[go: up one dir, main page]

JPS59140205A - Continuous polymerization of alpha-olefin - Google Patents

Continuous polymerization of alpha-olefin

Info

Publication number
JPS59140205A
JPS59140205A JP1372683A JP1372683A JPS59140205A JP S59140205 A JPS59140205 A JP S59140205A JP 1372683 A JP1372683 A JP 1372683A JP 1372683 A JP1372683 A JP 1372683A JP S59140205 A JPS59140205 A JP S59140205A
Authority
JP
Japan
Prior art keywords
catalyst
olefin
alpha
supply pipe
polymerization zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1372683A
Other languages
Japanese (ja)
Other versions
JPH0373564B2 (en
Inventor
Masahiko Kondo
正彦 近藤
Tadashi Yamamoto
匡 山本
Kazunori Hatano
秦野 和紀
Junji Yasue
安江 準二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1372683A priority Critical patent/JPS59140205A/en
Publication of JPS59140205A publication Critical patent/JPS59140205A/en
Publication of JPH0373564B2 publication Critical patent/JPH0373564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To prevent blockage from occurring in the system for feeding a catalyst and to produce a polymer of excellent stereoregularity stably for a long time, by feeding the catalyst to a feed pipe of an alpha-olefin to form a turbulent stream and feeding this stream to the polymerization zone. CONSTITUTION:An organoaluminum catalyst component (B) (e.g., triethylaluminum) is led through a feed line 5 to a feed line 4 and mixed with a titanium catalyst component (A) (preferably, in the form of a suspension obtained by dispersing the catalyst in a small amount of an inert solvent) to prepare a composite catalyst (numeral 2 designates a pressure cylinder). This composite catalyst is led to a feed line 3 of an alpha-olein (e.g., propylene) and the combined stream, maintained in a turbulent flow state (Reynolds number >=3,000) is fed to the polymerization zone 1. The alpha-olefin which is fed from the feed line 3 may be a portion of the total alpha-olefin, and the remaining portion of the alpha- olefin may be directly fed to the polymerization zone 1.

Description

【発明の詳細な説明】 本発明はα−オレフィンの連続重合方法に関し、詳しく
は触媒をα−オレフイ〉の供給管に導入して乱流を形成
しつつ重合帯域に供給することにより、触媒の供給過程
における閉塞を防止し長期間連続的に立体規則性ならび
に嵩密度の高いタリマーを効率良く製造することができ
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous polymerization of α-olefin, and more specifically, the present invention relates to a method for continuous polymerization of α-olefin, and more specifically, a catalyst is introduced into a supply pipe of α-olefin and fed to a polymerization zone while forming a turbulent flow. The present invention relates to a method capable of efficiently producing talimer with high stereoregularity and bulk density continuously over a long period of time by preventing clogging during the supply process.

従来、チタン触媒成分および有機アルミニウム触媒成分
を必須とする各種の複合触媒を用いてα−オレフィンを
連続的に重合する方法が知られている。しかし、この方
法を工業的に行なうにあたっては、触媒を触媒供給管を
通して重合帯域へ連、続供給することによって、重合反
応を連続的に進行させ°ることとなるが、この場合触媒
供給管が特に重合帯域入口近傍において閉塞しやすいた
め、安定な連続運転が不可能となるという問題がある。
BACKGROUND ART Conventionally, methods have been known in which α-olefins are continuously polymerized using various composite catalysts that essentially include a titanium catalyst component and an organoaluminum catalyst component. However, when this method is carried out industrially, the polymerization reaction proceeds continuously by continuously supplying the catalyst to the polymerization zone through the catalyst supply pipe, but in this case, the catalyst supply pipe is Particularly in the vicinity of the polymerization zone inlet, clogging occurs easily, making stable continuous operation impossible.

この問題を解決する方法として種々の方法が提案されて
おシ、例えば多量の不活性炭化水素とともに触媒を供給
する方法(特公昭45−8425号公報。
Various methods have been proposed to solve this problem, such as a method of supplying a catalyst together with a large amount of inert hydrocarbon (Japanese Patent Publication No. 45-8425).

