[go: up one dir, main page]

JPS5914675A - thin film transistor - Google Patents

thin film transistor

Info

Publication number
JPS5914675A
JPS5914675A JP57123864A JP12386482A JPS5914675A JP S5914675 A JPS5914675 A JP S5914675A JP 57123864 A JP57123864 A JP 57123864A JP 12386482 A JP12386482 A JP 12386482A JP S5914675 A JPS5914675 A JP S5914675A
Authority
JP
Japan
Prior art keywords
thin film
film transistor
electrode
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57123864A
Other languages
Japanese (ja)
Other versions
JPH0376590B2 (en
Inventor
Yoshiharu Ichikawa
市川 祥治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57123864A priority Critical patent/JPS5914675A/en
Publication of JPS5914675A publication Critical patent/JPS5914675A/en
Publication of JPH0376590B2 publication Critical patent/JPH0376590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は範膜トランジスターの構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a membrane transistor.

従来、薄膜トランジスターとして第1図、第2図に示す
スタガ型電極構造のものと第3図、第4図、第5図に示
すコプレーナ型電極構造のものが知られている。各図に
おいて、1は絶縁基板、2はゲート電極、3は絶縁体層
、4は薄膜半導体層、5はソース電極、6はドレイン電
極を示す。薄膜トランジスターではソース・ドレイン間
距離つまりチャンネル長によって出力特性が大きく変化
する。特に動作特性における最大動作速度を速くするた
めにはできるだけチャンネル長を短かくするのが好まし
い。しかしながら、ソース・ドレイン間距離を形成する
のに蒸着マスクを用いる方法やフォトエツチングを用い
る方法では製造上の制約からチャンネル長は、数μm程
度が限界である。
Conventionally, thin film transistors having a staggered electrode structure shown in FIGS. 1 and 2 and those having a coplanar electrode structure shown in FIGS. 3, 4, and 5 are known. In each figure, 1 is an insulating substrate, 2 is a gate electrode, 3 is an insulator layer, 4 is a thin film semiconductor layer, 5 is a source electrode, and 6 is a drain electrode. The output characteristics of thin film transistors vary greatly depending on the distance between the source and drain, that is, the channel length. In particular, in order to increase the maximum operating speed in terms of operating characteristics, it is preferable to shorten the channel length as much as possible. However, in the method of using a vapor deposition mask or the method of using photoetching to form the distance between the source and drain, the channel length is limited to about several μm due to manufacturing constraints.

一方、薄膜半導体層の移動度はバルクの半導体の移動度
に比較して小さく特に低温で形成した場合には極端に移
動度が低下してしまう。例えば、基板温度300℃でシ
ランのグロー放電分解法により形成したアモルファスシ
リコン膜や、基板温度500℃で分子線成長法により形
成した多結晶シリコン膜では数cR/vow以下の小さ
い移動度しか得られていない。したがって第1図〜第5
図に示すようなスタガ型またはコプレーナ型電極構造薄
膜トランジスターではチャンネル長が数μm程度までに
しか短かくならないので最大動作速度は、数MH2以下
と低い値しか得られない。
On the other hand, the mobility of a thin film semiconductor layer is smaller than that of a bulk semiconductor, and particularly when formed at a low temperature, the mobility is extremely reduced. For example, an amorphous silicon film formed by glow discharge decomposition of silane at a substrate temperature of 300°C, or a polycrystalline silicon film formed by molecular beam growth at a substrate temperature of 500°C, can only obtain a small mobility of several cR/vo or less. Not yet. Therefore, Figures 1 to 5
In a thin film transistor having a staggered or coplanar electrode structure as shown in the figure, the channel length can be reduced to only a few micrometers, so the maximum operating speed can only be as low as several MH2 or less.

本発明の目的は上記の欠点を改善した最大動作スピード
の速い薄膜トランジスターを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film transistor which improves the above-mentioned drawbacks and has a high maximum operating speed.

本発明によれば、絶縁基板上に少なくとも薄膜半導体層
と絶縁層とからなる2層構造を備え、該2層構造の前記
薄膜半導体層を挾んでン・=スミ極とドレイン電極が設
けられてなり、かつ該ソース電極もしくはドレイン電極
と対向する位置に前記絶縁層を挾んでゲート電極が設け
られていることを特徴とする薄膜トランジスターが得ら
れる。
According to the present invention, a two-layer structure consisting of at least a thin film semiconductor layer and an insulating layer is provided on an insulating substrate, and a sum electrode and a drain electrode are provided sandwiching the thin film semiconductor layer of the two-layer structure. There is obtained a thin film transistor characterized in that a gate electrode is provided at a position facing the source electrode or the drain electrode with the insulating layer sandwiched therebetween.

