[go: up one dir, main page]

JPS59144057A - Photomagnetic reproduction head - Google Patents

Photomagnetic reproduction head

Info

Publication number
JPS59144057A
JPS59144057A JP1798683A JP1798683A JPS59144057A JP S59144057 A JPS59144057 A JP S59144057A JP 1798683 A JP1798683 A JP 1798683A JP 1798683 A JP1798683 A JP 1798683A JP S59144057 A JPS59144057 A JP S59144057A
Authority
JP
Japan
Prior art keywords
polarization
liquid crystal
reproduction head
recording medium
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1798683A
Other languages
Japanese (ja)
Inventor
Hiroo Nomura
野村 浩朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP1798683A priority Critical patent/JPS59144057A/en
Publication of JPS59144057A publication Critical patent/JPS59144057A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To attain the miniaturization and reduced electric power consumption of a photomagnetic reproduction head by detecting photoelectrically the Kerr revolving angle of the reflected light sent from a vertically magnetized recording medium through irradiation of the polarized and modulated light via a liquid crystal polarization element. CONSTITUTION:The laser light sent from a semiconductor laser 16 of a photomagnetic reproduction head is turned into parallel beams through a collimator lens 17 and then into the linear polarized light by a polarizer 18. This linear polarization is carried out with no generation of heat by a polarization modulator 19 using the chiral smetic liquid crystal. Therefore the polarization and modulation is possible in a small-sized constitution and reduced power consumption. Then detectors 24 and 27 detect photoelectrically the Kerr revolving angle of the reflected polarized and modulated light sent from a vertically magnetized recording medium 13, and the recorded contents are reproduced. In such a constitution, a photomagnetic reproduction head is miniaturized with reduced power consumption.

Description

【発明の詳細な説明】 本発明は垂直記録媒体を用いた磁気記録装置の再生ヘッ
ドに関する。さらに詳しくは垂直記録媒体からのデータ
再生に、偏光変調法を用いた装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reproducing head for a magnetic recording device using a perpendicular recording medium. More specifically, the present invention relates to an apparatus using a polarization modulation method for reproducing data from a perpendicular recording medium.

第1図は垂直記録媒体からデータを光学的に再生するヘ
ッドであり、ファラデーセルを用いた偏光変調法がとら
れている。He−Heレーザ1よシ1− 発した光は偏光子2によって直線偏光となル、ファラデ
ーセル3に入る。ファラデーセル3は入射したレーナ光
に偏光変調を与えるもので、セル長と磁場に比例した偏
光振幅が得られる。実験では偏光振幅1°、変調周波数
l MHgがとられた。ファラデセルで変調を受iた光
は・・−フミヲー4によって一部は反射され、垂直記録
媒体5からのカー回転を受けずにアナライザ6.コンデ
ンサレンズ7を透過し、フォトディテクタ8で受光され
る。
FIG. 1 shows a head for optically reproducing data from a perpendicular recording medium, which employs a polarization modulation method using a Faraday cell. The emitted light from the He-He laser 1 is converted into linearly polarized light by the polarizer 2 and enters the Faraday cell 3. The Faraday cell 3 imparts polarization modulation to the incident laser light, and provides a polarization amplitude proportional to the cell length and magnetic field. In the experiment, a polarization amplitude of 1° and a modulation frequency of l MHg were taken. The light that has been modulated by the Farade cell is partially reflected by the camera 4, and is not subjected to Kerr rotation from the perpendicular recording medium 5, but is sent to the analyzer 6. The light passes through the condenser lens 7 and is received by the photodetector 8.

一方、ハーフミラ−4t−通過した光は垂直記録媒体5
によって反射され、再びノ・−フミヲー4で反射されて
、アナライザ9.コンデンサレンズlOを通ってフォト
ディテクタ11に受光される。この時この光は垂直記録
媒体5から反射する時、反射面の磁化が上向きか、下向
きかによって+θに、又は−〇にのカー回転を受ける。
On the other hand, the light that has passed through the half mirror 4t is transmitted to the perpendicular recording medium 5.
It is reflected again by No-Fumi-wo-4, and then reflected by Analyzer 9. The light passes through the condenser lens IO and is received by the photodetector 11. At this time, when this light is reflected from the perpendicular recording medium 5, it undergoes a Kerr rotation of +θ or -0 depending on whether the magnetization of the reflecting surface is upward or downward.

