JPS59148565A - Power source device - Google Patents
Power source deviceInfo
- Publication number
- JPS59148565A JPS59148565A JP2315583A JP2315583A JPS59148565A JP S59148565 A JPS59148565 A JP S59148565A JP 2315583 A JP2315583 A JP 2315583A JP 2315583 A JP2315583 A JP 2315583A JP S59148565 A JPS59148565 A JP S59148565A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- voltage
- power source
- full
- power factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 35
- 238000009499 grossing Methods 0.000 claims abstract description 14
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/06—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Power Conversion In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、交流電源を整流、平滑して負荷に直流を供給
する電源装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a power supply device that rectifies and smoothes alternating current power to supply direct current to a load.
従来の電源装置は、第1図のように、交流電源tx)を
全波整流器(2)で整流し、チョークコイルL1を介し
て平滑コンデンサcoで平滑して負荷(3)に直流を供
給していた。この電源装置の定常状態での各部電圧電流
波形は第2図(11)〜(c)のようになり・入力電流
isはチョークコイルL1により遅れ力率と々る。この
ことによりチョークコイルL1ノインタクタンスを大き
くし、電流導通期間(1實−11)を長くしただけでは
力率向上は見込めない。尚、チョークコイルLlかない
場合は低力率となり、チョークコイルL1を接続して力
率向上する場合、チョークコイルL1の形状が相当大き
くなる上、力率向上に限界がある。As shown in Fig. 1, the conventional power supply device rectifies the AC power source (tx) with a full-wave rectifier (2), smoothes it with a smoothing capacitor co via a choke coil L1, and supplies DC to the load (3). was. In the steady state of this power supply device, the voltage and current waveforms of each part are as shown in FIG. 2 (11) to (c). The input current is is delayed by the choke coil L1 and the power factor increases. As a result, it is not possible to expect an improvement in the power factor simply by increasing the no-inductance of the choke coil L1 and lengthening the current conduction period (1-11). Note that if the choke coil L1 is not provided, the power factor will be low, and if the choke coil L1 is connected to improve the power factor, the shape of the choke coil L1 will be considerably large, and there is a limit to the power factor improvement.
本発明の目的とするところは、小さなインタフタとコン
デンサとで入力電流力率を向上し・小型で高力率の電源
装置を安価に提供することにある。An object of the present invention is to improve the input current power factor by using a small interfter and a capacitor, and to provide a small and inexpensive power supply device with a high power factor.
(実施例)
第3図において、+1) Fi交流電源、(2)は全波
。(Example) In Figure 3, +1) Fi AC power supply, (2) full wave.
整流器5(3)は負荷であり・Coは平滑コンデンサで
あるOLはインタフタで、コンデンサC1を並列に接続
して共振口F@I41を形成し、全波整流器(2)と平
滑コンダンサCoとの間に直列忙接続する。共振回路(
4)の共振周波数11は、交流電源(1)の周波数を/
。The rectifier 5 (3) is a load, and Co is a smoothing capacitor. Connect in series between. Resonant circuit (
The resonant frequency 11 of 4) is the frequency of the AC power supply (1) /
.
とするとき、 2/”6<八< 6 /。When 2/”6<8<6/.
とする。shall be.
(動 作)
第4図(a)〜(c)は第3図の各部の電圧、電流波形
図で、■9は交流電源(1)の電圧、lvs lは、こ
れを+側に折り返したものであり、vrけ全波整流器(
2)の直流出力側の電圧、V、は平滑コンデンサCoの
両端電圧、i@は交流電源(1)からの入力電流である
。(Operation) Figures 4 (a) to (c) are voltage and current waveform diagrams for each part in Figure 3, where ■9 is the voltage of the AC power supply (1), and lvsl is the voltage turned over to the + side. It is a VR full wave rectifier (
2), the voltage on the DC output side, V, is the voltage across the smoothing capacitor Co, and i@ is the input current from the AC power supply (1).