本発明の薄膜トランジスターは、第6図、第7図に示す
ように薄膜半導体4を挾んで対向するソース・ドレイン
電極の間のチャンネル層を、ソース電極5ないしはドレ
イン電極6のどちらか一方と絶縁体層を挾んで対向する
ゲート電極により形成するためチャンネル長は薄膜半導
体の膜厚となる。薄膜半導体の膜厚は数十九m程度から
正確に制御でき、しかもゲート電極に電圧印加を行なっ
たときの薄膜半導体中に広がるチャンネル層の縦方向へ
の広がりは数百nm程度である。したがってフォトエツ
チング法等により形成した薄膜トランジスターに比較し
てチャンネル長を数十分の−と短くできる。動特性にお
ける最大動作速度はチャンネル長の二乗に反比例するか
ら本発明の薄膜トランジスターは従来のものよりも最大
動作速度を数百倍上げることができる。またソース・ド
レイン電流は、チャンネル長に反比例するから従来の薄
膜トランジスターと同じソース・ドレイン電流を祷るの
に薄膜トランジスターの大きさを数十分の一程度に小さ
くできる。
In the thin film transistor of the present invention, as shown in FIGS. 6 and 7, the channel layer between the source and drain electrodes facing each other with the thin film semiconductor 4 in between is insulated from either the source electrode 5 or the drain electrode 6. Since the channel is formed by gate electrodes facing each other with the body layer in between, the channel length is equal to the thickness of the thin film semiconductor. The thickness of the thin film semiconductor can be accurately controlled from about several tens of meters, and the vertical extension of the channel layer in the thin film semiconductor when voltage is applied to the gate electrode is about several hundred nm. Therefore, the channel length can be shortened to several tens of minutes compared to a thin film transistor formed by photoetching or the like. Since the maximum operating speed in terms of dynamic characteristics is inversely proportional to the square of the channel length, the thin film transistor of the present invention can increase the maximum operating speed several hundred times as compared to conventional thin film transistors. Furthermore, since the source-drain current is inversely proportional to the channel length, the size of the thin-film transistor can be reduced to about a few tenths of the size, even though the source-drain current is the same as that of a conventional thin-film transistor.

以下本発明を実施例をもって説明する。実施例では、薄
膜半導体層としてシランのグロー放電分解法によるアモ
ルファスシリコン膜を用いたが、他の薄膜製造可能な半
導体たとえばCdSやedge等の田−■半導体、8e
9Te等の■半導体、Ge等の■半導体や他の製造方法
による薄膜シリコン半導体たとえば分子線成長法による
多結晶シリコン薄膜やレーザアニーリングによる多結晶
シリコン膜も使用できることはいうまでもない。
The present invention will be explained below with reference to examples. In the examples, an amorphous silicon film made by glow discharge decomposition of silane was used as the thin film semiconductor layer, but other semiconductors that can be made into thin films such as CdS, edge, etc.
Needless to say, semiconductors such as 9Te, etc., semiconductors such as Ge, and thin film silicon semiconductors produced by other manufacturing methods, such as polycrystalline silicon thin films produced by molecular beam growth or polycrystalline silicon films produced by laser annealing, can also be used.

実施例1 第6図に示すように絶縁基板1上にゲート電極2を形成
し、この基板上に水素ベース20%シランおよびアンモ
ニア、窒素を含む混合ガスを200 c8/min流し
、圧力0.3ton高周波電力20W1基板温度300
℃で窒化シリコン膜を形成した11次にゲート電極2の
一部を覆わないようにソース、電極5を形成し、さらに
その上に水素ベース20チシラン。
Example 1 As shown in FIG. 6, a gate electrode 2 was formed on an insulating substrate 1, and a mixed gas containing 20% hydrogen-based silane, ammonia, and nitrogen was flowed over the substrate at 200 c8/min at a pressure of 0.3 ton. High frequency power 20W 1 substrate temperature 300
After forming a silicon nitride film at 11°C, a source and an electrode 5 were formed so as not to cover a part of the gate electrode 2, and then a hydrogen-based 20% silane film was further formed thereon.