従って、フォトディテクタ11の出力には変調を受けた
偏光の振動とカー回転による偏光の変化が含まれている
。そこでディテクター出力Il 、工3の差をとシアン
プをかけると高調波成分などが除去された信号工が得ら
2− れる。以下にこの方法の数学的解析の結果を掲げる。但
し、Pイ:レーザパワー に1 r K1 ’ s K鵞、に、l:光学系、回路
系のロスを含む比例定数 α0;変調偏光振幅 ω0:変調周波数 θ :力−回転角 と定義する。
Therefore, the output of the photodetector 11 includes vibrations of the modulated polarized light and changes in polarized light due to Kerr rotation. Therefore, by multiplying the difference between the detector output Il and the signal 3 by a signal amplifier, a signal signal from which harmonic components and the like have been removed can be obtained. The results of the mathematical analysis of this method are listed below. However, P: laser power is 1 r K1 's K, l: proportionality constant α0 including loss of optical system and circuit system; modulation polarization amplitude ω0: modulation frequency θ: defined as force-rotation angle.

工1(θat) = PtK15in”(θ+αgai
nωot): P(Kxao”/2+2P(K1a6θ
8イn Goo 1−(PzK1a6冨/2)cos’
lωo1 工@(o、t) = PiK2sin”(a6 sin
ωat)z P(Kg a6”/2  (PjK1α0
冨/2)cos2ωo1工(θμ) ” K1’11(
θwe) −Ka’工s(o*’)= 2p7x□IK
1α。θ5ifLω。C従って、オペアンプ出カニを周
波数ω0 で検波すれば、その信号にのったカー回転角
θを正しく読み出せる。出力信号の例を第2図に示す。
1(θat) = PtK15in”(θ+αgai
nωot): P(Kxao”/2+2P(K1a6θ
8in Goo 1-(PzK1a6tomi/2)cos'
lωo1 工@(o,t) = PiK2sin”(a6 sin
ωat)z P(Kg a6”/2 (PjK1α0
Tomi/2) cos2ωo1 工(θμ) ” K1'11(
θwe) -Ka' kos (o*') = 2p7x□IK
1α. θ5ifLω. Therefore, if the operational amplifier output signal is detected at the frequency ω0, the Kerr rotation angle θ on the signal can be read correctly. An example of the output signal is shown in FIG.

本方法の特徴は微少回転角θを精度よく読めること、及
び、オペアンプによって高速再生が可能なこと3− である。しかし、ファラデーセルに実用上の問題がある
。即ち、ファラデーセルによる回転角φはφ= R7H
と表わされ、セルの長さ!、及び、印加磁界HK比例す
る。Rけベルデ定数と呼ばれリン酸ガヲス、あるいは、
鉛ガラスに対し波長700藷でTOol min/ca
r Oe程度である。従って、セル長1mとし変調振幅
6 o z= l1得るにはH= 60008とな)、
ファラデセル上に巻いたソレノイドが100ターンであ
っても5Aの電流が必要となる。即ち、変調をかける為
の電力、及び、発熱が大きく装置の小型化では大きな障
害となる1本発明はこの点を考慮し、低電力で発熱もな
く、装置の小型化も可能な新しい変調素子を提供し、フ
ァラデーセルを使う偏光変調法と同等の再生光ヘッドを
実現するものである。
The features of this method are that the minute rotation angle θ can be read with high precision, and that high-speed reproduction is possible using an operational amplifier. However, Faraday cells have practical problems. That is, the rotation angle φ due to the Faraday cell is φ=R7H
It is expressed as the length of the cell! , and is proportional to the applied magnetic field HK. R-Keverdet constant is called Gaos phosphate, or
TOol min/ca at wavelength 700 for lead glass
r Oe. Therefore, to obtain a modulation amplitude of 6 oz = l1 with a cell length of 1 m, H = 60008),
Even if the solenoid wound on the Farade cell has 100 turns, a current of 5 A is required. In other words, the power and heat required for modulation are large and are a major obstacle in miniaturizing the device.The present invention takes this into consideration and provides a new modulation element that uses low power, does not generate heat, and allows for miniaturization of the device. The present invention provides a reproducing optical head equivalent to the polarization modulation method using a Faraday cell.

