be expected, while if the content exceeds 5% by weight, devitrification tends to occur, and the preferable range is 1 to 4% by weight. It is. 3A) Alkali metal oxide This alkali metal oxide contains 8 to 30% by weight of Li2O, with the balance consisting of Na2O and K2O, and has the effect of improving workability.

アルカリ金属酸化物の含有量が14重量%未満では、高
温粘性力塙く、線引き作業が困難となり、一方その含有
量が21重量%を越えると、耐水性が低下するからであ
り、好ましくは15〜20重量%の範囲である。4A)
CaO CaOは耐水性の向上化、屈折率の増加の効果を有する
ものである。
If the content of the alkali metal oxide is less than 14% by weight, high-temperature viscosity will be strong and wire drawing will be difficult, while if the content exceeds 21% by weight, the water resistance will decrease, and preferably 15% by weight. -20% by weight. 4A)
CaO CaO has the effect of improving water resistance and increasing refractive index.

CaOの含有量が1重量%未満では、所期の効果を充分
達成できず、一方その含有量が7重量%を越えると、失
透し易くなるからであり、好ましくは2〜5重量%の範
囲である。5A) SrOとBaOの両者を含む合量物
この合量物はSrO5〜85重量%、BaO95〜15
重量%からなるもので、屈折率を高め、かつ失透を防止
する効果を有する合量物の含有量が11重量%未満では
、所期の効果を充分達成できず、一方その含有量が20
重量部を越えると、芯に脈理が発生し易くなるからであ
り、好ましい範囲は12〜18重量%である。
If the content of CaO is less than 1% by weight, the desired effect cannot be sufficiently achieved, while if the content exceeds 7% by weight, devitrification tends to occur, and preferably 2 to 5% by weight. range. 5A) Combined product containing both SrO and BaO This combined product contains 5 to 85% by weight of SrO and 95 to 15% by weight of BaO.
If the content of the combined substance, which has the effect of increasing the refractive index and preventing devitrification, is less than 11% by weight, the desired effect cannot be sufficiently achieved;
This is because if the amount exceeds 1 part by weight, striae are likely to occur in the core, and the preferred range is 12 to 18% by weight.

なお、合量物中における一方のSrOの配合割合が5重
量%未満では失透し易くなり、その割合が85重量%を
越えると脈理が発生し易くなる。また、上記被覆用多成
分系ガラスの各成分値を限定した理由について述べる。
1B) SlO2 SlO2は被覆の透明性を与えるのに不可欠のものであ
る。
Note that if the blending ratio of one SrO in the composite is less than 5% by weight, devitrification tends to occur, and if the ratio exceeds 85% by weight, striae tend to occur. In addition, the reason for limiting the values of each component of the multi-component glass for coating will be described.
1B) SlO2 SlO2 is essential to impart transparency to the coating.

SiO2の含有量が70重量%未満では耐酸性が低下し
、一方その含有量が76重量%を越えると、屈折率が低
くなり過ぎるからであり、好ましくは72〜76重量%
の範囲である。2B) A′203 Ae203は被覆の耐水性の改善化効果がある。
If the content of SiO2 is less than 70% by weight, acid resistance will decrease, while if the content exceeds 76% by weight, the refractive index will become too low, preferably 72 to 76% by weight.
is within the range of 2B) A'203 Ae203 has the effect of improving the water resistance of the coating.

A′203の含有量が1重量%未満では、耐水性の改善
化が期待できず、一方その含有量が5重量%を越えると
、失透し易くなるからであり、好ましくは1〜4重量%
の範囲である。3B) Na2Oを主体とするアルカリ
金属酸化物このアルカリ金属酸化物はNa2Oを55重
量%以上含み、残部がLl2OおよびK2Oで、作業性
の改善化効果を有する。
If the content of A'203 is less than 1% by weight, no improvement in water resistance can be expected, while if the content exceeds 5% by weight, devitrification tends to occur, and preferably 1 to 4% by weight. %
is within the range of 3B) Alkali metal oxide mainly composed of Na2O This alkali metal oxide contains 55% by weight or more of Na2O, with the balance being Ll2O and K2O, and has the effect of improving workability.

アルカリ金属酸化物の含有量が17重量%未満では、高
温粘性が高く、線引き作業が困難となり、一方その含有
量が23重量%を越えると、耐水性が低下するからであ
り、好ましくは17〜22重量%の範囲である。4B)
CaO CaOは耐水性の向上化、屈折率の増加の効果を有する
ものである。
If the content of the alkali metal oxide is less than 17% by weight, the high temperature viscosity will be high, making it difficult to draw the wire, while if the content exceeds 23% by weight, the water resistance will decrease. It is in the range of 22% by weight. 4B)
CaO CaO has the effect of improving water resistance and increasing refractive index.

