JPS59144618A - Production of polyester conjugate fiber - Google Patents
Production of polyester conjugate fiberInfo
- Publication number
- JPS59144618A JPS59144618A JP1297583A JP1297583A JPS59144618A JP S59144618 A JPS59144618 A JP S59144618A JP 1297583 A JP1297583 A JP 1297583A JP 1297583 A JP1297583 A JP 1297583A JP S59144618 A JPS59144618 A JP S59144618A
- Authority
- JP
- Japan
- Prior art keywords
- intrinsic viscosity
- polyester
- heat treatment
- yarn
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は固有粘度の異なるポリエステル系ポリマーから
なるサイド・パイ・サイド型複合繊維を製造する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing side-pie-side type composite fibers made of polyester polymers having different intrinsic viscosities.
特に高性能のポリエステル系複合巻縮加工糸を高速度で
製造する方法を提供せんとすることを目的とするもので
ある。In particular, the object of the present invention is to provide a method for producing high-performance polyester composite crimped yarn at high speed.
従来、巻縮糸の製造方法は、仮撚加工法が主流となって
おり、この方法は近年フリクション仮撚ユニットの出現
により、それ迄のスピンドル型板撚より高速化が可能に
なった。しかし、それでも高々1000 m / m程
度であり、紡糸直加工しても大幅な生産性の向上を期待
することができない。Conventionally, the mainstream method for manufacturing crimped yarn has been the false twisting process, and with the recent appearance of friction false twisting units, this method has become faster than the spindle-type plate twisting method up until then. However, it is still only about 1000 m/m at most, and no significant improvement in productivity can be expected even with direct spinning processing.
これに対し、廷伸糸を予熱後加熱空気で嵩高加工する方
法が種々提案されている(例えば特公昭53−3517
5号公報、米国特許第3.729,831号明細書、米
国特許第3,852,857号明細書)。これらの方法
は高速化という点では優れているが、衣料用途に用いる
加工糸としては嵩高性において劣り、又加工方法が繊維
に過度の熱収縮を起こさせる方法である為に、染斑、力
学的特性(高伸度、伸び易い)において劣る。On the other hand, various methods have been proposed in which the drawn yarn is preheated and then bulked with heated air (for example, Japanese Patent Publication No. 53-3517
No. 5, U.S. Pat. No. 3,729,831, U.S. Pat. No. 3,852,857). Although these methods are superior in terms of speeding up, they are inferior in bulk as processed yarns used for clothing, and because the processing method causes excessive heat shrinkage of the fibers, they cause problems such as dye spots and mechanical problems. It is inferior in physical properties (high elongation, easy to stretch).
この為にこの技術は単糸デニール、トータルデニールの
大きいカーペット用タクト糸の製造に利用されている。For this reason, this technology is used to manufacture tact yarns for carpets with a large single denier and a large total denier.
一方、仮撚後空気押込ノズルで熱セットする方法(特開
昭53−119348号公報、特開昭54−68433
号公報)も提案されているがこれとて高速度での加工が
困難であって紡糸直加工には適さない。On the other hand, there is a method of heat setting with an air forced nozzle after false twisting (Japanese Patent Application Laid-Open No. 53-119348, Japanese Patent Application Laid-Open No. 54-68433).
Although it has also been proposed (Japanese Patent Publication No. 2003-12101), it is difficult to process at high speeds and is not suitable for direct spinning processing.
これらの方法に対し、固有粘度差を有するポリエステル
複合繊維を高速度で紡糸し、巻縮嵩高加工糸を製造する
方法が提案されている(特公昭50−11848号公報
)。しかし、この方法では、固有粘度差が小さく、かつ
固有粘度自体が^すぎて、衣料用途に適した嵩高性、風
合の加・1糸は得られない。In contrast to these methods, a method has been proposed in which a polyester composite fiber having a difference in intrinsic viscosity is spun at high speed to produce a crimped bulky yarn (Japanese Patent Publication No. 11848/1983). However, with this method, the difference in intrinsic viscosity is small, and the intrinsic viscosity itself is too high, making it impossible to obtain yarn with bulkiness and texture suitable for clothing applications.
更に、異種、異質なポリマーを複合紡糸し、延伸熱処理
後加熱空気加工する方法も提案されて□いる(米国特許
第4,115,989号明細書、米国特許第4,118
,534号明細書、実公昭46−9535号公報、特公
昭45−37576号公報、特開昭54−42441号
公報)。しかしこれらの方法は罵速度加工には適するが
巻縮加工糸としての電性と力学的特性が劣り、衣料用途
にをま依然として適さない。Furthermore, a method has also been proposed in which composite spinning of different types of polymers is carried out, followed by drawing heat treatment and heating air processing (U.S. Pat. No. 4,115,989, U.S. Pat. No. 4,118).
, No. 534, Japanese Utility Model Publication No. 46-9535, Japanese Patent Publication No. 45-37576, Japanese Unexamined Patent Application Publication No. 54-42441). However, although these methods are suitable for high-speed processing, the electrical properties and mechanical properties of the crimped yarn are poor, and it is still unsuitable for use in clothing.
又、異種、異質ポリマーを複合紡糸し、延伸熱処理後加
熱流体で加工する方法が提案されている(特開昭56−
169830号公報)。この提案のものは巻縮嵩高性、
及び力学的特性も良好で、衣料用途にも使用出来るもの
であるが、紡糸速度が著しく低いこと、低伸熱処理する
という点において生産効率を高めることができな()。In addition, a method has been proposed in which composite spinning of different types of different polymers is carried out, and processing is carried out using a heated fluid after drawing heat treatment (Japanese Unexamined Patent Application Publication No. 1986-1999).