第3図は本発明による再生用光ヘッドを周込た光磁気記
録再生装置である。ディスク13はco−cr膜を用い
た二層媒体であり、裏打層はパーマロイである。記録は
補助磁極励磁型であシ、補助磁極14で発生した磁界を
主磁極15の先端に収束し媒体4− を磁化する方法である。再生は半導体レーザ16よシ出
た光をコリメートレンズ17で平行光としてボヲフィザ
】8で直線偏光とする。直線偏光は本発明による液晶の
偏光変調器19を介して、偏光振幅α0、変調周波数f
oが与えられる。次に変調された光はハーフミラ−2D
Kよって光路が二手に分けられる。反射光は対物レンズ
21によって垂直記録媒体13上に集光され、戻り先は
再びハーフミラ−加を通過する。アナツイザ22は戻夛
光の変調成分を透過させ、これをコンデンサレンズnが
ディテクタUに導く。一方、ハーフミツ−加をそのまま
透過した光も同様にアナツイザδ、レンズ部を介シてデ
ィテクタnで検出する。差動アンプ28Fiこの両者の
光出力の差をとシ増幅する。本方式の再生の原理は前述
した従来例と全く同じであp1本発明との相違点は液晶
の変調器19にある。以下、これについて詳述する。
FIG. 3 shows a magneto-optical recording and reproducing apparatus incorporating an optical reproducing head according to the present invention. The disk 13 is a two-layer medium using a co-cr film, and the backing layer is permalloy. The recording is of the auxiliary magnetic pole excitation type, in which the magnetic field generated by the auxiliary magnetic pole 14 is focused on the tip of the main magnetic pole 15 to magnetize the medium 4-. For reproduction, the light emitted from the semiconductor laser 16 is converted into parallel light by a collimating lens 17 and converted into linearly polarized light by a polarizer 8. The linearly polarized light is transmitted through a liquid crystal polarization modulator 19 according to the present invention, with a polarization amplitude α0 and a modulation frequency f.
o is given. The next modulated light is a half mirror 2D
The optical path is divided into two by K. The reflected light is focused onto the perpendicular recording medium 13 by the objective lens 21, and returns to pass through the half mirror again. The annizer 22 transmits the modulated component of the returned light, and the condenser lens n guides this to the detector U. On the other hand, the light that has passed through the half-light filter as it is is similarly detected by the analyzer δ and the detector n via the lens section. A differential amplifier 28Fi amplifies the difference in optical output between the two. The reproduction principle of this method is exactly the same as that of the conventional example described above, and the difference from the present invention lies in the liquid crystal modulator 19. This will be explained in detail below.

本発明による液晶偏光変調器の構成を第4図に示す。本
変調器は光学活性基をもつカイラルスメクチック液晶を
図■のように配向させ、極性の違5− う電圧を印加することによってその配列方向を2φ変え
偏光変調するものである。ここに用いるカイラルスメク
チック液晶とは通常第5図のようなスメクチック相をと
9、各層ごとのディレクターがらせん状に回転していく
ものである。具体的にJ′iP−デシルオキシベンジリ
デン−pl−アミノル2−メチループチルーシンナメー
)(DOBAMB C) 、 HOBACP、C、D−
P−7にコdFシヘンジリデンーp+−アミノ−2−メ
チルブチル−シンナメート、するいは、L−P−アルコ
キシベンジリチン−pl−アミノ−2−クロロフ日ビル
ーシンナメートがあシ強誘電性を示すことと、第4図の
ように永久双極子が分子軸に垂直な方向にあることが特
徴である。従って、この事は低電場で分子の配列を変え
られる仁とにつながっている。次にセルの作り方につい
て簡単に説明すると、まず透明電極(工Rhos)付の
ガラスを洗浄した後液晶を配向させる方向に木綿でラビ
ングを施す。この基板2枚を3〜lOμのスペーサを挾
んで対向させ周囲をシールした後、あらかじめ設けた液
晶注入孔6− よりe方性にしたスメクチック液晶を真空封入する。次
に注入孔をエポキシ樹脂で封止させ自然放置すると、ラ
ビング方向に液晶が配向し第45図のような一様に分子
方向が揃ったセルができる。この時の配向はカイラルス
メクチックを用いているが、ラセン配向をとらないのが
特徴であシ、ネジリのエネルギーは配向転移の時に有効
に使われる。
FIG. 4 shows the configuration of a liquid crystal polarization modulator according to the present invention. This modulator aligns chiral smectic liquid crystals with optically active groups as shown in Figure 2, and applies voltages of different polarities to change the alignment direction by 2φ to modulate polarization. The chiral smectic liquid crystal used here usually has a smectic phase as shown in FIG. 5, and the director of each layer rotates in a spiral. Specifically, J′iP-decyloxybenzylidene-pl-aminol 2-methyluptylene cinname) (DOBAMB C), HOBACP, C, D-
In P-7, dF-shenzylidene-p+-amino-2-methylbutyl-cinnamate, or L-P-alkoxybenzyritine-pl-amino-2-chlorophyll-cinnamate exhibits ferroelectricity. , is characterized in that the permanent dipole is located in a direction perpendicular to the molecular axis, as shown in Figure 4. Therefore, this has led to the ability to change the arrangement of molecules with low electric fields. Next, to briefly explain how to make the cell, first, the glass with the transparent electrode (Rhos) is cleaned, and then rubbed with cotton in the direction that aligns the liquid crystal. After these two substrates are placed facing each other with a spacer of 3 to 10μ in between and the periphery is sealed, e-tropic smectic liquid crystal is vacuum-filled through a liquid crystal injection hole 6- provided in advance. Next, when the injection hole is sealed with epoxy resin and left to stand, the liquid crystal is oriented in the rubbing direction and a cell with uniform molecular directions as shown in FIG. 45 is formed. The orientation at this time uses chiral smectic, but it is characterized by not having a helical orientation, and the torsional energy is effectively used during orientation transition.

