[go: up one dir, main page]

JPS59145039A - Formation of membrane - Google Patents

Formation of membrane

Info

Publication number
JPS59145039A
JPS59145039A JP1803783A JP1803783A JPS59145039A JP S59145039 A JPS59145039 A JP S59145039A JP 1803783 A JP1803783 A JP 1803783A JP 1803783 A JP1803783 A JP 1803783A JP S59145039 A JPS59145039 A JP S59145039A
Authority
JP
Japan
Prior art keywords
substrate
electron beam
evaporation source
thin film
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1803783A
Other languages
Japanese (ja)
Inventor
Isao Myokan
明官 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1803783A priority Critical patent/JPS59145039A/en
Publication of JPS59145039A publication Critical patent/JPS59145039A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a membrane with uniform film characteristics over a large areal region, by introducing activated hydrogen gas into a tank in which a substrate and an evaporation source are provided while vapor depositing a substance evaporated from the evaporation source in such a state that electron beam is made to irradiate in the vicinity of the substrate. CONSTITUTION:Hydrogen gas activated or ionized by a high frequency discharge type gas discharge tube 4 is introduced into a tank 1 in which a substrate 2 and an evaporation source 3 are provided and the evaporated substance from the evaporation source 3 is vapor deposited on the substrate 2 while electron beam is made to irradiate in the vicinity of the substrate by an electron beam generator 8 to form a membrane. By this method, a hydrogen atom can be introduced in high efficiency and the membrane having uniform characteristics can be formed over a large areal region.

Description

【発明の詳細な説明】 本発明は、蒸着によって薄膜を形成する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming thin films by vapor deposition.

最近におい1、太1@電池や電子写真感光体等の桝成材
料としてアモルファスシリコン(以下「a−8iJと記
す。)が非常に有用視されてきて〜・る。
Recently, amorphous silicon (hereinafter referred to as "a-8iJ") has been viewed as very useful as a material for forming batteries, electrophotographic photoreceptors, etc.

このa−8iは種々の方法によシ薄膜として形成するこ
とができるか、このa7Siには水素原子を尋人してダ
ングリングボンドを封鎖することが必蒙であって、これ
により初めて大きい暗抵抗や光導電性を有する水素含有
a−8L (以下「a、−8t:HJと記す。)が得ら
れ、実用化かり能となる。
This a-8i can be formed as a thin film by various methods, but for this a7Si, it is necessary to add hydrogen atoms to seal the dangling bonds, and only then can a large darkness be formed. Hydrogen-containing a-8L (hereinafter referred to as "a,-8t:HJ") having resistance and photoconductivity is obtained, which can be put to practical use.

従来、このよりなa−8t:Hの薄膜を形成する方法と
して、例えば高周波放電型ガス放電管によシ水素ガスを
グロー放電せしめこれによって生成される活性化水素若
しくはイオン化水素の存在下においてシリコンの#着を
行なう方法が提案されている。
Conventionally, as a method for forming a thin film of a-8t:H, for example, hydrogen gas is glow-discharged in a high-frequency discharge type gas discharge tube, and in the presence of activated hydrogen or ionized hydrogen generated thereby, silicon is A method of #wearing has been proposed.

しかしながらこの方法におい王は、高周波放電型ガス放
電管において生成されるイオン化水素の寿命が短いため
、当該ガス放電管と蒸着基体との離間距離が太きいと水
系原子が十分に導入されず。
However, the main problem with this method is that the ionized hydrogen produced in the high-frequency discharge type gas discharge tube has a short lifespan, so if the distance between the gas discharge tube and the vapor deposition substrate is large, water-based atoms cannot be sufficiently introduced.

従って大きな成膜速度が得られず、F9r袂の特性を有
するa−8i :Hの薄膜を形成することができない。
Therefore, a high film formation rate cannot be obtained, and a thin film of a-8i:H having the characteristics of F9r cannot be formed.