169830). This proposal has crimped bulk,
It also has good mechanical properties and can be used for clothing, but production efficiency cannot be improved due to the extremely low spinning speed and low heat elongation treatment ().
本発明はこれら従来法の欠点を解消し、巻縮嵩高性及び
力学的特性の良好な巻縮加工糸な超高速紡糸で得んとす
るとものであり、超高速紡糸における紡出糸条の詳細な
物性研究結果に基づいてまった(新しい発想によりなさ
れたものである。The present invention aims to solve the drawbacks of these conventional methods and obtain a crimped yarn with good crimped bulk and mechanical properties by ultra-high-speed spinning. It was based on the results of physical property research (it was created based on a new idea).
即ち、本願第1の発明は、固有粘度差△〔η〕fを有す
るポリエステルからなるサイド・パイ・サイド型複合繊
維を製造するに際し、固有粘度の低いポリエステル成分
の固有粘度〔η〕fを0.34〜O0S O、両ポリエ
ステル成分の固有粘度差△〔η〕fを0.20〜0.3
0とし、4,000〜s、5oon/分の紡糸速度で引
取ることを特徴とするポリエステル系複合繊維の製造方
法、本願第2の発明は、固有粘度差Δ〔η〕fを有する
ポリエステルからなるサイド・パイ・サイド型複合繊維
を製造するに際し、固有粘度の低いポリエステル成分の
固有粘度Cq〕tを0.34〜0,50 、両ポリエス
テル成分の固有粘度差△〔η〕fを0.20〜0.30
とし、4,000〜s、s o o * 7分の紡糸速
度で引取り、引続き、延伸することな(80〜l 20
’Cの温度、0.03g/d/!以下の張力下で弛緩
予備熱処理し、次いで160〜220°Cで弛緩熱処理
することを特徴とするポリエステル系複合繊維の製造方
法、更て本願第3の発明は、固有粘度差△〔η〕fを有
するポリエステルからなるサイド・パイ・サイド型複合
繊維を製造するに際し、固有粘度の低いポリエステル成
分の固有粘度〔η〕fを0.34〜0,50 、両ポリ
エステル成分の固有粘度差△〔η〕tff:o、2o〜
0.30とし、4,000〜5.500 m 7分の紡
糸速度で引取り、引続ぎ加熱流体押込ノズルにより16
0〜220 ’Cで弛緩熱処理することを特徴とするポ
リエステル系複合繊維の製造方法である。That is, in the first invention of the present application, when manufacturing a side-pie-side type composite fiber made of polyester having an intrinsic viscosity difference Δ[η]f, the intrinsic viscosity [η]f of the polyester component having a low intrinsic viscosity is reduced to 0. .34~O0S O, the intrinsic viscosity difference △[η]f between both polyester components is 0.20~0.3
0 and the spinning speed is 4,000 to 5 oon/min. When producing a side-pie-side type composite fiber, the intrinsic viscosity Cq]t of the polyester component with low intrinsic viscosity is set to 0.34 to 0.50, and the intrinsic viscosity difference Δ[η]f between both polyester components is set to 0.34 to 0.50. 20-0.30
The spinning speed was 4,000~s, soo * 7 minutes, and the spinning speed was 4,000~s, soo * 7 minutes.
'C temperature, 0.03g/d/! A method for producing a polyester composite fiber characterized by carrying out a pre-relaxation heat treatment under the following tension and then a relaxation heat treatment at 160 to 220°C, and a third invention of the present application provides a method for producing a polyester composite fiber, which is characterized by carrying out a pre-relaxation heat treatment under the following tension and then a relaxation heat treatment at 160 to 220°C. When producing a side-pie-side type composite fiber made of polyester having a polyester component having a low intrinsic viscosity, the intrinsic viscosity [η]f of the polyester component with a low intrinsic viscosity is set to 0.34 to 0.50, and the intrinsic viscosity difference Δ[η] between both polyester components is ]tff:o, 2o~
0.30 and taken at a spinning speed of 4,000 to 5,500 m 7 min, followed by a heating fluid push nozzle for 16 min.
This is a method for producing a polyester composite fiber characterized by carrying out a relaxation heat treatment at 0 to 220'C.
本発明におけろポリエステルは、ポリエチレンテレフタ
レートを主たる対象とするが、固有粘度の低い方のポリ
エステル成分には、共重合ポリエチレンテレフタレート
を用いると、より高度の巻縮が発現するので好ましい。The polyester used in the present invention is mainly polyethylene terephthalate, but it is preferable to use copolymerized polyethylene terephthalate as the polyester component with lower intrinsic viscosity, since this will result in a higher degree of crimp.
この場合の共重合第3成分としては、インフタル酸、ジ
エチレングリコール、トリエチレンクリコールなどをあ
げることができ共重合量は3〜10モル%の範囲内が望
ましい。In this case, examples of the third copolymerized component include inphthalic acid, diethylene glycol, triethylene glycol, etc., and the amount of copolymerization is preferably in the range of 3 to 10 mol%.
本発明の発想の基本は超高速紡糸において紡出糸の固有
粘度〔η〕fによって紡出糸の物性が著しく異なること
を利用するものである。即ち、我々の基礎研究によれば
一般的なポリエチレンテレフタレートの溶融紡糸におい
て、紡糸速度と熱収縮率との間には図に示すような関係
がある。図において固有粘度〔η〕fの高い糸条の挙動
を実線で、固有粘度〔η〕fの低い糸条の挙動を点線で
示す。The basic idea of the present invention is to utilize the fact that the physical properties of the spun yarn vary significantly depending on the intrinsic viscosity [η]f of the spun yarn in ultrahigh-speed spinning. That is, according to our basic research, in the melt spinning of general polyethylene terephthalate, there is a relationship between the spinning speed and the heat shrinkage rate as shown in the figure. In the figure, the behavior of a yarn with a high intrinsic viscosity [η]f is shown by a solid line, and the behavior of a yarn with a low intrinsic viscosity [η]f is shown by a dotted line.