特開昭57−11504号公報)がある。しかしながら
、この方法は溶剤の回収工程が必要となシ操作に手数を
要すると共に経済的にも問題がある。また、触媒成分を
各々別個に重合帯域に供給する方法も提案されているが
、得られる生成ポリマーの嵩密度、立体規則性等が低い
ものとなるという欠点がある。このように未だ満足でき
る方法は知られておらず、更に触媒成分の混合後、特に
担持型チタ〉触媒成分と有機アルミニウム触媒成分を混
合して複合触媒を調製した後は、比較的短時間で触媒性
能が低下することが知られているため、混合後できるだ
け速やかに重合帯域に供給しなければならないという要
請がある。
JP-A-57-11504). However, this method requires a step of recovering the solvent, is time-consuming, and is also economically problematic. A method has also been proposed in which the catalyst components are separately supplied to the polymerization zone, but this method has the disadvantage that the resulting polymer has low bulk density, stereoregularity, etc. As such, no satisfactory method is known yet, and furthermore, after mixing the catalyst components, especially after preparing a composite catalyst by mixing the supported titanium catalyst component and the organoaluminium catalyst component, it can be done in a relatively short time. Since it is known that catalyst performance decreases, there is a requirement that it be fed to the polymerization zone as soon as possible after mixing.

本発明者らはα−オレフィンの連続重合方法について上
記問題を解決すべく鋭意研究した。その結果、触媒をα
−オレフィンと共に供給管に導入して乱流を形成せしめ
ることによシ上記の問題をすべて解消し得ることを見出
し本発明を完成した。
The present inventors have conducted extensive research into continuous polymerization of α-olefins in order to solve the above problems. As a result, the catalyst is α
- The present invention has been completed by discovering that all of the above problems can be solved by introducing the olefin into the supply pipe together with the olefin to form a turbulent flow.

すなわち本発明はチタン触媒成分(A)および有機アル
ミニウム触媒成分(B)を必須とする複合触媒を用いて
α−オレフィンを連続的に重合するKあた如、該複合触
媒を全供給量の少なくとも一部のα−オレフィンと共に
重合帯域に接続する供給管に導入し、かつ前記供給管内
を乱流状態に維持しつつ重合帯域に供給することを特徴
とするα−オレフィンの連続重合方法である。
That is, the present invention provides continuous polymerization of α-olefin using a composite catalyst that essentially includes a titanium catalyst component (A) and an organoaluminum catalyst component (B). This continuous polymerization method for α-olefin is characterized in that the α-olefin is introduced into a supply pipe connected to a polymerization zone together with some α-olefin, and is supplied to the polymerization zone while maintaining a turbulent flow state in the supply pipe.

ここで本発明の方法に用いられる複合触媒は、チタン触
媒成分(A)および有機アルミニウム触媒成分(B)を
必須とする複合触媒であれば制限なく各種のものをあげ
ることができるが、特に供給管を閉塞しやすい触媒に対
して本発明の方法は効果的である。具体的なチタン触媒
成分(A)としては6価あるいは4価のチタン化合物を
種々の方法で還元したもの、これをさらにボールミル処
理および/または溶媒洗浄(不活性溶媒による洗浄およ
び/または極性化合物含有不活性溶媒による洗浄)にょ
シ活性化したもの、3塩化チタンまたは5塩化チタンの
共晶体(たとえばTi0ts−1/3 ktcjt、 
)をさらにアミン、エーテル、エステル、イオウまたは
ハロゲンの誘導体、有機または無機の窒素またばり〉化
合物等と共粉砕処理したもの、その他がある。4価のチ
タン化合物としては一般式’l1(OR’)nX%−ユ
(式中R1はC1〜”10程度のアルキル基rX”uハ
ロゲン原子を示し、nは0〜inを示す。)で表わされ
るハロゲン含有4価チタン化合物が挙げられる。これら
を具体的に示せば、Ti0t4 、 TiBr4 。
Here, the composite catalyst used in the method of the present invention may be any type of composite catalyst that essentially includes a titanium catalyst component (A) and an organoaluminum catalyst component (B). The method of the present invention is effective for catalysts that tend to clog tubes. The specific titanium catalyst component (A) is a hexavalent or tetravalent titanium compound reduced by various methods, which is further ball milled and/or washed with a solvent (washed with an inert solvent and/or containing a polar compound). eutectic of titanium trichloride or titanium pentachloride (e.g. Ti0ts-1/3 ktcjt,
) is further co-pulverized with amines, ethers, esters, sulfur or halogen derivatives, organic or inorganic nitrogen-containing compounds, and others. The tetravalent titanium compound has the general formula 'l1 (OR')n Examples include the halogen-containing tetravalent titanium compounds shown below. Specifically, these are Ti0t4 and TiBr4.