遮に高周波放亀温ガス放電管を基体に接近せしめると、
電磁誘導によって基体の温度が上昇し、このため形成さ
れた薄膜に悪鯵曽を及はし1例えはa−8iが結晶化し
人その特性か大きく損われるようになる。また、基体よ
シある程度離間せしめ1高周波放電型ガス放電管を設け
てこれに大きなパワーを投入するようにすることは、放
電空間と電源との間のマツチングが崩れるようになシ、
効率が低下し史にはガス放電管の破壊の原因となるため
決して得策ではない。
When a high-frequency discharge temperature gas discharge tube is brought close to the base body,
The temperature of the substrate rises due to electromagnetic induction, which adversely affects the formed thin film, such that A-8i, for example, crystallizes and its properties are greatly impaired. In addition, installing a high-frequency discharge type gas discharge tube at a certain distance from the base and inputting a large amount of power to it may cause the matching between the discharge space and the power source to collapse.
This is never a good idea as it will reduce efficiency and cause destruction of the gas discharge tube.

以上の如き方法のほか、最近、基体とシリコン蒸発源と
を設けた槽内に水素ガスをそのまま導入し、これに電子
線を照射して水素を活性化若しくはイオン化させながら
、蒸発源よシのシリコンを基体に蒸着せしめる方法か開
発された。この方法によれは、形成されるa−8i :
Hに水素原子を均一に導入することが可能であシ、併せ
て汚染の殆どないa−8i:Hを製造することができる
利点がある。
In addition to the methods described above, recently, hydrogen gas is introduced directly into a tank containing a substrate and a silicon evaporation source, and the hydrogen is activated or ionized by irradiating it with an electron beam. A method was developed in which silicon was vapor-deposited onto a substrate. According to this method, a-8i is formed:
It is possible to uniformly introduce hydrogen atoms into H, and there is an advantage that a-8i:H with almost no contamination can be produced.

しかしながら、この゛電子&l’に利用する方法におい
ても、電子線発生器の極近傍においてのみ水素ガスの活
性化若しくはイAン化が生ずるため、均一な特性の薄膜
が広い面積領域に亘つ1形成されず、11子線のオリ用
効率が低い欠点がある。
However, even in this method used for electron &l', activation or ionization of hydrogen gas occurs only in the very vicinity of the electron beam generator, so a thin film with uniform characteristics cannot be formed over a wide area. There is a drawback that the efficiency of using the 11-strand wire is low.

本発明は以上の如き事情に基いてなされたものであって
、その目的は、水素原子を高い効率で導入することがで
き、均一な特性を有する薄膜を大きな面積領域に亘って
形成することのできる方法を提供するにある。
The present invention was made based on the above circumstances, and its purpose is to form a thin film over a large area that can introduce hydrogen atoms with high efficiency and has uniform characteristics. We are here to provide you with a possible method.

本発明の特徴とするところは、基体と蒸発源とを設けた
槽内に、高周波放電型ガス放電管によシ活性化し若しく
はイオン化した水素ガスを導入すると共に前記基体の近
傍に電子線を照射しながら、前記蒸発源よシの蒸発物質
を蒸着せしめ、以って薄膜を形成する点にある。
The present invention is characterized in that activated or ionized hydrogen gas is introduced into a tank provided with a substrate and an evaporation source using a high-frequency discharge type gas discharge tube, and the vicinity of the substrate is irradiated with an electron beam. However, the evaporation material is evaporated from the evaporation source to form a thin film.