CaOの含有量が1重量%未満では、所期の効果を充分
達成できず、一方その含有量が5重量%を越えると、失
透し易くなるからであり、好ましくは2〜4,5重量%
の範囲である。また、本願第2の発明の光通信用ガラス
繊維は、(A)重量比にて、SlO255〜65%,M
2O3l〜5%、アルカリ金属酸化物14〜2101)
,CaOl〜70t)およびSrOとBaOの両者を含
む合量物、11〜200f)からなる多成分系ガラス組
成物100重量部に対しMgOを5重量部以下添加して
なる芯用多成分系ガラスと、(B)重量比にて、SlO
27O〜76%,A′2031〜5%,Na2Oを主体
とするアルカリ金属酸化物、17〜23(:Ff)およ
びCaOl〜5%からなる多成分系ガラス組成物100
重量部に対しMgOを4重量部以下添加してなる被覆用
多成分系ガラスと、から形成されるものである。
If the content of CaO is less than 1% by weight, the desired effect cannot be sufficiently achieved, while if the content exceeds 5% by weight, devitrification tends to occur, and preferably 2 to 4.5% by weight. %
is within the range of Further, the glass fiber for optical communication of the second invention of the present application has (A) weight ratio of 55% to 65% of SlO2, M
2O3l~5%, alkali metal oxide 14~2101)
, CaOl~70t) and a composite containing both SrO and BaO, 11~200f), a multicomponent glass composition for a core, which is made by adding 5 parts by weight or less of MgO to 100 parts by weight of a multicomponent glass composition. and (B) in weight ratio, SlO
Multi-component glass composition 100 consisting of 27O~76%, A'2031~5%, an alkali metal oxide mainly composed of Na2O, 17~23(:Ff) and CaOl~5%
It is formed from a multi-component coating glass in which 4 parts by weight or less of MgO is added to each part by weight.

上記の如く各多成分系ガラス組成物にMgOを添加した
芯用多成分系ガラスおよび被覆用多成分系ガラスを用い
ることにより、得られた光通信用ガラス繊維の耐風化性
を著しく向上できる上記芯用の多成分系ガラス組成物に
対するMgOの添加量を限定した理由は、MgOの添加
量が5重量部を越えると、芯が失透し易くなるからであ
り、好ましい添加量は該ガラス組成物100重量部に対
し、l〜4.5重量部の範囲である。
By using the multi-component glass for the core and the multi-component glass for the coating in which MgO is added to each multi-component glass composition as described above, the weathering resistance of the obtained glass fiber for optical communication can be significantly improved. The reason for limiting the amount of MgO added to the multi-component glass composition for the core is that if the amount of MgO added exceeds 5 parts by weight, the core tends to devitrify. The amount ranges from 1 to 4.5 parts by weight per 100 parts by weight.

また、上記被覆用の多成分系ガラス組成物に対するMg
Oの添加量を限定した理由は、MgOの添加量が4重量
部を越えると、被覆が失透し易くなるからであり、好ま
しい添加量は該ガラス組成物100重量部に対し、0.
5〜3重量部である。この場合、芯用多成分系ガラスお
よび被覆用多成分系ガラスのいずれか一方のみMgOを
添加したものを用いて光通信用ガラス繊維を形成しても
よい。なお、本発明において必要に応じ上述した芯用の
多成分系ガラス組成物および被覆用の多成分系ガラス組
成物にB2O3および/またはZrO2を単独或いはM
gOと併用して添加してもよい〇゛ このように各多成
分系ガラス組成物にB2O3を添加した芯用多成分系ガ
ラスおよび被覆用多成分系ガラスを用いることにより、
得られた光通信用ガラス繊維の失透傾向を著しく改善で
きる。
In addition, Mg for the multi-component glass composition for coating
The reason for limiting the amount of O added is that if the amount of MgO added exceeds 4 parts by weight, the coating tends to devitrify, and the preferable amount added is 0.00 parts by weight per 100 parts by weight of the glass composition.
It is 5 to 3 parts by weight. In this case, the glass fiber for optical communication may be formed using either one of the multi-component glass for the core and the multi-component glass for the coating to which MgO is added. In addition, in the present invention, if necessary, B2O3 and/or ZrO2 may be added alone or in the multi-component glass composition for the core and the multi-component glass composition for the coating.
It may be added in combination with gO 〇゛ In this way, by using the multi-component glass for the core and the multi-component glass for the coating in which B2O3 is added to each multi-component glass composition,
The tendency of the obtained optical communication glass fiber to devitrify can be significantly improved.