Ti工。などのテトラハロゲン化チタ> 、’l’1(
OCH3)04 rTl(oa2n、)aZ3. Ti
(On−04H,)04 、 ’I’1(QC!2Ha
)Br3などのトリハロゲン化アルコキシチタン、Ti
(OCH3)2 C!t2゜Ti(002HJ204 
+ Ti(On 04HGl)204 、 ’I”1(
002H1+)204などのジハロゲン化アルコキシチ
タン、Ti(OCH3)、OL 。
Ti engineering. Tetrahalogenated titanium>, 'l'1(
OCH3)04 rTl(oa2n,)aZ3. Ti
(On-04H,)04, 'I'1(QC!2Ha
) Trihalogenated alkoxytitanium such as Br3, Ti
(OCH3)2C! t2゜Ti(002HJ204
+ Ti(On 04HGl)204, 'I”1(
Dihalogenated alkoxytitanium such as 002H1+)204, Ti(OCH3), OL.

Ti(0’2”5)sOt、 Ti(On %Ho)B
Ct、 Ti(002H6)3Brなどのモノハロゲン
化トリアルコキシチタンなどを例示することかできる。
Ti(0'2”5)sOt, Ti(On %Ho)B
Examples include monohalogenated trialkoxytitanium such as Ct and Ti(002H6)3Br.

これらのうち高ハロゲン含有物を用いるのが好ましい。Among these, it is preferable to use a material containing a high halogen content.

またこのよりな6塩化チタンあるいは4価チタンその他
のハロゲン化チタン等をハロゲン化マグネシウム上に担
持したもの、金属、金属酸化物、金属塩化物やマグネシ
ウムに担持したものを用いることができる。上記の触媒
成分を混合して用いてもよい。
Further, titanium hexachloride, tetravalent titanium, or other halogenated titanium can be supported on magnesium halide, or supported on metal, metal oxide, metal chloride, or magnesium. The above catalyst components may be used in combination.

一方有機アルミニウム触媒(B)としては一般式AZR
2aX2s−ユで示される化合物が挙げられる。一般式
中R2はC!〜06程度のアルキル基 X2はハロゲン
特に塩素であって、aはO(a≦5.0の数を示す。
On the other hand, the organoaluminum catalyst (B) has the general formula AZR
Examples include compounds represented by 2aX2s-U. In the general formula, R2 is C! ~06 alkyl group X2 is a halogen, especially chlorine, and a represents O (a≦5.0).

このような化合物の具体例としては、ジメチルアルミニ
ウムクロリド、ジエチルアルミニウムクロリド、ジイソ
プロビルアルミニラ云りロリド、ジイソブチルアルミニ
ウムクロリド、ジオクチルアルミニウムクロリド、エチ
ルアルミニウムセスキクロリド、エチルアルミニウムジ
クロリド、トリメチルアルミニウム、トリエチルアルミ
ニウム。
Specific examples of such compounds include dimethylaluminum chloride, diethylaluminum chloride, diisopropylaluminium chloride, diisobutylaluminum chloride, dioctylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, trimethylaluminum, and triethylaluminum.

トリイソプロピルアルミニウム、トリイソブf )kア
ルミニウム、トリオクチルアルミニウム等があげられる
。またこれらの混合物であっても良い。
Examples include triisopropylaluminum, triisobutylaluminum, trioctylaluminum, and the like. It may also be a mixture of these.

触媒としては上記チタン触媒成分(A)および有機アル
ミニウム触媒成分ω)が必須であって、必要に応じて他
の成分を混合することができる。
As the catalyst, the titanium catalyst component (A) and the organoaluminum catalyst component ω) are essential, and other components can be mixed as necessary.

また本発明において原料モノマーとして用いるα−オレ
フィンはα位に二重結合を有するオレフィンであれば特
に制限なく各種のものをあげることができる。具体的に
は、エチレン、プ四ピレン。
Further, the α-olefin used as a raw material monomer in the present invention may be any olefin without particular limitation as long as it has a double bond at the α position. Specifically, ethylene and tetrapyrene.