以下図面によって本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

本発明の一実施例においtは、第1図に示すように、蒸
看憎を形成するペルジャーl内に蒸着基板2とシリコン
を蒸発物質とする#発源8とを互に対向して設け、その
出口が基板2と対向するよう接続して設けた高周波放電
型ガス放電管4を介してペルジャーl内に水素ガスを尋
人すると共に、排気路5を介して真空ポンプ(図示せず
)によジベルジャー1内を排気して当該ペルジャー1内
を例えは1O−4Torra度の龜圧伏態に株つ。基板
2はヒータ6によシ例えは850〜450Cの範囲内の
温度に加熱すると共に、直流電源7によシO〜−10k
Vの負のバイアス電圧を印加する一方、当該基板2と直
接対向するよう配置した電子線発生器8よシミ子線を出
射せしめて一様に走査せしめながら。
In one embodiment of the present invention, as shown in FIG. 1, a evaporation substrate 2 and a source 8 containing silicon as an evaporation material are provided facing each other in a pelger l forming a evaporation chamber. , hydrogen gas is supplied into the Pelger l through a high-frequency discharge type gas discharge tube 4 connected so that its outlet faces the substrate 2, and a vacuum pump (not shown) is supplied through an exhaust path 5. After evacuating the inside of the perfusion jar 1, the inside of the perfusion jar 1 is placed under pressure of, for example, 10-4 Torra degrees. The substrate 2 is heated to a temperature in the range of 850 to 450C by a heater 6, and is heated to a temperature of O to -10K by a DC power supply 7.
While applying a negative bias voltage of V, the electron beam generator 8 disposed directly facing the substrate 2 emits a stain beam to uniformly scan the substrate 2.

蒸発源8を例えばl$)子線加熱器9によシ加熱して蒸
発物質であるシリコンを蒸発せしめ、これにより基板2
の表面にa−8t:Hよυ成る薄膜を形成する。
The evaporation source 8 is heated by a co-heater 9 (for example, 1$) to evaporate silicon, which is an evaporation substance, and thereby the substrate 2
A thin film of a-8t:H is formed on the surface of .

高周波放電型ガス放電管4の一例を説明すると。An example of the high frequency discharge type gas discharge tube 4 will be explained.

第2図に示すように、放電空間200を囲繞する例えは
筒状ガラス製の放電空間91201と、この放電空間部
材201の一端に設けたプローブ電極202及び遮蔽板
208と、この放電空間部材201の他端に設けた出口
204を有する加速集束電極205、石英スリーブ20
6及びカナ−ルミ極207と、放電空間200に高88
電界を印加する環状電極208,209と、電子の旋回
連動を行なわせる磁場コイル210とよシ成シ、前記環
状電極208と209の間に高周波電圧を印加して放電
壁M2O0にフラズマを生じさせ、プローブ電極202
と加速集束電極゛205とにそれぞれ適当な電圧を加え
ることによシ、活性化された水素原子若しくは分子及び
イオン化された水素イオン又は分子イオン又は複合分子
イオンが出口204よシ排出される。この放電管におけ
るプローブ電圧は必要とする活性種に応じて100〜5
kV程度印加されまた、加速集束電圧は100〜20k
V程度とされる。
As shown in FIG. 2, a discharge space 91201 made of cylindrical glass, for example, surrounding the discharge space 200, a probe electrode 202 and a shielding plate 208 provided at one end of this discharge space member 201, and this discharge space member 201 Accelerating and focusing electrode 205 with outlet 204 provided at the other end, quartz sleeve 20
6 and canaluminum pole 207, and height 88 in the discharge space 200.
Annular electrodes 208 and 209 for applying an electric field and a magnetic field coil 210 for interlocking the rotation of electrons are formed, and a high frequency voltage is applied between the annular electrodes 208 and 209 to generate a plasma on the discharge wall M2O0. , probe electrode 202
Activated hydrogen atoms or molecules and ionized hydrogen ions or molecular ions or composite molecular ions are ejected from the outlet 204 by applying appropriate voltages to the acceleration and focusing electrode 205 and the acceleration and focusing electrode 205, respectively. The probe voltage in this discharge tube is 100 to 5, depending on the required active species.
Approximately kV is applied, and the acceleration and focusing voltage is 100 to 20k.
It is said to be about V.