2500 @ / 7M4以下の低速紡糸速度域(図の
Iの領域)では高〔η〕t+低〔η〕′f糸条共に、紡
糸速度の上昇にともなって、分子鎮配向が増大し、高〔
η〕f糸条程熱収縮率が大きくなる。In the low spinning speed range of 2500 @ / 7M4 or lower (region I in the figure), for both high [η]t + low [η]'f yarns, as the spinning speed increases, the molecular orientation increases, and high [η]t + low [η]'f yarns increase.
[eta]f The heat shrinkage rate increases as the yarn increases.
これらの糸条は低強度、高伸度である為、それ自体では
使用に耐え得ないので、後から延伸熱処理される。この
時得られる糸条の密度は毘〔η〕f糸条程小さく、従っ
て熱収縮率は大きくなる。この高〔η〕f、低〔η〕f
糸条の収縮特性差を利用したものが固有粘度差ポリ−エ
ステル系のサイド・パイ・サイド型複合繊績であり、過
去提案されたものは殆んどがこの領域に属するものであ
る。−例を示せば、特開昭
56一−169830号公報に記載された技術がある。Since these yarns have low strength and high elongation, they cannot be used by themselves, so they are subsequently subjected to drawing heat treatment. The density of the yarn obtained at this time is as small as bi[η]f yarn, and therefore the heat shrinkage rate becomes large. This high [η] f, low [η] f
Side-pie-side type composite fibers based on polyester having different intrinsic viscosity utilize differences in shrinkage properties of yarns, and most of the fibers proposed in the past belong to this area. - For example, there is a technique described in Japanese Unexamined Patent Publication No. 169830/1983.
ところが紡糸速度を更に上げて2800〜3200、/
11111の領域即ち図の■の領域とすると驚ろくべき
ことに晶〔ηlr、低〔η〕fの紡出糸条反び、その延
伸熱セツト糸条の物性に大きな差がなくなってしまう。However, when the spinning speed was further increased to 2,800 to 3,200, /
Surprisingly, when the area of 11111, that is, the area of ■ in the figure, there is no significant difference in the warpage of the spun yarn with crystal [ηlr, low [η]f] and the physical properties of the drawn and heat-set yarn.
即ち、この紡糸速度域では、固有粘度差利用による複合
繊維では高嵩高性を得ることは難めで困難なのである。That is, in this spinning speed range, it is difficult to obtain high bulkiness with composite fibers that utilize the difference in intrinsic viscosity.
このこともあって前記特開昭56−169830号公報
ではその特許請求範囲において、好適紡糸速度を尚々2
000m/aとしたものと推察される。For this reason, the above-mentioned Japanese Unexamined Patent Publication No. 169830/1983 states that the preferred spinning speed is 2.
000m/a.
しかし、更に驚ろくべきことは紡糸速度を更に上げてい
くと(図の■の領域)、紡出糸の密度が大きくなり紡出
糸の収縮率は紡糸速度が大きい程低下する現象がみら5
、れる。この領域から再び高〔η〕f、低〔η〕fの紡
出糸条に物性差が現われ始める。しかし、この領域では
高[*)r糸条程密度。が大きくなり、従って収縮率が
小さくなる。これは図のIの領域とは逆の現象である。However, what is even more surprising is that as the spinning speed is further increased (region marked ■ in the figure), the density of the spun yarn increases and the shrinkage rate of the spun yarn decreases as the spinning speed increases. 5
, will be. From this region, differences in physical properties begin to appear again between high [η]f and low [η]f spun yarns. However, in this region, the yarn density is high [*)r. becomes larger, and therefore the shrinkage rate becomes smaller. This is a phenomenon opposite to the area I in the figure.
これらの紡出糸条は低強度、高伸度であるので、延伸熱
セットが必要となるが、熱セットすると高〔η〕f、低
〔η〕f糸条とも極めて類似の高密度を呈し、収縮特性
の差がなくなってしまう。この紡糸速度領域で固有粘度
差サイド・パイ・サイド型複合繊維の紡出糸を延伸熱セ
ントしないで弛緩熱処理するとクリンプが発生する。し
かし一旦緊張下で熱処理したものは後で弛緩熱処理して
もクリンプ構造は極くわずかな程度しか発生しない。こ
の現象を利用して、紡出後延伸熱化ッ卜せずに直接弛緩
熱処理すればクリンプ構造を発現させることも出来るの
だが、得られる糸条は伸度が極端に大きく、且つ低強度
である為に使用に耐え得な−・。These spun yarns have low strength and high elongation, so they require drawing and heat setting, but when heat set, both high [η]f and low [η]f yarns exhibit extremely similar high densities. , the difference in shrinkage properties disappears. If the spun yarn of the intrinsic viscosity difference side-pie-side type composite fiber is subjected to relaxation heat treatment without drawing heat centrifugation in this spinning speed range, crimp occurs. However, once a material has been heat treated under tension, even if it is subsequently subjected to relaxation heat treatment, only a very small degree of crimp structure will occur. Taking advantage of this phenomenon, it is possible to develop a crimp structure by directly performing relaxation heat treatment without stretching and heat treatment after spinning, but the resulting yarn has extremely high elongation and low strength. Because of this, it cannot withstand use.