また、液晶を配向させるにはヲピングの代シに強磁場を
用い、磁場中で液晶を注入させてもよい。
Furthermore, in order to orient the liquid crystal, a strong magnetic field may be used instead of waving, and the liquid crystal may be injected in the magnetic field.

さてこのようにして作ったセルは永久双極子が第4図の
ようにガラス基板に垂直で、かつ、一方向に揃っており
、光学的には液晶分子の長軸に平行な偏光をよく透過さ
せる。この状態のセルに双極子の向きとは逆に電界を印
加すると、双極子は電界と平行になろうとして液晶分子
を回転させ、初期状態■とは分子の長軸方向が2θだけ
変化した第4図■の状態に転移する。■の状態では透過
する偏光の方向は初期の状態と20の角をなす。
Now, in the cell made in this way, the permanent dipoles are perpendicular to the glass substrate and aligned in one direction as shown in Figure 4, and optically, it easily transmits polarized light parallel to the long axis of the liquid crystal molecules. let When an electric field is applied to the cell in this state in the opposite direction to the direction of the dipole, the dipole rotates the liquid crystal molecules in an attempt to become parallel to the electric field. Transition to the state shown in Figure 4 ■. In the state (2), the direction of the transmitted polarized light makes an angle of 20 with respect to the initial state.

また、■と■の状態はエネルギ的に等価で安定な状態で
あるので■→■、■→■の転移を印加電圧7− の反転によって〈ル返すことができる。即ち、入射光の
偏光状態を分子配列と同じ2θ(o<2θ〈45゜)だ
け変化させることができる。また、転移の応答時間は印
加電圧10−20 Vの時、1μ8以下であ勺VTy 
oc y (但し、P:ラセンピッチ。
Furthermore, since the states ■ and ■ are energetically equivalent and stable states, the transitions from ■→■ and ■→■ can be reversed by reversing the applied voltage 7-. That is, the polarization state of the incident light can be changed by 2θ (o<2θ<45°), which is the same as the molecular arrangement. In addition, the transition response time is less than 1 μ8 when the applied voltage is 10-20 V.
oc y (However, P: spiral pitch.

d:セル厚、v:印加電圧 τr:応答時間) であるから、セル厚をさらに薄くするか、ラセンピッチ
の長い液晶をm−れば、さらに応答スピードが上シ変調
周波数10 MHzまで可能である。本発明はこの液晶
セルを偏光変調器として用いたものである。
d: cell thickness, v: applied voltage τr: response time) Therefore, by making the cell thickness even thinner or using a liquid crystal with a longer helical pitch, it is possible to further increase the response speed to a modulation frequency of 10 MHz. . The present invention uses this liquid crystal cell as a polarization modulator.