本発明は以上のような方法であるので、高周波放電型ガ
ス放電管4におい・て生成された活性化された若しくは
イAン化された水素が基板2に向って導入されると共に
、基板2の直下の空間に電子線発生器8よシの電子線が
照射されるので、当該空間において活性化水素若しくは
イミン化水素が高い密度で存在し、しかもこの空間は蒸
発物質の蒸気の飛翔空間でもあり、従って基板z上には
極めて高い効率で水素原子が導入された蒸着膜が形成さ
れる。
Since the present invention is a method as described above, activated or ionized hydrogen generated in the high frequency discharge type gas discharge tube 4 is introduced toward the substrate 2, and Since the space directly below is irradiated with an electron beam from the electron beam generator 8, activated hydrogen or iminated hydrogen exists at a high density in the space, and this space is also a space where the vapor of the evaporated substance flies. Therefore, a deposited film into which hydrogen atoms are introduced with extremely high efficiency is formed on the substrate z.

而して本発明においては、水素ガスを高周波放電型ガス
放電管4を介して導入するため、基板2の直下の空間に
おいては、一度活性化若しくはイオン化されながらその
寿命が尽き−てしまった水素が多く存在するが、これら
の種は僅かなエネルギrが与えられると極めて容易に活
性化し或いはイオン化する、いわば励起された状態にあ
るところ。
In the present invention, since hydrogen gas is introduced through the high-frequency discharge type gas discharge tube 4, in the space directly below the substrate 2, hydrogen gas that has been activated or ionized but whose life has expired is removed. There are many species, but these species are in an excited state where they become activated or ionized very easily when a small amount of energy r is applied.

これに電子線発生器8よシの電子線が照射されるので、
ガス放電管4によシ活性化若しくはイオン化されなかっ
た水素の活性化及びイオン化が生ずることに加え、上述
のいわば励起された状態にある水素棟が極めて容易に活
性化され若しくはイオン化された状態となp5この結果
、基板2の直下の空間において、蒸着膜中に導入され得
る高エネルギー状態の水素の密度が格段に高くなシ、こ
の結果、大きな成膜速度で、十分な特性を有するa−8
i :Hその他の薄膜の形成が可能となる。そして、後
述する具体例の説明からも理解されるように、高周波放
電型ガス放電管4及び電子線発生器8の両者を用いるこ
とによp、特性に優れた薄膜を基板2の格段に広い面積
領域に形成することができるので、極めて有利である。
This is irradiated with an electron beam from the electron beam generator 8, so
In addition to the activation and ionization of hydrogen that has not been activated or ionized by the gas discharge tube 4, the above-mentioned hydrogen in the excited state is extremely easily activated or ionized. As a result, in the space directly below the substrate 2, the density of hydrogen in a high energy state that can be introduced into the deposited film is significantly high.As a result, the a- 8
i:H and other thin films can be formed. As will be understood from the explanation of the specific example described below, by using both the high-frequency discharge type gas discharge tube 4 and the electron beam generator 8, a thin film with excellent characteristics can be spread over a much wider area of the substrate 2. This is extremely advantageous since it can be formed over a large area.

まだ電子線発生器8の作動により高周波放電型ガス放電
管4の整合性が向上するためそのガス放電を−1−効率
的に行なうことができ、その結果、良質の薄膜の形成を
長時間に亘って安定に行なうことができる。
However, the operation of the electron beam generator 8 improves the consistency of the high-frequency discharge type gas discharge tube 4, so that the gas discharge can be carried out efficiently, and as a result, a high-quality thin film can be formed for a long time. It can be performed stably over a long period of time.

なお、ペルジャー1内に、例えはアンモニアガス、窒素
ガス等の含窒素ガスをも導入せしめることによシ、窒化
物の薄膜を形成することができる。
Note that a nitride thin film can be formed by introducing a nitrogen-containing gas such as ammonia gas or nitrogen gas into the Pelger 1.