次に、更に高速の4000からs s o o 、/+
m位の領域(図の■の領域)では紡出糸のみで高密度、
低収縮、且つ強度も太きく1ヨリ、使用に耐え得るもの
が得られる。又幸いなことにこの領域においては5固有
粘度差によって両者の紡出糸条の物性に大きな差がある
。Next, from 4000, which is even faster, s s o o, /+
In the m-region (region marked ■ in the figure), there is high density with only the spun yarn,
A product with low shrinkage and high strength that can withstand use can be obtained. Fortunately, in this region, there is a large difference in the physical properties of the two spun yarns due to the difference in intrinsic viscosity.
この知見を基に、固有粘度差サイド パイ・サイド型複
合繊維の紡出糸を弛緩熱処理したところ極めて良好なり
リンプ構造が得られた。ところが、一旦延伸熱セット或
いは緊張熱処理したものを、後でいくら弛緩熱処理して
もクリンプ構造は発現しなかった。このことは■の領域
と同じ現象であり、その理由は複合繊維にクリンプ構造
をとらせない様な緊張熱処理では、その状態で結晶化が
進行してしまいナイド・パイサイドの構造差がなくなっ
てし1うからであると考えられる。尚、先にクリンプ構
造を発現させたうえで、より調温の熱処理を施こしても
、クリンプ構造は消滅せず、より一周結晶化が進(−j
し、形態的に安定な構造のものが得られる。Based on this knowledge, when the spun yarn of the intrinsic viscosity difference side pie-side type composite fiber was subjected to relaxation heat treatment, an extremely good limp structure was obtained. However, no matter how much relaxation heat treatment was applied to the material that had once been subjected to stretching heat setting or tension heat treatment, no crimp structure was developed. This is the same phenomenon as in the area (■), and the reason is that when the composite fiber is subjected to tension heat treatment that does not form a crimp structure, crystallization proceeds in that state, eliminating the structural difference between nide and pide. 1 It is thought that it is due to the body. Furthermore, even if a crimp structure is developed first and then heat treatment is performed at a more controlled temperature, the crimp structure does not disappear and crystallization progresses further (-j
However, a morphologically stable structure can be obtained.
本発明は、以上の知見を利用して固有粘度差サイド・パ
イ−サイド型複合繊維を<ooWL/mから5500
B / minの紡糸速度で紡出し、弛緩状態で熱処理
することを最も大きな特徴とするものである。The present invention makes use of the above knowledge to produce a side pie-side type composite fiber with an intrinsic viscosity difference of <ooWL/m to 5500
The most significant feature is that it is spun at a spinning speed of B/min and heat-treated in a relaxed state.
更に紡糸速度を大きくしていくと(図の■の領域)低〔
η〕f糸粂糸条密度が大きくなり、再び高〔η〕f、低
〔η〕f糸粂糸条性の差がなくなってしまう。When the spinning speed is further increased (region marked ■ in the figure), the spinning speed becomes low [
η]f thread density increases, and the difference between high [η]f and low [η]f thread properties disappears again.
このことから、本発明の紡糸速度4000から5soo
、7mの範囲の紡出糸を直接弛緩熱処理することが重要
であることが明らかであろう。From this, the spinning speed of the present invention is 4000 to 5 soo.
It will be clear that it is important to directly relax heat treat the spun yarn in the range of , 7 m.
次にN要たことは、サイド・パイ・サイド両成分におい
て、低〔η〕f側の固有粘度〔η〕fが0.34から0
.50の範囲内にあることである。Next, what was needed was that the intrinsic viscosity [η]f on the low [η]f side ranged from 0.34 to 0 in both the side, pi, and side components.
.. It must be within the range of 50.
この〔η〕fが0.34より小であれば溶融紡糸時の糸
切れや、紡糸口金面の汚れが発生し、安定した紡糸出来
なくなる。一方0.50を越えると紡糸性は良くなるが
、固有粘度差△〔η〕f。If [η]f is smaller than 0.34, thread breakage during melt spinning and staining of the spinneret surface will occur, making stable spinning impossible. On the other hand, if it exceeds 0.50, the spinnability will improve, but the intrinsic viscosity difference Δ[η]f.
紡糸速度を本発明の範囲内としても、紡出糸の潜在巻縮
性能が低下してしまう。この理由は、〔η〕fが大きく
なると紡糸段階での結晶化が促進されること、文鳥〔η
〕f側の固有粘度〔η〕fを低〔η〕f側の固有粘度〔
η〕f上昇に見合うように大きくしていっても、〔η〕
fが0.70を超える様になると、結晶化が飽和する傾
向がみえ始め、画成分間の物性差が縮小してくることの
2点が、低〔η〕fの上限を決める理由である。Even if the spinning speed is within the range of the present invention, the potential crimp performance of the spun yarn is reduced. The reason for this is that crystallization in the spinning stage is promoted when [η] f becomes large, and sparrow [η]
] Intrinsic viscosity on the f side [η] f is lower [η] Intrinsic viscosity on the f side [
Even if it is increased to match the increase in [η]f, [η]
When f exceeds 0.70, the tendency for crystallization to become saturated begins to be seen, and the differences in physical properties between image components begin to shrink. These two points are the reasons for determining the upper limit of low [η] f. .
次に重要なことは、両成分の固有粘度差へ〔η〕fが0
.20〜0.30であることである。The next important thing is that the difference in intrinsic viscosity between the two components [η] f is 0.
.. 20 to 0.30.
この△〔η〕fが0.20より小さくなると充分な巻縮
性能を得ることは難しくなる。又0.30より大きくな
ると紡糸時の口金向においてポリマーのベンディングが
大きくなり紡糸性が極端に低下してしまう。If this Δ[η]f becomes smaller than 0.20, it becomes difficult to obtain sufficient crimp performance. If it is larger than 0.30, bending of the polymer in the direction of the spinneret during spinning becomes large, resulting in extremely poor spinnability.