ブテン−1,ヘキセン−1,オクテン−1等の直鎖モノ
オレフィン類をはじめ、4−メチル−ペンテン−1等の
分岐モノオレフィン類、プタジエ〉等のジエン類その他
各種のものがあげられ、本発明はこれらの単独重合ある
いは各種妙α−オレフィン相互の共重合に有効に利用で
きる。しかし、本発明の方法では、後述する如くα−オ
レフィンを供給管内を液体状態で通すことが好ましいた
め、このような点から、α−オレフィンとしてプロ□ピ
レン、ブデンー1を好適なものとして挙げることができ
る。
These include linear monoolefins such as butene-1, hexene-1, and octene-1, branched monoolefins such as 4-methyl-pentene-1, dienes such as Putadier, and various others. The invention can be effectively used for homopolymerization of these or copolymerization of various strange α-olefins. However, in the method of the present invention, as will be described later, it is preferable to pass the α-olefin in a liquid state through the supply pipe, and from this point of view, propylene and budene-1 are preferred as α-olefins. I can do it.

本発明の方法では上記の複合触媒をα−オレフィンと共
に重合帯域に接続する供給管に導入して、ここで触媒成
分が沈澱しないように乱流を形成せしめ、この状態で重
合帯域に供給することが必要である。この供給方式の一
例を第1図に基いて説明すれば次の如くである。すなわ
ち、有機アルミニウム触媒成分(B)を触媒供給ライン
5を通して触媒供給ライン4に導き、ここでチタン触媒
成分(A)と混合して予め複合触媒を調製し、この複合
触媒を供給管5に導入してα−オレフィンと合流させる
。ここで、触媒供給ライン5を通して導入する有機アル
ミニウム触媒成分(B)は単独でもよいが、必要に応じ
て電子供与体であるアミン類、アミド類、ケトン類、ニ
トリル類、ホスフィン類、ホスホルアミド類、エステル
類、チオエーテル類、チオエステル類、酸無水物類、酸
ノ・ライド類、アルデヒド類、有機酸類など、具体的に
はトリイル酸メチル、トリイル酸、安息香酸、安息香酸
メチル。
In the method of the present invention, the above-mentioned composite catalyst is introduced together with the α-olefin into a supply pipe connected to the polymerization zone, where a turbulent flow is formed to prevent the catalyst components from settling, and the composite catalyst is supplied to the polymerization zone in this state. is necessary. An example of this supply method will be explained below based on FIG. That is, the organoaluminum catalyst component (B) is introduced into the catalyst supply line 4 through the catalyst supply line 5, mixed with the titanium catalyst component (A) here to prepare a composite catalyst in advance, and this composite catalyst is introduced into the supply pipe 5. and combine with α-olefin. Here, the organoaluminum catalyst component (B) introduced through the catalyst supply line 5 may be used alone, but if necessary, electron donors such as amines, amides, ketones, nitriles, phosphines, phosphoramides, etc. Esters, thioethers, thioesters, acid anhydrides, acid rides, aldehydes, organic acids, etc., specifically methyl triylate, triylic acid, benzoic acid, and methyl benzoate.

エチレングリコールブチルエーテル、あるいはこれらの
混合物等と共に導入してもよい。一方、触媒供給ライン
4を通して導入するチタン触媒成分(A)は固体粉末乃
至粒子状のままであってもよいが、操作の便宜上、液体
のα−オレフィンモノマーあるいは少量の不活性炭化水
素(n−ヘキサン、n−へブタンなど)に懸濁してスラ
リー状として導入するのが好ましい。第1図に示す供給
方式によればチタン触媒成分(A)と有機アルミニウム
触媒成分(B)を触媒供給ライン4にで混合し、予め複
合触媒を調製してから、この複合触媒を供給管ろに導い
ているが、第2図に示すようにチタン触媒成分(A)と
有機アルミニウム触媒成分(B)をそれぞれ別個に供給
管乙に導入してα−オレフィンと合流させてもよい。ま
た有機アルミニウム触媒成分(B)はその一部を他の供
給管(図示せず)から、チタン触媒成分(A)と混合す
ることなく重合帯域1へ供給してもよい。
It may be introduced together with ethylene glycol butyl ether or a mixture thereof. On the other hand, the titanium catalyst component (A) introduced through the catalyst supply line 4 may be in the form of a solid powder or particulate, but for convenience of operation, it may be a liquid α-olefin monomer or a small amount of inert hydrocarbon (n- It is preferable to introduce it as a slurry by suspending it in hexane, n-hebutane, etc.). According to the supply method shown in FIG. 1, the titanium catalyst component (A) and the organoaluminum catalyst component (B) are mixed in the catalyst supply line 4 to prepare a composite catalyst in advance, and then this composite catalyst is passed through the supply pipe. However, as shown in FIG. 2, the titanium catalyst component (A) and the organoaluminium catalyst component (B) may be separately introduced into the supply pipe B and combined with the α-olefin. Further, a part of the organoaluminum catalyst component (B) may be supplied to the polymerization zone 1 from another supply pipe (not shown) without being mixed with the titanium catalyst component (A).