本発明方法を実施する場合における蒸着用の基体として
は、基板に限らず、ドラム状或いは走行するフィルムを
用いることもできる。
When carrying out the method of the present invention, the substrate for vapor deposition is not limited to a substrate, but a drum-shaped or moving film can also be used.

また電子線発生器8としては種々のものを用いることが
でき、いわゆるポイント型のものに限らず、第8図に示
すように2次元に伸びる1M型のもの、或いは第4図に
示すように8次元に展ひる部屋のものを用いることもで
きる。これらの図において、Fはフィラメント、Sはフ
ィラメント電源、Eは引出電極、Dは引出電極Eの直流
電源%Wは引出を極Eに形成された電子線透過窓、eは
電子線を示す。
Various types of electron beam generators can be used as the electron beam generator 8, and it is not limited to the so-called point type, but also a 1M type that extends two-dimensionally as shown in FIG. 8, or a 1M type that extends two-dimensionally as shown in FIG. You can also use a room that expands in eight dimensions. In these figures, F is a filament, S is a filament power source, E is an extraction electrode, D is a DC power source of the extraction electrode E, %W is an electron beam transmission window formed in the extraction pole E, and e is an electron beam.

本発明方法は、単なる蒸着による場合にはダングリング
ボンドが生じてしまうような物質による薄膜を、ダング
リングボンドが封順された状態で形成することができ、
従って蒸発源8の蒸発物質を変えることによシ、a−8
t:H以外の薄膜1例えばアモルファスシリコンカーバ
イド、アモルファス窒化シリコン、アモルファス窒化タ
ンタル、アモルファス窒化チタン、その他の薄膜を形成
することができる。
The method of the present invention can form a thin film of a substance that would otherwise cause dangling bonds by mere vapor deposition, with the dangling bonds sealed.
Therefore, by changing the evaporation substance of the evaporation source 8, a-8
The thin film 1 other than t:H can be formed, for example, amorphous silicon carbide, amorphous silicon nitride, amorphous tantalum nitride, amorphous titanium nitride, or other thin films.

蒸発源8のシリコンの加熱のためには、図示の例におけ
るように電子線加熱手段のほか、抵抗加熱手段を利用す
ることができる。
To heat the silicon of the evaporation source 8, it is possible to use resistance heating means in addition to electron beam heating means as in the illustrated example.

次に本発明の具体例について説明する。Next, specific examples of the present invention will be described.

第1図に示した構成の蒸着装置を用い、以下の条件に従
ってシリコンの蒸着を行なった。但し、基体として直径
12Crn、長さ80crnのアルミニウムドラムを用
いて回転速度20r、p、m、 で回転させ、電子線発
生器8は基体の一端側に設けた。
Silicon was deposited using a vapor deposition apparatus having the configuration shown in FIG. 1 under the following conditions. However, an aluminum drum having a diameter of 12 Crn and a length of 80 Crn was used as the base, and was rotated at a rotational speed of 20 r, p, m, and the electron beam generator 8 was provided on one end side of the base.

〔蒸着の条件〕[Vapor deposition conditions]

ペルジャー内真空度 : 1刈0−4Torr基板温度
   ’   850tl:’基板電圧   ’   
−6kV 蒸発源の電子線加熱器電圧 :     −6kV同エ
ミツシヨン寛流 :    800  mAガス放電管
駆動電力  :     100W電子線発生器躯動電
圧 :     −ekV同エミッション電流  : 
    400  mA同走査周期     ・   
 10  Hz水素ガス供給量   ’    200
  SCCM成膜速度   ’   25A/秒 蒸着時間   ’  2000秒 以上のようにして形成されたa−8i:Hの薄膜を有す
るドラムについ王、薄膜の暗導電度σ1及び5X101
5ホトン/i°秒の光照射による光導電度σ。
Vacuum level inside Pelger: 0-4 Torr substrate temperature '850tl:'substrate voltage'
-6kV Evaporation source electron beam heater voltage: -6kV Emission current: 800 mA Gas discharge tube driving power: 100W Electron beam generator running voltage: -ekV Emission current:
400 mA same scanning cycle ・
10 Hz hydrogen gas supply amount '200
SCCM deposition rate: 25 A/s Deposition time: 2,000 seconds or more The drum having a-8i:H thin film formed as described above has dark conductivity σ1 and 5X101 of the thin film.
Photoconductivity σ due to light irradiation of 5 photons/i° seconds.