を流量100αン’min流し圧力Q、2ton、高周
波電力10W、基板温度300℃で)′モルファスシリ
コンを形成した。この半導体膜上にソース電極5に覆わ
れていないゲート電極2を覆うようにドレイン電極6を
形成し薄膜トランジスターとした。窒化シリコン膜厚0
.3μmアモルファスシリコンMiE厚o、sμmでチ
ャンネル長は0.5μm、チャンネル幅は50μmとし
た。このようにして製造した薄膜トランジスターは、ゲ
ート電圧10v1 ドレイン電圧lOvのオン状態で1
050α以下、ゲート電圧Ov1□ドレイン電圧10V
のオフ状態で1011QGIrL 以上最大動作速度1
00MH2以上であった。これらの値は例えば液晶のス
イッチング素子に十分であるばかりでなく、スイッチン
グ素子をテレビ信号によって駆動するときの駆動回路素
子としても十分な値であった。これは、本発明の薄膜ト
ランジスターが、薄膜半導体層4を界して対向して存在
するソース電極5とドレイン電極6、およびソース電極
5と絶縁体層3を界して対向、するゲート電極2とから
なるためチャンネル長が半導体膜厚できまるため、チャ
ンネル長を短くできたためと考えられる。
Amorphous silicon was formed at a flow rate of 100 α min, a pressure Q of 2 tons, a high frequency power of 10 W, and a substrate temperature of 300° C. A drain electrode 6 was formed on this semiconductor film so as to cover the gate electrode 2 not covered by the source electrode 5 to form a thin film transistor. Silicon nitride film thickness 0
.. The thickness of the amorphous silicon MiE was 3 μm, o, s μm, the channel length was 0.5 μm, and the channel width was 50 μm. The thin film transistor manufactured in this way has a gate voltage of 10v1 and a drain voltage of 1Ov in the on state.
050α or less, gate voltage Ov1□ drain voltage 10V
Maximum operating speed of 1011QGIrL or higher in the off state of 1
It was more than 00MH2. These values were not only sufficient for, for example, a switching element of a liquid crystal, but also a value sufficient for a drive circuit element when the switching element is driven by a television signal. This is because the thin film transistor of the present invention has a source electrode 5 and a drain electrode 6 facing each other across a thin film semiconductor layer 4, and a gate electrode 2 facing each other across a source electrode 5 and an insulator layer 3. This is thought to be due to the fact that the channel length is determined by the semiconductor film thickness, so the channel length can be shortened.

実施例2 第7図に示すように絶縁基板1上にソ・−スミ砥5を形
成し、この基板上にアルゴンベース10%シランを流量
100cc7ntin流し、圧力0.3ton高周波電
力10W1基板・温度300℃でアモルファスシリコン
を形成した。次にソース電極5の一部を覆わないように
ドレイン電極6を形成しさらに半導体層を酸素プラズマ
処理したのち同一真空系中でアルゴンベース10俤シラ
ンおよびアルゴンベース10%酸素を含む混合ガスを1
00cc/min流し、圧力0.110n1高周波電力
20W1基板温度300℃で酸化シリ−】ン膜を形成し
た。この絶縁体膜上にドレイン電極6に覆われていない
ソース電極5を覆うようにゲート電極2を形成し薄膜ト
ランジスターきした。酸化シリコン膜厚は0.3μIn
1アモルファスシリコン膜厚は05μmでチャンネル長
は0.5μm1チヤンネル幅は50μmとした。このよ
うにして製造した薄膜トランジスターも実施例1ど同等
の良好な特性が得られた。これは実施例1と同様の理由
によると思われる。
Example 2 As shown in FIG. 7, a so-sumi sharpener 5 was formed on an insulating substrate 1, and 10% argon-based silane was flowed on the substrate at a flow rate of 100cc7ntin, a pressure of 0.3ton, high frequency power of 10W, a substrate temperature of 300℃. Amorphous silicon was formed at ℃. Next, a drain electrode 6 is formed so as not to cover a part of the source electrode 5, and the semiconductor layer is further treated with oxygen plasma. Then, in the same vacuum system, a mixed gas containing argon base 10 silane and argon base 10% oxygen is heated.
A silicon oxide film was formed at a flow rate of 0.00 cc/min, a pressure of 0.110 n, high frequency power of 20 W, and a substrate temperature of 300°C. A gate electrode 2 was formed on this insulator film so as to cover the source electrode 5 not covered by the drain electrode 6, thereby forming a thin film transistor. Silicon oxide film thickness is 0.3μIn
The amorphous silicon film thickness was 0.5 μm, the channel length was 0.5 μm, and the channel width was 50 μm. The thin film transistor manufactured in this manner also had good characteristics equivalent to those of Example 1. This seems to be due to the same reason as in Example 1.