か(して得られたポリエステル系複合繊維は、その1捷
で弛緩熱処理することにより、良好な巻縮を発現させる
ことができるが、更に低伸することなく800から12
0°0の温度0 、03ji/di以下の張力下であら
かじめ弛緩予備熱処理し、次いで160 ’O〜220
°Cの温度で弛緩熱処理することにより、更に良好な品
質の複合巻縮糸を得ることができる。The polyester composite fiber obtained by this method can be made to exhibit good crimping by being subjected to a relaxation heat treatment in one twist, but it can be made to have a tensile strength of 800 to 12 without further low elongation.
Relaxation preheat treatment is performed in advance at a temperature of 0 ° 0 and a tension of 03ji/di or less, and then 160'O~220
By carrying out the relaxation heat treatment at a temperature of °C, a composite crimped yarn of even better quality can be obtained.
ここで、弛緩予備熱処理する理由は、先に、紡糸速度と
紡出糸条の物性の関連において説明した様に、直接、緊
張高温熱処理した場合、サイド・パイ・サイドの両成分
とも結晶化してしまいクリンプ構造をとらなくなってし
まうためであって、あらかじめ弛緩予備熱処理してクリ
ンプ構造を発現させる必要があるのである。ここで張力
としては0.03g/dl以下であればよい。これより
大きくなると効果的に弛緩させることは難しくなり、発
現したクリンプ構造が劣ったものとなるという現象がみ
られる。又温度としてはサイド・パイ・サイド成分間の
潜在的収縮性能を発現させろ為に、ガラス転移点温度よ
りも高くする必要があり、80〜120 ’Oが適当で
ある。Here, the reason for performing the relaxation preheat treatment is that, as explained earlier in relation to the spinning speed and the physical properties of the spun yarn, if the tension heat treatment is directly performed at high temperature, both the side, pie, and side components will crystallize. This is because the crimp structure will not be formed afterward, and it is necessary to perform a pre-relaxation heat treatment in advance to develop the crimp structure. Here, the tension may be 0.03 g/dl or less. If the size is larger than this, it becomes difficult to effectively relax the crimp structure, resulting in an inferior crimp structure. In addition, the temperature needs to be higher than the glass transition temperature in order to exhibit the potential shrinkage performance between the side-pipe-side components, and 80 to 120'O is suitable.
尚、120°Cより高くても充分弛緩してやれげクリン
プ構造をとるのであるが、あまり高すぎるとサイド・パ
イ・サイドの両成分とも収縮してしまい、得られるクリ
ンプ性能は低下してし 号 う 。Note that even if the temperature is higher than 120°C, it will sufficiently relax and form a crimped structure, but if the temperature is too high, both the side, pie, and side components will contract, and the resulting crimp performance will deteriorate. .
この様にして一旦弛緩予備熱処理した後で更に低張力で
調温弛緩熱処理する。これは弛緩予備熱処理だけでは結
晶化が充分進展しておらず後の処理工程(染色、織物の
緊張処理、ファイナルセット)でクリンプ構造がへたっ
てし凍り現象がみられるからである。即ち結晶化を促進
し、構造的に安定させる為に高温熱処理が望ましいので
ある。温度としては結晶化が進行する1 60 ’Oか
ら220 ’Qが採用され、この温度より低くては上記
の後工程での構造安定化効果が減少するし、又尚すぎる
と収縮がおこりクリンプ構造かへ夕ってしまう現象がみ
られる。尚、弛緩状態で処理する理由は張力を大きくし
て高温熱処理するとクリンプ構造かへ夕ってしまうから
である。After the pre-relaxation heat treatment is carried out in this manner, a temperature-controlled relaxation heat treatment is further performed at a low tension. This is because crystallization does not progress sufficiently with the relaxation preheat treatment alone, and the crimp structure becomes flattened and a freezing phenomenon is observed in subsequent processing steps (dying, fabric tension treatment, final setting). That is, high-temperature heat treatment is desirable in order to promote crystallization and stabilize the structure. The temperature used is from 160'O to 220'Q, at which crystallization progresses; if it is lower than this temperature, the effect of stabilizing the structure in the post-process described above will be reduced, and if it is too high, shrinkage will occur, resulting in a crimp structure. There is a phenomenon where the sky becomes cloudy. The reason why the treatment is performed in a relaxed state is that if the tension is increased and the high temperature heat treatment is performed, the crimp structure will deteriorate.
一方、紡糸引取後の糸条を、引続いて、加熱流体押込ノ
ズルにより160〜220 ’Oで弛緩熱処理しても、
良好な複合巻縮糸を得ることができる。加熱流体押込み
ノズルでの弛緩熱処理温度は、160Cから220 ’
Q位が好適である。On the other hand, even if the yarn after being spun is subsequently subjected to relaxation heat treatment at 160 to 220'O using a heated fluid pushing nozzle,
A good composite crimped yarn can be obtained. The relaxation heat treatment temperature with heated fluid intrusion nozzle is from 160C to 220'
Q position is suitable.
ここで160C未満では織編物にしてから処理される温
度(約180 ’Oの緊張セット)に耐えられず巻縮が
へ夕ってしまう。又220 ’Oより趙温にすると紡出
糸の高〔η〕f、低〔η〕f側とも大きく収縮し、クリ
ンプの発現が低下する現象がみられる。このことから1
60 ’0以上で弛緩熱処理し、クリンプの発現と同時
に結晶化を進行させるのがよいのである。If the temperature is lower than 160C, the fabric will not be able to withstand the temperature at which it is processed after being made into a woven or knitted fabric (tension set at about 180'O), resulting in poor crimp. Furthermore, when the temperature is lower than 220'O, the spun yarn shrinks significantly on both the high [η] f and low [η] f sides, and a phenomenon is observed in which the appearance of crimp decreases. From this, 1
It is preferable to carry out relaxation heat treatment at a temperature of 60'0 or higher to promote crystallization at the same time as crimp development occurs.