ここで上記触媒成分(A)I(B)あるいは複合触媒と
合流するα−オレフィンは、これらの触媒、特にその固
体成分が沈澱するのを防止すると共に重合帯域1の入口
部分での閉塞を防止する役割を果たせばよい。したがっ
て、この目的を達し得るに十分な旭を供給すればよく、
必ずしも重合帯域に供給する全量のα−オレフィンを用
いる必要はない。
Here, the α-olefin that merges with the catalyst components (A), I, and B or the composite catalyst prevents these catalysts, especially their solid components, from precipitating, and also prevents clogging at the entrance of the polymerization zone 1. All you have to do is fulfill your role. Therefore, it is only necessary to supply enough Asahi to achieve this purpose.
It is not necessarily necessary to use the entire amount of alpha-olefin fed to the polymerization zone.

それ故、供給管3を通して重合帯域1へ供給するα−オ
レフィンの量は全供給量の一部乃至全部の間で適宜選定
すればよく、残部は他の供給管(図示せず)から触媒成
分を混合することなく重合帯域1へ供給すればよい。
Therefore, the amount of α-olefin supplied to the polymerization zone 1 through the supply pipe 3 may be appropriately selected between a part to the whole of the total supply amount, and the remaining amount is supplied from another supply pipe (not shown) as a catalyst component. may be supplied to the polymerization zone 1 without mixing.

また、触媒を供給管3へ導入するにあたっては、触媒の
供給ライン4あるいは5に加圧筒2を設けることが好ま
しい。通常α−オレフイシを重合帯域1へ供給している
供給管3へ上記触媒を往復動ポンプ等の手段によシ導入
すると供給管内に脈流が生じやすい。この脈流は供給管
6のα−オレフイ〉と触媒との合流点付近の閉塞を招き
、安定な連続運転に支障をきたすものである。したがっ
て加圧筒2などを設ければ、脈流を加圧筒内部の圧縮気
体例えば窒素、アルゴンなどの働きによって吸収せしめ
ることができ、定常流とし閉塞を防止できるのである。
Further, when introducing the catalyst into the supply pipe 3, it is preferable to provide a pressurizing cylinder 2 in the catalyst supply line 4 or 5. When the catalyst is introduced into the supply pipe 3 which normally supplies α-olefin to the polymerization zone 1 by means such as a reciprocating pump, a pulsating flow tends to occur in the supply pipe. This pulsating flow causes blockage in the vicinity of the confluence of the α-olefin in the supply pipe 6 and the catalyst, thereby interfering with stable continuous operation. Therefore, if the pressurizing tube 2 or the like is provided, the pulsating flow can be absorbed by the action of compressed gas such as nitrogen or argon inside the pressurizing tube, making it a steady flow and preventing blockage.

本発明の方法では供給管3内において乱流が形成されて
いることが必要であるため、供給すべきα−オレフィン
は液体状態に維持することが好ましい。またこの供給管
6内の温度は通常−10℃〜50℃、好ましくは0℃〜
30°Cの範囲に保つべきであシ、管内温度があまシ高
温になると、管内圧力が比較的低い場合には、α−オレ
フイ〉が気化したシ、あるいは過度の重合反応が進行し
たシして管を閉塞するおそれがあシ好ましくない。
Since the method of the present invention requires a turbulent flow to be formed in the supply pipe 3, it is preferable that the α-olefin to be supplied be maintained in a liquid state. The temperature inside this supply pipe 6 is usually -10°C to 50°C, preferably 0°C to
It should be kept within the range of 30°C. If the temperature inside the tube becomes too high, if the pressure inside the tube is relatively low, the α-olefin may have vaporized or an excessive polymerization reaction may have proceeded. This is undesirable as there is a risk of clogging the tube.