ここで説明を第3図にもどし図の構成を詳しく述べると
、まず偏光子18は液晶変調器の二つの配向安定位置の
中心に振動面を一致させて設置する。
Returning to FIG. 3, the configuration shown in the diagram will now be described in detail. First, the polarizer 18 is installed with its vibration plane aligned with the center of two stable alignment positions of the liquid crystal modulator.

即ち、第4図の2φの中心に置く。このよう釦すれば電
界の反転によって偏光面の振幅2φで、出射強度cog
りの変調偏光が得られる。次に、アナライザ22.25
#i第6図のように垂直磁化膜から受けるカー回転角−
θkに直角になるように設定する。
That is, it is placed at the center of 2φ in FIG. By pressing the button like this, the polarization plane has an amplitude of 2φ due to the reversal of the electric field, and the output intensity is cog.
It is possible to obtain different modulated polarized light. Next, analyzer 22.25
#iThe Kerr rotation angle received from the perpendicularly magnetized film as shown in Figure 6.
Set so that it is perpendicular to θk.

8− 即ち、ボヲフィザとけ90−θにの角度をなすようにお
く。すると、アナツイザよルとり出せるカー回転角の成
分は、媒体に出向き磁界、下向き@昇各々に対しsin
 2θにと0となり変化が大きくなるので再生のB/N
向上になる。ちなみに本発明は第3図の構成に於てCO
−CrHのカー回転角6〜91を従来のファラデー法と
同様8AaodB以上で読み出すことが可能である。
8- That is, the bow fuser is placed so as to form an angle of 90-θ. Then, the component of the Kerr rotation angle that can be extracted from the angle is sin for each of the magnetic field directed to the medium and the downward direction @ upward direction.
At 2θ, it becomes 0 and the change becomes large, so the playback B/N
It will improve. Incidentally, the present invention is based on the configuration shown in FIG.
It is possible to read out Kerr rotation angles of -CrH from 6 to 91 at 8 AaodB or more, similar to the conventional Faraday method.

以上のように本発明は従来周込られてきたファラデーセ
ルの代シに新しい原理による液晶偏光子を用い、変調を
与えることで従来と同等以上の効果が得られるものであ
る。また、液晶による偏光器は低電圧、低パワー、薄型
、小型、さらに、安価の特徴があシ、従来のファラデー
セルよフはるかに実用性が高い。さらには変調振幅もフ
ァラデーセルに比べて充分大きくとれるので、原理的に
も分解能が大となる。
As described above, the present invention uses a liquid crystal polarizer based on a new principle in place of the conventional Faraday cell, and by applying modulation, it is possible to obtain an effect equal to or greater than that of the conventional method. In addition, liquid crystal polarizers are low voltage, low power, thin, compact, and inexpensive, making them far more practical than conventional Faraday cells. Furthermore, since the modulation amplitude can be made sufficiently larger than that of a Faraday cell, the resolution is theoretically higher.

このように本発明は垂直磁化記録形式をとる装置全てに
応用が可能であシ、光熱磁気材料(Tb。
As described above, the present invention can be applied to all devices that use perpendicular magnetization recording format, and can be applied to any device that uses a photothermal magnetic material (Tb).