以上説明したいずれの方法においても、巻縮性能を更に
向上させるために、前述の如く、低〔η〕f側に第3成
分を3〜10モル%共重合させた共重合ポリエステルを
用いるのが好ましい。In any of the methods explained above, in order to further improve the crimp performance, it is recommended to use a copolymerized polyester in which 3 to 10 mol% of a third component is copolymerized on the low [η]f side, as described above. preferable.
ホモポリエステルと共重合ポリエステルとからなるサイ
ド・パイ・サイド型遷合繊維は、これまでに数多く提案
されているが、そのすれもが、肋〔η〕f側に共重合ポ
リエステルを使用している点が本発明と大きく異なる。Many side-pie-side type transition fibers made of homopolyester and copolymer polyester have been proposed so far, but all of them use copolymer polyester on the rib [η] f side. This point differs greatly from the present invention.
この点について説明すると従来の技術は殆んどが2 、
000m/分以下の低速紡糸系のものであり、この速度
領域においては高〔η〕f側が此収縮側でなげればなら
ないので、収縮性を向上させる為に共重合成分を昂〔η
〕f側に使用していたのである。ところが、本発明は高
速の紡糸系のものであるので低〔η〕f側程高程高収縮
せなければならずこの為に低〔η〕f側に共重合成分を
使用するのが良いのである。To explain this point, most of the conventional technologies are 2,
It is a low-speed spinning system of 000 m/min or less, and in this speed range, the high [η] f side must be on the contraction side, so in order to improve the shrinkability, a copolymer component is added to the high [η] f side.
] It was used on the f side. However, since the present invention is a high-speed spinning system, the shrinkage must be higher on the low [η] f side, and for this reason, it is better to use a copolymer component on the low [η] f side. .
ここで共重合ポリエステルとしてはインフタル酸、イソ
フタル酸ジメチル、ジェヶレングリコール、トリエチレ
ングリフール他一般的なものでよく、その糸も3〜l
Oman%でよい。尚3 mO1未涌で(佳あまり大き
な効果が期待出来ない。又10 mo1%を越えると粘
度の低下、融点の低下等の為に低〔η〕f側のポリマー
の紡糸が一層難しくなる。Here, as the copolymerized polyester, common ones such as inphthalic acid, dimethyl isophthalate, gegarene glycol, triethylene glycol, etc. may be used, and the thread thereof may also be 3 to 1 liters.
Oman% is sufficient. It should be noted that at 3 mO1, a very large effect cannot be expected. Also, if it exceeds 10 mO1%, spinning of a polymer on the low [η] f side becomes more difficult due to a decrease in viscosity, a decrease in melting point, etc.
尚、隔〔η〕f側に数箱率を低下させる結晶化促進剤イ
ンフタル酸ジメチル−5スルホン酸ナトリウム等を添加
しても巻縮性能が向上する。The crimp performance can also be improved by adding a crystallization accelerator such as dimethyl inphthalate-5 sodium sulfonate to the distance [η] f side to reduce the number box ratio.
また、本発明における紡糸引取後の弛緩熱処理は、溶融
紡糸圧直結して行ってもよく、別の工程で実施してもよ
い。即ち、溶融紡糸して、−巨巻取った後で弛緩熱処理
してもよく、更には製編織後に処理してもよい。Further, the relaxation heat treatment after the spinning yarn take-off in the present invention may be performed directly in connection with the melt-spinning pressure, or may be performed in a separate step. That is, it may be melt-spun and then subjected to a relaxation heat treatment after being rolled up into large volumes, or further may be treated after knitting and weaving.
以下大施例によって本発明を説明するが、本発明で巻縮
性能を表わすTcは以下の1lll定で行なったもので
ある。The present invention will be explained below with reference to a large example, and Tc, which represents crimp performance in the present invention, was determined using the following 1llll constant.
’l’ c = ”−二−”−X i o o%
1゜
loはデニール当たり2Tngの荷重を掛けγ井水中で
20分間処理してがら取り出し、この荷重付加の状態で
一4J夜40 ’Q以下で乾燥し、その後デニール当た
り200 rAgの荷重を掛け1分後の長さ、!、は1
0をン則定した3分後K、デニール当たり2菖gの荷重
を掛け1分後の長さである。'l' c = "-2-"-X i o o%
For 1゜lo, a load of 2 Tng per denier was applied, treated in gamma well water for 20 minutes, then taken out, dried under this load at 40'Q or less for 14 hours, and then a load of 200 rAg per denier was applied. Length after minutes,! , is 1
The length is K after 3 minutes after setting 0, and the length after 1 minute after applying a load of 2 g per denier.
1だ、固汀粘度〔η〕fは、フリーホール(自由落下)
のフィラメントで測定した固有粘度であり、フリーホー
ル(自由落下)フィラメントは、サイド・パイ・サイド
複合紡糸において、片(illlのポリマーを停止し、
もう一方のポリマーのみを紡出したフリーホール(自由
落下)のフィラメントによりM1定する。この場合〔l
〕fは次式で決定される。1, solid viscosity [η] f is free hole (free fall)
Free-hole (free-falling) filaments are the intrinsic viscosity measured in filaments of
M1 is determined by a free-hole (free-falling) filament spun with only the other polymer. In this case [l
] f is determined by the following formula.