なお本発明の方法において、供給管内に生せしめる乱流
状態は、要するに触媒が沈澱することなく、α−オレフ
ィン中に分散して流れ、よどみなく重合帯域−1へ供給
され、かつ重合帯域1の入口部分での閉塞を防止し得る
状態であればよい。一般に、乱流は通常レイノルズ数(
1’le) 1000以上であるが、本発明においては
Re上3000が特に好ましい。この乱流状態とする方
法は種々あり供給量、管径、粘度等によシ調節する。
In the method of the present invention, the turbulent flow state created in the supply pipe means that the catalyst does not precipitate but is dispersed in the α-olefin and flows, is supplied to the polymerization zone 1 without stagnation, and is maintained in the polymerization zone 1. Any condition is sufficient as long as it can prevent blockage at the inlet. In general, turbulent flow usually has a Reynolds number (
1'le) 1000 or more, but in the present invention, Re of 3000 is particularly preferred. There are various ways to create this turbulent state, and the method is adjusted depending on the supply amount, pipe diameter, viscosity, etc.

このようにして重合帯域に供給された触媒およびα−オ
レフィンは通常の方法によシ重合が行なわれる。例えば
プロピレンの塊状重合の場合、反応温度35〜80°C
1反応圧15〜40気圧の条件下で行なわれる。本発明
は種々の重合方法に適用され得るが特に溶剤を用いない
塊状重合の場合が好ましい。
The catalyst and α-olefin thus supplied to the polymerization zone are polymerized by a conventional method. For example, in the case of bulk polymerization of propylene, the reaction temperature is 35 to 80°C.
The reaction is carried out under conditions of a reaction pressure of 15 to 40 atmospheres. Although the present invention can be applied to various polymerization methods, bulk polymerization without using a solvent is particularly preferred.

以上の如く、本発明によれば触媒の供給管の閉−塞が生
ぜず長期間安定な連続運転が可能となる。
As described above, according to the present invention, stable continuous operation for a long period of time is possible without clogging of the catalyst supply pipe.

また通常チタン触媒成分(A)および有機アルミニウム
触媒成分′(B)の複合触媒は混合後比較的短時間で活
性が低下するものであるが、本発明においては′速やか
にα−オレフイ〉と共存させるため活性低下が防止でき
、よシ高い触媒活性が得られる。その結果、生成ホ゛リ
マ一の立体規則性、嵩密度が高いものが得られるのであ
る。ざらにモノマー自身を触媒の分散媒体として用いて
いるため従来の如き溶媒の回収工程が不要でコストの低
減も図れる。
In addition, normally, the activity of a composite catalyst of titanium catalyst component (A) and organoaluminum catalyst component' (B) decreases in a relatively short time after mixing, but in the present invention, it quickly coexists with α-olefin. As a result, a decrease in activity can be prevented and higher catalytic activity can be obtained. As a result, the resulting polymer has high stereoregularity and bulk density. Since the monomer itself is used as a dispersion medium for the catalyst, there is no need for the conventional solvent recovery process, and costs can be reduced.

したがって本発明はポリマー特にポリα−オレフィンの
製造において非常に有益であシ、産業上利用され得るも
のである。
Therefore, the present invention is very useful in the production of polymers, particularly polyα-olefins, and can be used industrially.

次に本発明を実施例によシ説明する。Next, the present invention will be explained using examples.

調製例(チタン触媒成分の調製) 5tの攪拌槽に乾燥n−へブタン1.5tおよびマグネ
シウムジェトキシドα1kgを仕込みα5時間攪拌した
。これに室温にて4塩化炭素10.5ゴ。
Preparation Example (Preparation of Titanium Catalyst Component) 1.5 t of dry n-hebutane and 1 kg of magnesium jetoxide were charged into a 5 t stirring tank and stirred for 5 hours. To this was added 10.5 grams of carbon tetrachloride at room temperature.

テトライソプロポキシチタン12.9 +uj、H7J
lllえ80℃に昇温後2時間反応を行なった。得られ
た生成物は乾燥n−へブタンを用いて傾瀉法によシ洗浄
した0次いで室温にて乾燥ニーへブタン1.5t。
Tetraisopropoxy titanium 12.9 +uj, H7J
After raising the temperature to 80°C, the reaction was carried out for 2 hours. The product obtained was washed by decanting with dry n-hebutane and then 1.5 t of dried n-hebutane was added at room temperature.