電圧tvs+が低い間は全波整流器(2)は導通せず、
電圧Vrは電圧VoにインタフタLと〕ンデンサC1の
共振によって生じる振動電圧が加算されたものとなって
いる。電圧IVslが高くなり、電圧vrと交差すると
全波整流器(2)が導通し、入力電流isが流れる。こ
の電流tsは、インタフタLを流れるものとコンデンサ
CIを流れるものとが加算されたもので、従来例のよう
た遅れ電流でなく1広い範囲にわたって流れるものであ
るO全波整流器(2)が導通している間、電圧Vrけほ
ぼ電圧1v−1に等しい電圧となるが、この電圧V、が
電圧V。に比べて小さくなると、インタフタLの両端電
圧はそれまでと反転し・インタフタLの電流は次第に減
少し・やがて0となったとき全波整流器+2)ij:不
導通となり、ここからはインタフタLとコンデンサC1
の自由振動が起こる。以上の動作が繰返されて平滑コン
デンサCoは入力電流isによって充電され、負荷(3
)にほぼ直流を供給する。While the voltage tvs+ is low, the full-wave rectifier (2) does not conduct;
The voltage Vr is the sum of the voltage Vo and the oscillating voltage generated by the resonance of the interfter L and the capacitor C1. When the voltage IVsl becomes high and crosses the voltage vr, the full-wave rectifier (2) becomes conductive and the input current is flows. This current ts is the sum of the current flowing through the intertaffer L and the current flowing through the capacitor CI, and is not a delayed current as in the conventional example, but flows over a wide range.The full-wave rectifier (2) is conductive. During this time, the voltage Vr becomes approximately equal to the voltage 1v-1, and this voltage V is the voltage V. When it becomes smaller than Capacitor C1
Free vibration of occurs. The above operation is repeated, and the smoothing capacitor Co is charged by the input current is, and the load (3
) is supplied with almost direct current.
入力力率を向上できるのは、共振回路(4)の振動にギ
に起因する。共振回路(4)、いいかえればコンデンサ
C1が無い場合には、全波整流器(2)の不導通区間で
Vi電圧Vrけ電圧voに等しい。したがって・全波整
流器(2)が導通を開始するのは図中すの点となる。と
ころが、コンデンサChを付加することによって電圧v
r&″i電圧Voに共振回路(4)の自由流動の電圧が
加算されたものとなり、この振動電圧が電圧V。The input power factor can be improved due to the vibration of the resonant circuit (4). In the absence of the resonant circuit (4), in other words, the capacitor C1, the voltage Vi is equal to the voltage Vr minus the voltage vo in the non-conducting section of the full-wave rectifier (2). Therefore, the point at which the full-wave rectifier (2) starts conducting is at point C in the figure. However, by adding the capacitor Ch, the voltage v
The free-flowing voltage of the resonant circuit (4) is added to the r&''i voltage Vo, and this oscillating voltage is the voltage V.
を電圧voに対して引下げる方向であると、電圧Vrと
lvs lが交差する点、即ち、全波整流器(2)が導
通を開始する点はt!よりはやまり、図中t1の点とな
る。更に、全波整流器(2)の導通後は、インダクタL
を通る遅相電流に加えてコンデンサC1を通る進相電流
が流れるので一層力率を向上できる。is lowered relative to the voltage vo, the point where the voltage Vr and lvsl intersect, that is, the point at which the full-wave rectifier (2) starts conducting, is t! It stops further and becomes a point t1 in the figure. Furthermore, after the full-wave rectifier (2) is turned on, the inductor L
In addition to the slow phase current passing through the capacitor C1, the leading phase current flows through the capacitor C1, so that the power factor can be further improved.