(1)f= l:m 工n(:η−「!l>C惰
C
(ηrel )は60%フェノールと40%四塩化炭素
の混合物を溶媒とするポリエステルの稀薄溶液の粘度と
同温同単位で測定した前記溶媒混合物の粘度との比であ
り、Cは100cc混合物中のポリエステルのグラム数
である。(1) f = l:m
C (ηrel) is the ratio of the viscosity of a dilute solution of polyester in a mixture of 60% phenol and 40% carbon tetrachloride to the viscosity of the solvent mixture measured at the same temperature and in the same units; grams of polyester.
実施例1
固有粘度の異なる2種類のポリエチレンテレフタレート
を、莞法により溶融複合紡糸し、180°Cで弛緩熱処
理して巻縮を発現させ150デニール/48フイラメン
トの複合巻縮糸を得た。その際、紡出糸条の両成分の固
有粘度〔η〕f反び紡糸速度を第1表に示す如く種々変
更した。Example 1 Two types of polyethylene terephthalate having different intrinsic viscosities were melt-spun into a composite yarn using the spin method, and subjected to relaxation heat treatment at 180°C to develop crimping to obtain a composite crimped yarn of 150 denier/48 filaments. At that time, the intrinsic viscosity [η]f and spinning speed of both components of the spun yarn were varied as shown in Table 1.
織物評価は、2−2ツイルで1」付がほぼ1sog/ゼ
になる様染仕上したもノにツ1.1”C行った。風合、
ひけ、斑fま手触1)、肉眼で狛」定したもので、○は
良好、△(まやや不良、×(ま不良であることを示す。The evaluation of the fabric was carried out using a 2-2 twill with a dyed finish of 1" to approximately 1sog/ze. Texture,
Sink marks, spots, and blemishes were determined by the naked eye. ◯ indicates good, △ (slightly poor), and × (slightly poor).
実施例2
実施例1と同様に、紡出糸条の同成分の固有粘度〔η〕
f反び紡糸速度を変更して得た複合繊維を、引続き延伸
することなく第2表に示す条件で弛緩予備熱処理及び高
温弛緩熱処理に付した。得られた複合巻縮糸について、
実施例1と同様にして評価を第2表に示す。Example 2 Similar to Example 1, the intrinsic viscosity [η] of the same components of the spun yarn
The composite fibers obtained by changing the f-warp spinning speed were subjected to a pre-relaxation heat treatment and a high-temperature relaxation heat treatment under the conditions shown in Table 2 without subsequent drawing. Regarding the obtained composite crimped yarn,
Evaluations are shown in Table 2 in the same manner as in Example 1.
実施例3゜
実施例1と同様に、紡出糸条の両成分の固有粘度〔η〕
f及び紡糸速度を変更して得た複合繊維を引続き、第3
表に示す押込ノズル温度(加熱空気温度)で加熱流体押
込ノズルにより弛緩熱処理した。得られた複合巻縮糸に
ついて、実施例1と同様にして評価した結果を第3表に
示す。Example 3゜Same as Example 1, the intrinsic viscosity [η] of both components of the spun yarn
The composite fiber obtained by changing f and spinning speed was then
Relaxation heat treatment was performed using a heated fluid forced nozzle at the forced nozzle temperature (heated air temperature) shown in the table. The obtained composite curled yarn was evaluated in the same manner as in Example 1, and the results are shown in Table 3.
1)イソフタル#I15モル%共重合ポリエチ2)イソ
フタルrR7モル%共重合ポリエチ表
・レンテレフタレート
ーレンテレ7タレート1) Isophthal #I 15 mol% copolymerized polyethylene 2) Isophthal rR 7 mol% copolymerized polyethylene Table: lente phthalate to lente 7 tallate
【図面の簡単な説明】
図は、ポリエチレンテレフタレートについて紡糸速度と
紡出糸の熱収縮率との関係を示すグラフである。実線は
高〔η〕f糸、点線は低〔η〕f糸の挙動を示す。BRIEF DESCRIPTION OF THE DRAWINGS The figure is a graph showing the relationship between spinning speed and heat shrinkage rate of spun yarn for polyethylene terephthalate. The solid line shows the behavior of the high [η] f yarn, and the dotted line shows the behavior of the low [η] f yarn.
Claims (1)
なるサイド・パイ・サイド型複合繊維を製造するに際し
、固有粘度の低いポリエステル成分の固有粘度〔η〕f
を0.34〜0,50゜両ポリエステル成分の固有粘度
△〔η〕fを0.20〜0+30とし、4,000〜5
t Fi OO疏/分の紡糸速度で引取ることを特徴
とするポリエステル系複合繊維の製造方法。 2 固有粘度〔η〕fの低い方のポリエステル成分が、
第3成分を3〜10モル%共重合させたポリエステルで
ある特許請求の範囲第1項記載の方法。 3 固有粘度差△〔η〕fを有するポリエステルからな
るサイド・パイ・サイド型複合繊維を製造するに際し、
固有粘度の低いポリニスデル成分の固有粘度〔η〕fを
0.34〜O−S O、両ポリエステル成分の固有粘度
差△〔η〕fを0.20〜0.30とし、4,000〜
5 + 500 ++t 7分の紡糸速度で引取り、引
続き、延伸することなく80〜120Cの温度、o、o
3g/d1以下の張力下で弛緩予備熱処理し、次いで
160〜220°Cで弛緩熱処理することを特徴とする
ポリエステル系複合繊維の製造方法。 4、 固有粘度差へ〔η〕fを有するポリエステルから
なるサイド・パイ・サイド型複合繊維を製造するに際し
、固有粘度の低いポリエステル成分の固有粘度〔η〕f
を0.34〜0.50゜両ポリエステル成分の固有粘度
差△〔η〕fを0.20〜0.30とし、4.’OOO
〜5,500m/分の紡糸速度で引取り、引続き加熱流
体押込ノズルにより160〜220°Cで弛緩熱処理す
ることを特徴とするポリエステル系複合繊維の製造方法
。 5、 固有粘度〔η〕fの低い方のポリエステル成分が
、第3成分を3〜lOモル%共重合させたポリエステル
である特許請求の範囲第4項記載の方法。[Claims] 1. When producing a side-pie-side type composite fiber made of polyester having an intrinsic viscosity difference Δ[η]f, the intrinsic viscosity [η]f of a polyester component with a low intrinsic viscosity
is 0.34 to 0,50°, and the intrinsic viscosity Δ[η]f of both polyester components is 0.20 to 0+30, and 4,000 to 5
A method for producing a polyester composite fiber, characterized in that the fiber is taken at a spinning speed of t Fi OO yarn/min. 2 The polyester component with the lower intrinsic viscosity [η]f is
The method according to claim 1, wherein the third component is a polyester copolymerized with 3 to 10 mol%. 3. When producing a side-pie-side type composite fiber made of polyester having an intrinsic viscosity difference Δ[η]f,
The intrinsic viscosity [η]f of the polynisder component with low intrinsic viscosity is set to 0.34 to O-S O, and the intrinsic viscosity difference Δ[η]f of both polyester components is set to 0.20 to 0.30, and the range is 4,000 to 4,000.