このB2O3の添加量は各多成分系ガラス組成物100
重量部に対して10重量部以下、好ましくは2〜8重量
部添加する。この理由はB2O3の添加量が10重量部
を越えると、高温粘性が下り過ぎ線引き作業に支障をき
たすからである。また、各多成分系ガラス組成物にZr
O2を添加した芯用多成分系ガラスおよび被覆用多成分
系ガラスを用いることにより、得られた光通信用ガラス
繊維の失透傾向の改良、屈折率の増加および耐化学的性
質の向上化を計ることができる。
The amount of B2O3 added is 100% of each multicomponent glass composition.
It is added in an amount of 10 parts by weight or less, preferably 2 to 8 parts by weight. The reason for this is that if the amount of B2O3 added exceeds 10 parts by weight, the high-temperature viscosity decreases too much, which interferes with the wire drawing operation. In addition, Zr was added to each multicomponent glass composition.
By using O2-added multi-component glass for the core and multi-component glass for the coating, it is possible to improve the devitrification tendency, increase the refractive index, and improve the chemical resistance of the obtained glass fiber for optical communication. It can be measured.

このZrO2の添加量は芯用の多成分系ガラス組成物に
対してはその組成物100重量部に10重量部以下、好
ましくは2〜8重量部添加する。この理由はZrO2の
添加量が10重量部を越えると、ガラス繊維の芯に脈理
が発生し、散乱損失が高くなるからである。一方、被覆
用の多成分系ガラス組成物に対するZrO2の添加量は
その組成物100重量部に対し4重量部以下、好ましく
は1〜3重量部の範囲である。この理由はZrO2の添
加量が4重量部を越えると、屈折率が、あがり所期の効
果を、達成することができないからである。次に、本発
明の実施例を説明する。実施例 1〜4 下記第1表および第2表に示す如く組成割合が夫々異な
る4種の芯用多成分系ガラスおよび被覆用多成分系ガラ
スを二重ルツボ法により、790℃の温度下で線引きし
て4種の光通信用ガラス繊維(芯径80μ、外径150
μ)を得た。
The amount of ZrO2 added is 10 parts by weight or less, preferably 2 to 8 parts by weight, per 100 parts by weight of the multicomponent glass composition for the core. The reason for this is that if the amount of ZrO2 added exceeds 10 parts by weight, striae will occur in the core of the glass fiber and the scattering loss will increase. On the other hand, the amount of ZrO2 added to the multicomponent glass composition for coating is not more than 4 parts by weight, preferably in the range of 1 to 3 parts by weight, based on 100 parts by weight of the composition. The reason for this is that if the amount of ZrO2 added exceeds 4 parts by weight, the refractive index increases and the desired effect cannot be achieved. Next, examples of the present invention will be described. Examples 1 to 4 Four types of core multi-component glass and coating multi-component glass having different composition ratios as shown in Tables 1 and 2 below were heated at a temperature of 790°C by a double crucible method. Four types of optical communication glass fibers are drawn (core diameter 80μ, outer diameter 150μ).
μ) was obtained.

しかして、得られた各光通信用ガラス繊維の芯および被
覆における屈折率(n)、熱膨張系数((4、軟化温度
(Ts)、耐水性、耐酸性、耐アルカリ性、1・03,
104,105,106ポイズになる温度、失透傾向、
並びにそれらガラス繊維の伝送損失(DB/―)を調べ
た。
Therefore, the refractive index (n), thermal expansion coefficient ((4), softening temperature (Ts), water resistance, acid resistance, alkali resistance, 1.03,
Temperature of 104, 105, 106 poise, devitrification tendency,
In addition, the transmission loss (DB/-) of these glass fibers was investigated.

その結果を同第1表および第2表に併記した。なお、耐
水性、耐酸性、耐アルカリ性は次のような試験により求
めた。
The results are also listed in Tables 1 and 2. Note that water resistance, acid resistance, and alkali resistance were determined by the following tests.