以上のように本発明による入力力率の向上は、インタフ
タLとコンデンサC1の振動により全波整流器(2)が
導通を始める位相をはやめることに大きな理由があるが
・これは電源電圧と前述の振動電圧の位相関係に深いか
かわりを持つ。即ち、振mJ電圧の周期、位相等によっ
てはこの振動の存在がかえって全波整流器(2)が導通
する位相を遅らせる場合がある0このことから、回路定
数を種々変えて調べた結果、共振回路(4)の共振周波
数と交流電源(1)の周波数の関係をある値に保つこと
により力率向上の効果が見出せることが判明した。第5
図は交流電源電圧100V13波数(/Q) 50 H
z f、平滑コンデンサC!を200μF、コンデンサ
C+を1〜1000μF、負荷(3)を2000とし・
インタフタLを5mHr 10mH* 20mHに変え
たときのfl4゜(ただし、f、は共振回路0荀の共振
周波数で、fl−2T〔1)に対する力率(PF)を求
めたものであり、第6図は交流電源電圧100v、周波
数(/、)50H,zで、平滑コンデンサCmを400
μF、コンデンサCtを33〜1000μF1イン’J
クタLを3mH,負荷(4)を1000としたときのf
y4゜に対する力率(PF)を求めたものである。第5
図および第6図から判るように、
2/e<1><676
の場合に力率を向上でき、f+=4foとしたときが最
も力率が良くなり、又、インタフタLが小さい場合にも
3fo< fI< 5foの範囲で力率が最高になる点
が認められた。As described above, the main reason for the improvement in the input power factor according to the present invention is that the phase in which the full-wave rectifier (2) starts conducting is stopped due to the vibration of the interfter L and capacitor C1. It is closely related to the phase relationship of the oscillating voltage. In other words, depending on the period, phase, etc. of the oscillating mJ voltage, the presence of this oscillation may actually delay the phase at which the full-wave rectifier (2) becomes conductive.From this, as a result of investigating various circuit constants, we found that the resonant circuit It has been found that the effect of improving the power factor can be found by maintaining the relationship between the resonance frequency (4) and the frequency of the AC power source (1) at a certain value. Fifth
The figure shows AC power supply voltage 100V 13 wave number (/Q) 50H
z f, smoothing capacitor C! is 200 μF, capacitor C+ is 1 to 1000 μF, and load (3) is 2000 μF.
fl4゜ (where f is the resonant frequency of the resonant circuit 0, the power factor (PF) for fl-2T[1] was calculated, and the 6th The figure shows an AC power supply voltage of 100V, a frequency (/,) of 50Hz, and a smoothing capacitor Cm of 400V.
μF, capacitor Ct 33~1000μF1in'J
f when the capacitor L is 3mH and the load (4) is 1000
The power factor (PF) for y4° is calculated. Fifth
As can be seen from the figure and Fig. 6, the power factor can be improved when 2/e<1><676, and the best power factor is obtained when f+=4fo, and even when the intafter L is small. It was observed that the power factor was highest in the range of 3fo<fI<5fo.
以上は共振回路(4)のコンデンサC1をインダクタL
に並列に接続した場合であるが、第7図のように全波整
流器(2)の出力に並列にコンデンサc1を接続しても
よい。この場合には共振回路(4)は平滑コンデンサC
oを含めて形成され、そのときの共振周波数11は
となる。Above, the capacitor C1 of the resonant circuit (4) is connected to the inductor L
However, as shown in FIG. 7, a capacitor c1 may be connected in parallel to the output of the full-wave rectifier (2). In this case, the resonant circuit (4) is the smoothing capacitor C
o, and the resonant frequency 11 at that time is as follows.
本発明は上述のように、全波整流器と平滑コンデンサと
の間にインタフタとコンデンサとより成る共振回路を直
列に接続し、前記共振回路の共振周波数を電源周波数の
2倍より高く、6倍より低くしたから、小さなインタフ
タとコンデンサとで入力電流力率を向上でき、小型で高
力率の電源装置を提供できるという効果を奏するもので
ある0As described above, the present invention connects a resonant circuit consisting of an interfter and a capacitor in series between a full-wave rectifier and a smoothing capacitor, and sets the resonant frequency of the resonant circuit to be higher than twice the power supply frequency, and higher than six times the power supply frequency. Since the input power is low, the input current power factor can be improved with a small intertactor and capacitor, and it has the effect of providing a small power supply device with a high power factor.