を求めたところ、ドラムの全長に亘シ、9 σD=lO〜10″″8(Ω−cm ) −’σG =
 10      (Ω−cm ) −’であシ、極め
て高い光応答性を均一に有するものであることが認めら
れた。
We found that over the entire length of the drum, 9 σD = lO ~ 10''''8 (Ω-cm ) −'σG =
10 (Ω-cm) −', and was found to have uniformly extremely high photoresponsivity.

これに対し、電子線発生器8の駆動を停止した以外は全
く同様にしてa−8i:Hの薄膜を形成したドラムにつ
いて、同様の測定を行なったところ、ドラムの全長に亘
シ、 +7=10−9〜10″″6 (Ωaan)−’a  
= 10−5〜1O−6(0g cm ) −1であシ
、光応答性がそれ程高いとはいえず、しかも不均一性が
甚しいものであった。
On the other hand, when similar measurements were performed on a drum on which a thin film of a-8i:H was formed in the same manner except that the drive of the electron beam generator 8 was stopped, +7= 10-9~10″″6 (Ωaan)-'a
= 10-5 to 1 O-6 (0 g cm)-1, the photoresponsiveness was not that high, and the non-uniformity was severe.

また、高周波数11L型ガス放電管4の駆動を停止した
以外は既述と同様にしてa−8i :Hの薄膜を形成し
たドラムについて、同様の測定を行なったところ、電子
線発生器8が位置された一端側の半分の長さ領域におい
ては、 σ −10″″9〜10″″8(Ω・cm ) −1− σ・−1O−5〜1O−6(0mcm)−’ − であシ、また他端11]の半分の領域においては、σ、
 = 10−8〜1O−7(Ω−cm )−1σG−1
0〜10”−7(0m on ) −16 であシ、長さ方向における光応答性の不均一性が太きく
、シかも光応答性があっても高いものではなかった。
In addition, similar measurements were performed on a drum on which a thin film of a-8i:H was formed in the same manner as described above, except that the drive of the high frequency 11L type gas discharge tube 4 was stopped, and it was found that the electron beam generator 8 was In the half-length region of the one end where In the half area of the reed and the other end 11], σ,
= 10-8 ~ 1O-7 (Ω-cm)-1σG-1
0 to 10''-7 (0 m on ) -16 The non-uniformity of the photoresponsivity in the length direction was large, and even though the photoresponsivity was present, it was not high.

以上のように、本発明によれば、水累原子が高い効率で
導入され、均一な特性を有する薄膜を大きな面積領域に
亘って形成することができる。
As described above, according to the present invention, water atoms can be introduced with high efficiency, and a thin film having uniform characteristics can be formed over a large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明薄膜形成方法の実施に用いることのでき
る装置の説明図、第2図は直流放電型ガス放電管の一例
を示す説明図、第8図及び第4図は電子IW発生器の例
における要部の説明図である。 l・・・ペルジャー    2・・・基 板8・・・蒸
発源      4・・・ガス放電管5・・・排気路 
     6・・・ヒーター8・・・電子線発生器  
 9・・・電子線加熱器F・・・フイラメン1.   
 k・・・引出電極W・・・電子線透過窓   200
・・・放電空間201・・・放電空間部材  205・
・・加速集束I!極207・・・カナ−ルミ極  20
8,209・・・環状電極210・・・磁場コイル 第1胆 学2R
FIG. 1 is an explanatory diagram of an apparatus that can be used to implement the thin film forming method of the present invention, FIG. 2 is an explanatory diagram showing an example of a DC discharge type gas discharge tube, and FIGS. 8 and 4 are an electronic IW generator. FIG. 2 is an explanatory diagram of main parts in the example of FIG. l...Pelger 2...Substrate 8...Evaporation source 4...Gas discharge tube 5...Exhaust path
6... Heater 8... Electron beam generator
9...Electron beam heater F...Filament 1.
k...Extraction electrode W...Electron beam transmission window 200
...Discharge space 201...Discharge space member 205.
...Acceleration Focus I! Pole 207...Canalumi pole 20
8,209...Annular electrode 210...Magnetic field coil 1st biliary science 2R