1)耐水性;目開き0.5?のJIS標準篩にパスし、
目開き0.3W10JIS標準篩にパスしない粉末試料
5.0yを、100m1の蒸留水に浸し、沸騰湯浴中で
1時間加熱した後、その溶液を0.01N−HCe水溶
液で滴定し、その滴定に要した量(MI7)で耐水性の
優、劣を求める。
1) Water resistance; opening 0.5? Passes the JIS standard sieve of
A powder sample of 5.0y that did not pass a 0.3W10 JIS standard sieve was immersed in 100ml of distilled water, heated in a boiling water bath for 1 hour, and the solution was titrated with a 0.01N-HCe aqueous solution. The water resistance is determined by the amount required (MI7).

2)耐酸性;20.2401)濃度のHCi水溶液に2
0〜30メツシユの粉末試料を加え、1時間加熱した時
の減量割合(至)を求める〇3)耐アルカリ性;2N−
NaOH水溶液に、20〜30メツシユの粉末試料を加
え、1時間加熱した時の減量割合(7)を求める。
2) Acid resistance; 20.2401)
Add a powder sample of 0 to 30 meshes and calculate the weight loss rate (maximum) when heated for 1 hour 〇3) Alkali resistance; 2N-
20 to 30 meshes of powder sample are added to the NaOH aqueous solution and the weight loss rate (7) when heated for 1 hour is determined.

実施例 5〜7 下記第3表および第4表に示す如く多成分系ガラス組成
物にMgOを添加した4種の芯用多成分系ガラスおよび
被覆用多成分系ガラスを二重ルツポ法により、790℃
の温度下で線引きして3種の光通信用ガラス繊維(芯径
80μ,外径150μ)を得た。
Examples 5 to 7 As shown in Tables 3 and 4 below, four types of multi-component glasses for cores and multi-component glasses for coating were prepared by adding MgO to multi-component glass compositions by double retouching method. 790℃
Three types of optical communication glass fibers (core diameter 80μ, outer diameter 150μ) were obtained by drawing at a temperature of .

しかして、得られた各光通信用ガラス繊維の芯および被
覆における屈折率(n)、熱膨張系数((ニ)、軟化温
度(Ts)、耐水性、耐酸性、耐アルカリ性、耐風化性
、103,104,105,106ポイズになる温度、
失透傾向、並びにそれらガラス繊維の伝送損失(DB/
1cm)を調べた。
Therefore, the refractive index (n), thermal expansion coefficient ((d), softening temperature (Ts), water resistance, acid resistance, alkali resistance, weathering resistance, The temperature becomes 103, 104, 105, 106 poise,
The tendency of devitrification and the transmission loss (DB/
1 cm) was investigated.

その結果を同第3表および第4表に併記した。実施例
9 下記第5表に示す如く多成分系ガラス組成物にMgOを
添加した芯用多成分系ガラスおよびMgOが無添加の被
覆用多成分系ガラスを二重ルツボ法により、790℃の
温度下で線引きして光通信用ガラス繊維(芯径80μ、
外径150μ)を得た。
The results are also listed in Tables 3 and 4. Example
9 As shown in Table 5 below, a multi-component glass for a core prepared by adding MgO to a multi-component glass composition and a multi-component glass for a coating with no MgO added were heated at a temperature of 790°C by a double crucible method. Drawn glass fiber for optical communication (core diameter 80μ,
An outer diameter of 150μ) was obtained.

しかして、得られた光通信ガラス繊維の芯および被覆に
おける物性並びにそのガラス繊維の伝送損失(DB/―
)を調べた。
The physical properties of the core and coating of the obtained optical communication glass fiber and the transmission loss (DB/-
) was investigated.

その結果を同第5表に併記した。以上詳述した如く、本
発明によれば耐水性、耐酸性、耐アルカリ性等の耐化学
的性質が良好で、かつ寸法安定性に優れ、しかも線引き
作業時に失透を起こさず、その他芯と被覆との屈折率の
差が最適である等性能、耐用寿命が著しく改善された光
通信用ガラス繊維を提供できるものである。
The results are also listed in Table 5. As detailed above, the present invention has good chemical resistance such as water resistance, acid resistance, alkali resistance, etc., excellent dimensional stability, does not cause devitrification during wire drawing, and has other properties such as core and coating. Therefore, it is possible to provide a glass fiber for optical communication which has an optimal difference in refractive index and has significantly improved performance and service life.