第1図は従来の電源装置の回路図、第2図値ぐ知性・同
上の要部電圧電流波形図、第3図は本発明の一実施例の
回路図、第4図(a)〜(c)は同上の要部電圧波形図
、第5図および第6図はそれぞれ同上の特性図、第7図
は本発明の他の実施例の回路図である。
[11・・・交流電源、(2)・・・全波整流器、(3
)・・・負荷、(4)・・・共振回路、L・・・インタ
フタ、C1・・コンデンサ、C0・・・平滑コンデンサ
。
L 、−J
第4図
−を
第5図
:1
f1イ。Fig. 1 is a circuit diagram of a conventional power supply device, Fig. 2 is a voltage and current waveform diagram of the main parts of the same as above, Fig. 3 is a circuit diagram of an embodiment of the present invention, and Figs. 4 (a) to ( c) is a voltage waveform diagram of a main part of the same as above, FIGS. 5 and 6 are characteristic diagrams of the above, respectively, and FIG. 7 is a circuit diagram of another embodiment of the present invention. [11... AC power supply, (2)... Full wave rectifier, (3
)...load, (4)...resonant circuit, L...interface, C1...capacitor, C0...smoothing capacitor. L, -J Fig. 4 - Fig. 5: 1 f1 a.
Claims (1)
サで平滑して負荷に直流を供給する如くした電源装置に
おいて、全波整流器と平滑コンデンサとの間にインタフ
タとコンデンサとより成る共振回路を直列に接続し、前
記共振回路の共振周波数を電源周波数の2倍より高く、
6倍より低くして成ることを特徴とする電源装置。IT) In a power supply device that supplies DC to a load by rectifying AC power with a full-wave rectifier and smoothing it with a smoothing capacitor, a resonant circuit consisting of an interfter and a capacitor is connected in series between the full-wave rectifier and the smoothing capacitor. connecting the resonant circuit, the resonant frequency of the resonant circuit is higher than twice the power supply frequency;
A power supply device characterized in that the power supply is lower than 6 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2315583A JPS59148565A (en) | 1983-02-15 | 1983-02-15 | Power source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2315583A JPS59148565A (en) | 1983-02-15 | 1983-02-15 | Power source device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59148565A true JPS59148565A (en) | 1984-08-25 |
Family
ID=12102699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2315583A Pending JPS59148565A (en) | 1983-02-15 | 1983-02-15 | Power source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59148565A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60197168A (en) * | 1984-03-16 | 1985-10-05 | Matsushita Electric Ind Co Ltd | Converter device |
US4930061A (en) * | 1989-04-07 | 1990-05-29 | At&T Bell Laboratories | Method and network for enhancing power factor of off-line switching circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4920024B1 (en) * | 1969-03-19 | 1974-05-22 |
-
1983
- 1983-02-15 JP JP2315583A patent/JPS59148565A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4920024B1 (en) * | 1969-03-19 | 1974-05-22 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60197168A (en) * | 1984-03-16 | 1985-10-05 | Matsushita Electric Ind Co Ltd | Converter device |
US4930061A (en) * | 1989-04-07 | 1990-05-29 | At&T Bell Laboratories | Method and network for enhancing power factor of off-line switching circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08509354A (en) | High frequency AC / AC converter with power factor correction | |
JPH08149811A (en) | Single-phase input three-phase all-wave rectification circuit and single-phase input pseudo four-phase all-wave rectification circuit | |
US4672159A (en) | Electrically controllable magnetron power supply | |
JPH06508257A (en) | Switch-mode power delivery with reduced input current distortion | |
CN111565853B (en) | High-voltage power supply system | |
JPS59148565A (en) | Power source device | |
JP2514885B2 (en) | DC power supply | |
JPS6335167A (en) | Harmonic current separation network | |
JPS58182476A (en) | Rectifying device | |
CN1346173A (en) | Self-correction step-up active filtering switch power source | |
JPH0736700B2 (en) | Power supply | |
JPS583579A (en) | Transistor inverter | |
JPH06215868A (en) | High frequency heating device | |
JPH09131055A (en) | Switching regulator | |
JPS60167683A (en) | Power source | |
JP4366713B2 (en) | Switching power supply | |
JP3291507B2 (en) | Inverter device for discharge lamp | |
JPS61179096A (en) | Discharge lamp lighting apparatus | |
JP2001333581A (en) | Inverter | |
JP2795387B2 (en) | Power supply | |
JP3016831B2 (en) | Inverter device | |
JP3590165B2 (en) | Switching regulator | |
JP2593274B2 (en) | Rectifier | |
JPH03190556A (en) | Dc power supply circuit | |
JPH1052048A (en) | Power supply |