5 + 500 ++t Take-off at a spinning speed of 7 minutes, then at a temperature of 80-120C without stretching, o, o
A method for producing a polyester composite fiber, which comprises performing a pre-relaxation heat treatment under a tension of 3 g/d1 or less, and then a relaxation heat treatment at 160 to 220°C. 4. When producing a side-pie-side type composite fiber made of polyester having an intrinsic viscosity difference [η]f, the intrinsic viscosity of the polyester component with a low intrinsic viscosity [η]f
is 0.34 to 0.50°, and the intrinsic viscosity difference Δ[η]f between both polyester components is 0.20 to 0.30, and 4. 'OOO
1. A method for producing polyester composite fibers, which comprises taking the fibers at a spinning speed of ~5,500 m/min, and then subjecting them to relaxation heat treatment at 160 to 220°C using a heated fluid forcing nozzle. 5. The method according to claim 4, wherein the polyester component having the lower intrinsic viscosity [η]f is a polyester copolymerized with 3 to 10 mol% of the third component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1297583A JPS59144618A (en) | 1983-01-31 | 1983-01-31 | Production of polyester conjugate fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1297583A JPS59144618A (en) | 1983-01-31 | 1983-01-31 | Production of polyester conjugate fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59144618A true JPS59144618A (en) | 1984-08-18 |
JPS6346172B2 JPS6346172B2 (en) | 1988-09-13 |
Family
ID=11820225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1297583A Granted JPS59144618A (en) | 1983-01-31 | 1983-01-31 | Production of polyester conjugate fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59144618A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643120A (en) * | 1993-09-30 | 1997-07-01 | Minolta Co., Ltd. | Motor drive system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1195957A (en) * | 1967-09-06 | 1970-06-24 | Toray Industries | A Potentially Crimpable Composite Filament Yarn made of Polyester and usable for a Crape Fabric |
-
1983
- 1983-01-31 JP JP1297583A patent/JPS59144618A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1195957A (en) * | 1967-09-06 | 1970-06-24 | Toray Industries | A Potentially Crimpable Composite Filament Yarn made of Polyester and usable for a Crape Fabric |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643120A (en) * | 1993-09-30 | 1997-07-01 | Minolta Co., Ltd. | Motor drive system |
Also Published As
Publication number | Publication date |
---|---|
JPS6346172B2 (en) | 1988-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3117906A (en) | Composite filament | |
DE60121694T3 (en) | POLYTRIMETHYLENEEPHTHALATE FIBERS WITH FINE DENIER | |
JPH02221414A (en) | Composite fiber yarn | |
US3181224A (en) | Process for preparing bulky fabrics | |
US4359557A (en) | Process for producing low pilling textile fiber and product of the process | |
JPH01266220A (en) | Polyester composite fiber yarn with different fineness and crimpability | |
JPS59144618A (en) | Production of polyester conjugate fiber | |
JPH02221415A (en) | Composite fiber yarn | |
JPS6163768A (en) | Method for producing fabric with silk-like texture | |
JPS6163717A (en) | Polyester latent crimp composite fiber | |
JP2844680B2 (en) | Different fineness / different shrinkage mixed fiber and method for producing the same | |
KR940007692B1 (en) | Process for preparation of different shrinkage mixed yarn having superior coloring property and having silk property | |
JPH0787880B2 (en) | Manufacturing method of polyester raw cotton for wadding | |
KR950000718B1 (en) | Manufacturing method of different shrinkage polyester yarn | |
JP2591715B2 (en) | Method for producing different shrinkage blended polyester yarn | |
JPH0214014A (en) | Production of fine sized polyester yarn | |
KR20030022553A (en) | High crimping polyester composite fibre | |
JP3638707B2 (en) | Polyester multifilament patch and method for producing the same | |
US3538566A (en) | Process for making crimped filaments of polyester | |
JPS5812372B2 (en) | Trilobal polyester | |
KR970010697B1 (en) | Dif-deniers /thick and thin polyester conjugate yarn and method of preparing the same | |
JPS6262987A (en) | Method for producing polyester fabric with silk-like texture | |
KR870000936B1 (en) | Irregular diameter polyester filament's making method | |
JP2774857B2 (en) | Different shrinkage multifilament mixed yarn and method for producing the same | |
KR900003340B1 (en) | The method of potential crimping conjugated yarn |