711、 G(1co etc、 )からCQ −Cf
垂直磁化1ift テ広9− く適用が可能である。
711, G(1co etc, ) to CQ -Cf
Perpendicular magnetization 1ift can be widely applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はファラーデーセルを用いた従来の光再生法であ
り、第2図はその出力波形である。 第3図は本発明による光再生装置である。 第4図は本発明に用いる液晶偏光変調器の原理図である
。 第5図はカイラルスメクチック液晶の分子配列である。 第6図は本発明で用いたボヲフィザとアナツイザの関係
である。 図中の番号 1・・・H,−M−レーザー 2.180−偏光子 3−−7アヲデーセル 4.20・・ハーフミラ− 5,13・・垂直記録媒体 6 、9.22,25・・アナツイザ 7 、 lrl 、 23.26・・レンズ−1〇− 8 、11 、24 、27・・ディテクタ12 、2
8・・オペアンプ 14・・・・1助磁極 15・・・主磁極 16・・・半導体レーザ 17・・・コリメートレンズ 21・・・対物レンズ 加・・・アクチュエータ 以   上 出願人 株式会社諏訪精工舎 −1】− 第4図 第5図 第6図 305−
FIG. 1 shows a conventional optical regeneration method using a Faraday cell, and FIG. 2 shows its output waveform. FIG. 3 shows an optical reproducing device according to the present invention. FIG. 4 is a diagram showing the principle of a liquid crystal polarization modulator used in the present invention. Figure 5 shows the molecular arrangement of chiral smectic liquid crystal. FIG. 6 shows the relationship between the powerizer and analyzer used in the present invention. Numbers in the figure 1...H, -M-Laser 2.180-Polarizer 3--7 Awoday cell 4.20...Half mirror 5,13...Perpendicular recording medium 6, 9.22, 25...Antizer 7, lrl, 23.26...Lens-1〇-8, 11, 24, 27...Detector 12, 2
8... Operational amplifier 14... 1 Auxiliary magnetic pole 15... Main magnetic pole 16... Semiconductor laser 17... Collimating lens 21... Objective lens processing... Actuator and above Applicant Suwa Seikosha Co., Ltd. -1]- Figure 4 Figure 5 Figure 6 305-

Claims (1)

【特許請求の範囲】[Claims] 垂直磁化記録媒体上に書込まれたデータの再生に於て、
カイラルスメクチック液晶を用いた偏光変調器によって
光源に偏光変調を寿え、記録媒体より反射した光のカー
回転角を光電的に検出し、データの再生を行なうことを
特徴とする光磁気再生ヘッド。
In reproducing data written on perpendicular magnetization recording media,
A magneto-optical reproducing head characterized in that a polarization modulator using chiral smectic liquid crystal provides polarization modulation in a light source, photoelectrically detects the Kerr rotation angle of light reflected from a recording medium, and reproduces data.
JP1798683A 1983-02-04 1983-02-04 Photomagnetic reproduction head Pending JPS59144057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1798683A JPS59144057A (en) 1983-02-04 1983-02-04 Photomagnetic reproduction head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1798683A JPS59144057A (en) 1983-02-04 1983-02-04 Photomagnetic reproduction head

Publications (1)

Publication Number Publication Date
JPS59144057A true JPS59144057A (en) 1984-08-17

Family

ID=11959041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1798683A Pending JPS59144057A (en) 1983-02-04 1983-02-04 Photomagnetic reproduction head

Country Status (1)

Country Link
JP (1) JPS59144057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10343547A1 (en) * 2003-09-19 2005-04-14 Giesecke & Devrient Gmbh Object of value comprises a security element with at least one liquid crystal material which produces a linear light polarization and/or a dichroic effect with an orientation dependent refraction index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10343547A1 (en) * 2003-09-19 2005-04-14 Giesecke & Devrient Gmbh Object of value comprises a security element with at least one liquid crystal material which produces a linear light polarization and/or a dichroic effect with an orientation dependent refraction index

Similar Documents

Publication Publication Date Title
JP3730045B2 (en) Optical pickup, information recording apparatus, and information reproducing apparatus
US6240056B1 (en) Information recording and reproduction apparatus using a pulsed laser light
JPS59144057A (en) Photomagnetic reproduction head
JPH09211460A (en) Light modulator and optical head device using the same
JP3171413B2 (en) Optical recording / reproducing device and spatial light modulator
JPS615459A (en) Magneto-optics reproducing device
EP0436228A2 (en) Recording and reproducing methods
KR100196015B1 (en) Recording and reproducing method and apparatus for an optical recording medium
JPS62248151A (en) magneto-optical reproducing device
JP2859519B2 (en) Optical information reproducing device
JP2000306278A (en) Optical information reproducing device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPH0352145A (en) Optical pickup
KR930003620B1 (en) Recording and reproducing device
JPH053666B2 (en)
JPS60103539A (en) Magneto-optical recording/reproducing device
JPS5883348A (en) Optical magnetic memory
JPH04176031A (en) Optical recording and/or reproducing device
JPS6353619B2 (en)
JP2002150600A (en) Optical pickup device
JPS63187438A (en) magneto-optical reproducing device
JPS6145438A (en) Recording method of code
JPH01205748A (en) Optical information recording and reproducing device
JPH01138641A (en) Magneto-optical recording and reproducing device
JPS58169358A (en) Optical reproducing device