Claims (1)

【特許請求の範囲】 1 (A)重量比にて、SiO_255〜65%、Al
_2O_31〜5%、アルカリ金属酸化物14〜21%
、CaO1〜7%およびSrOとBaOの両者を含む含
量物11〜20%からなる芯用多成分系ガラスと、(B
)重量比にて、▲数式、化学式、表等があります▼O_
270〜76%、Al_2O_31〜5%、Na_2O
を主体とするアルカリ金属酸化物17〜23%およびC
aO1〜5%からなる被覆用多成分系ガラスと、から形
成される光通信用ガラス繊維。 2 (A)重量比にて、SiO_255〜65%、Al
_2O_31〜5%、アルカリ金属酸化物14〜21%
、CaO1〜7%およびCrOとBaOの両者を含む合
量物11〜20%からなる多成分系ガラス組成物100
重量部に、MgOを5重量部以下添加してなる芯用多成
分系ガラスと、(B)重量比にて、SiO_270〜7
6%、Al_2O_31〜5%、Na_2Oを主体とす
るアルカリ金属酸化物17〜23%およびCaO1〜5
%からなる多成分系ガラス組成物100重量部に、Mg
Oを4重量部以下添加してなる被覆用多成分系ガラスと
、から形成される光通信用ガラス繊維。
[Claims] 1 (A) By weight ratio, SiO_255 to 65%, Al
_2O_31-5%, alkali metal oxide 14-21%
(B
) In terms of weight ratio, there are ▲mathematical formulas, chemical formulas, tables, etc.▼O_
270-76%, Al_2O_31-5%, Na_2O
17-23% of alkali metal oxides mainly consisting of
A multi-component glass for coating consisting of 1 to 5% aO, and a glass fiber for optical communication. 2 (A) Weight ratio: SiO_255-65%, Al
_2O_31-5%, alkali metal oxide 14-21%
, a multicomponent glass composition 100 consisting of 1 to 7% of CaO and 11 to 20% of a total amount containing both CrO and BaO
A multi-component glass for the core made by adding 5 parts by weight or less of MgO to the parts by weight, and (B) a weight ratio of SiO_270 to 7.
6%, Al_2O_31-5%, alkali metal oxides mainly composed of Na_2O 17-23% and CaO1-5
Mg
A multi-component coating glass to which 4 parts by weight or less of O is added; and a glass fiber for optical communication.
JP51077411A 1976-06-30 1976-06-30 Glass fiber for optical communication Expired JPS5915100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51077411A JPS5915100B2 (en) 1976-06-30 1976-06-30 Glass fiber for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51077411A JPS5915100B2 (en) 1976-06-30 1976-06-30 Glass fiber for optical communication

Publications (2)

Publication Number Publication Date
JPS533354A JPS533354A (en) 1978-01-13
JPS5915100B2 true JPS5915100B2 (en) 1984-04-07

Family

ID=13633174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51077411A Expired JPS5915100B2 (en) 1976-06-30 1976-06-30 Glass fiber for optical communication

Country Status (1)

Country Link
JP (1) JPS5915100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434248A (en) * 1977-08-23 1979-03-13 Toshiba Corp Multicomponent base glass fiber for optical communication
JPS5978949A (en) * 1983-02-28 1984-05-08 Toshiba Corp Coating glass for optical fiber
JPS62163667A (en) * 1986-01-09 1987-07-20 Riken Vitamin Co Ltd Antifoaming agent for tofu

Also Published As

Publication number Publication date
JPS533354A (en) 1978-01-13

Similar Documents

Publication Publication Date Title
US4367012A (en) Optical glass fiber having cover glass of sodium zinc alumino borosilicate
US4312952A (en) Fibre glass composition
JPS641415B2 (en)
JPS621337B2 (en)
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS5846459B2 (en) Low density flint optical glass
JPS5860641A (en) Glass fiber composition
US4265667A (en) Step-type light-transmitting body having excellent water resistance
AU735688B2 (en) Glass fiber composition
CA1201454A (en) Glasses, methods for making them, and optical fibres containing them
JPH10167753A (en) Lead-free crown glass
JPH0585771A (en) Composition for hollow glass sphere
JPS5915100B2 (en) Glass fiber for optical communication
US4913518A (en) Fluoroborosilicate glass clad article and night vision device
US4868141A (en) Fluoroborosilicate glass
JPS5839782B2 (en) Glass fiber for optical communication
JP2000264675A (en) Glass for optical fiber
JPS6316349B2 (en)
JPS6270245A (en) Optical fiber having environmental resistance
JPS5849499B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS6213293B2 (en)
US2883296A (en) Glass composition
JPS5953225B2 (en) Weather-resistant multi-component glass fiber for optical communications
GB2111475A (en) Glass filament composition
JPS5929533B2 (en) Glass fiber for optical communication