Claims (1)

【特許請求の範囲】 1)基体と蒸発源とを設けた槽内に、高周波放電厖ガス
放電管によシ活性化し若しくはイAyイヒした水素ガス
を導入すると共に前記基体の近傍に電子線を照射しなが
ら、前記蒸発、源よりの蒸発物質を蒸着せしめ、以って
薄膜を形成することを特徴とする薄膜形成方法。 Z)  ’It子線の照射を走査せしめながら行なう特
許請求の範囲第1項記載の薄膜形成方法。
[Claims] 1) Activated or energized hydrogen gas is introduced into a tank provided with a substrate and an evaporation source through a high-frequency discharge gas discharge tube, and an electron beam is emitted near the substrate. A method for forming a thin film, characterized in that the evaporated substance from the evaporation source is deposited while irradiating, thereby forming a thin film. Z) 'The method for forming a thin film according to claim 1, wherein the irradiation with the It son beam is performed while scanning.
JP1803783A 1983-02-08 1983-02-08 Formation of membrane Pending JPS59145039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1803783A JPS59145039A (en) 1983-02-08 1983-02-08 Formation of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1803783A JPS59145039A (en) 1983-02-08 1983-02-08 Formation of membrane

Publications (1)

Publication Number Publication Date
JPS59145039A true JPS59145039A (en) 1984-08-20

Family

ID=11960472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1803783A Pending JPS59145039A (en) 1983-02-08 1983-02-08 Formation of membrane

Country Status (1)

Country Link
JP (1) JPS59145039A (en)

Similar Documents

Publication Publication Date Title
EP0200651B1 (en) Triode-type ion source with a single high frequency ionization chamber and with multiple magnetic confinement
US4844775A (en) Ion etching and chemical vapour deposition
US6579428B2 (en) Arc evaporator, method for driving arc evaporator, and ion plating apparatus
JPS60221566A (en) Thin film forming equipment
JPS63270458A (en) Device for forming compound thin film
JPS5845892B2 (en) Sputter deposition equipment
US4727029A (en) Apparatus and method for the pretreatment of biological specimens for use in scanning electron microscopes
JPS63274762A (en) Device for forming reaction vapor-deposited film
JPH0456761A (en) Thin film forming device
JPS59145039A (en) Formation of membrane
EP0095384A2 (en) Vacuum deposition apparatus
JP3406769B2 (en) Ion plating equipment
JPS59139930A (en) Vapor deposition apparatus
JP3296368B2 (en) Plasma CVD equipment
JPS59139927A (en) Formation of membrane
JPS59144120A (en) Formation of thin film
JPS5842769A (en) Ion plating device using light beam
JPH11195397A (en) Low energy heavy ion three-dimensional radiation method
JPS6176665A (en) Device for forming film deposited by evaporation
JP2893992B2 (en) Method and apparatus for synthesizing hard carbon film
JPH04191364A (en) Method and device for ion plating
JPS59142840A (en) Vapor deposition device
JPH021908B2 (en)
JPS59148324A (en) Method and device for thin film fabrication
JPS616271A (en) Method and device for bias ion plating