以上のように本発明の薄膜トランジスターによれば動特
性での最大動作速度を速くできると同時に素子形状を小
さくすることが可能となる。
As described above, according to the thin film transistor of the present invention, it is possible to increase the maximum operating speed in terms of dynamic characteristics, and at the same time, it is possible to reduce the size of the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来のスタガ型電極構造薄膜トランジ
スターの断面図、第3図、第4図、第5図は従来のコプ
レーナ型電極構造薄膜トランジスターの断面図、第6図
、第7図は本発明の薄膜トランジスターの断面図である
。 図において、 1は絶縁基板、2はゲート電極、3は絶縁体層、4は薄
膜半導体層、5はソース電極、6はドレイン電極を示す
。 第7図       第4肥 77椅 躬乙図 1′ 哨7図
Figures 1 and 2 are cross-sectional views of conventional staggered electrode structure thin film transistors, Figures 3, 4, and 5 are cross-sectional views of conventional coplanar electrode structure thin film transistors, and Figures 6 and 7. The figure is a cross-sectional view of the thin film transistor of the present invention. In the figure, 1 is an insulating substrate, 2 is a gate electrode, 3 is an insulator layer, 4 is a thin film semiconductor layer, 5 is a source electrode, and 6 is a drain electrode. Figure 7 Figure 4: 77 Chairs Figure 1'

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に少なくとも薄膜半導体層と絶縁層とからな
る2層構造を備え、蚊2層構造の前記薄膜半導体層を挾
んでソース電極とドレイン電極が設けられてなり、かつ
腋ソース電極もしくはドレイン電極と対向する位置に前
記絶縁層を挾んでゲート電極が設けられていることを特
徴とする薄膜トランジスタ。
It has a two-layer structure consisting of at least a thin film semiconductor layer and an insulating layer on an insulating substrate, and a source electrode and a drain electrode are provided sandwiching the thin film semiconductor layer of the two-layer structure, and an armpit source electrode or a drain electrode. A thin film transistor characterized in that a gate electrode is provided at a position opposite to the insulating layer with the insulating layer interposed therebetween.
JP57123864A 1982-07-16 1982-07-16 thin film transistor Granted JPS5914675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123864A JPS5914675A (en) 1982-07-16 1982-07-16 thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123864A JPS5914675A (en) 1982-07-16 1982-07-16 thin film transistor

Publications (2)

Publication Number Publication Date
JPS5914675A true JPS5914675A (en) 1984-01-25
JPH0376590B2 JPH0376590B2 (en) 1991-12-05

Family

ID=14871268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123864A Granted JPS5914675A (en) 1982-07-16 1982-07-16 thin film transistor

Country Status (1)

Country Link
JP (1) JPS5914675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101242A (en) * 1989-02-17 1992-03-31 International Business Machines Corporation Thin film transistor
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101242A (en) * 1989-02-17 1992-03-31 International Business Machines Corporation Thin film transistor
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer

Also Published As

Publication number Publication date
JPH0376590B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US3427514A (en) Mos tetrode
JPS6022497B2 (en) semiconductor equipment
JPS6110279A (en) Method for manufacturing a thin film field effect transistor and transistor obtained by the method
JPS5914675A (en) thin film transistor
JPS59172774A (en) Amorphous silicon thin film transistor
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
JPS5867031A (en) Semiconductor integrated circuit and its manufacturing method
US3344322A (en) Metal-oxide-semiconductor field effect transistor
JPS60177676A (en) Thin film transistor element and its manufacturing method
JPS59163871A (en) Double gate thin film transistor
JPS61278164A (en) Bidirectional thin film semiconductor device
JP2851741B2 (en) Semiconductor device
JPS6143474A (en) semiconductor equipment
JPH0329328A (en) Semiconductor device and its manufacture
JPS5818966A (en) Method for manufacturing thin film field effect transistors
JPS5914672A (en) Manufacture of thin film transistor
JPH03233938A (en) Manufacture of thin-film transistor
JPH01133381A (en) Superconducting transistor
JPH0348670B2 (en)
JPS62156877A (en) Schottky gate field effect transistor and its manufacturing method
JPS5935480A (en) semiconductor equipment
JPS59208878A (en) Field effect transistor operated in deep depletion mode
JPS6396966A (en) Manufacture of thin film static induction type field-effect transistor
JPS60138975A (en) Semiconductor device
JPH03106081A (en) Three-terminal superconducting element