安息香酸n−ブチル3[1L9−を加え、さらに4塩化
チタン0.8kgを滴下し、100℃で2時間反応した
。反応終了後、傾斜法によシ乾燥n−へブタンで洗浄を
くシ返し固体状チタン触媒成分を得た。
n-Butyl benzoate 3[1L9- was added thereto, 0.8 kg of titanium tetrachloride was added dropwise, and the mixture was reacted at 100°C for 2 hours. After the reaction was completed, washing with dry n-hebutane was repeated by a decanting method to obtain a solid titanium catalyst component.

実施例1 上記調製列で得られた固体状チタン触媒を乾燥ニーへブ
タンにαs f −T1/l−へブタンの割合で懸濁さ
せ往復動ポンプで加圧し、内部に窒素ガスが加圧封入さ
れている内径80m+容積1tの円筒状の加圧筒2を有
する触媒供給ライン4に0.5t/hrで導入した(第
1図参照、以下同じ)。この供給ライン4に別の供給ラ
イン5から乾燥n−ヘプタン1を当シトリエチルアルミ
ニウム500ミリモル、ジエチルアルミニウムクロライ
ド500ミリモルおよびトリイル酸メチル500ミリモ
ルを含むn−へブタン溶液をα5 t/’hrで導入し
て、複合触媒を得、この複合触媒を、液状プロピレンを
skg/hrの割合で重合帯域1に′供給している内径
5ttmの供給管3に供給した。この管内のし、イノル
ズ数は約6500であった。また供給管3は20°Cに
保った。重合帯域1には他の供給管(図示せず)よシ液
状プロピレンを95 kg/ hrで供給した。重合帯
域においては、70℃35気圧の条件下で2時間塊状重
合反応を連続的に行なった。結果を第1表に示す。
Example 1 The solid titanium catalyst obtained in the above preparation sequence was suspended in dry Nihebutane at a ratio of αs f -T1/l-hebutane and pressurized with a reciprocating pump, and nitrogen gas was pressurized and sealed inside. The catalyst was introduced at a rate of 0.5 t/hr into a catalyst supply line 4 having a cylindrical pressure cylinder 2 with an inner diameter of 80 m and a volume of 1 t (see FIG. 1, the same applies hereinafter). A solution of n-heptane containing 500 mmol of dry n-heptane 1, 500 mmol of diethylaluminum chloride, 500 mmol of diethylaluminum chloride and 500 mmol of methyl triylate was introduced into this feed line 4 from another feed line 5 at α5 t/'hr. A composite catalyst was obtained, and this composite catalyst was supplied to a supply pipe 3 having an inner diameter of 5 ttm and supplying liquid propylene to the polymerization zone 1 at a rate of skg/hr. The Inolds number in this tube was about 6,500. Further, the supply pipe 3 was kept at 20°C. Polymerization zone 1 was supplied with liquid propylene at 95 kg/hr through another feed line (not shown). In the polymerization zone, bulk polymerization reaction was carried out continuously for 2 hours at 70° C. and 35 atm. The results are shown in Table 1.

実施例2 全重合量の液状プロピレン100 kg/ hrを複合
触媒が供給される供給管3から10℃に保って供給し、
その内径をBranとし、他の液状プロピレン供給を行
なわない以外は実施例1と同様に行なった。を内のレイ
ノルズ数は約11,000であった。
Example 2 100 kg/hr of liquid propylene, the total amount of polymerization, was supplied from the supply pipe 3 through which the composite catalyst was supplied, keeping it at 10°C,
The same procedure as in Example 1 was carried out except that the inner diameter was set to Bran and no other liquid propylene was supplied. The Reynolds number within was approximately 11,000.

結果を第1表に示す。The results are shown in Table 1.

比較例1 実施例1において複合触媒の導入される供給管s内vc
、液状プロピレンのかわシにn−ヘプタ〉を10 t/
hrで供給し、別の供給管(図示せず)よシ全供給量の
液状プロピレン100 kg/hrを供給した以外は、
実施例1と同様に行なった。結果を第1表に示す。
Comparative Example 1 Inside the supply pipe s vc into which the composite catalyst is introduced in Example 1
, 10 t/n-hepta in liquid propylene
hr, except that a total feed rate of 100 kg/hr of liquid propylene was supplied through a separate feed line (not shown).
The same procedure as in Example 1 was carried out. The results are shown in Table 1.

比較例2 実施例1において、複合触媒の供給される供給管6内に
、液状プロピレンを0.5 ky/hrで供給し、別の
供給管(図示せず)よシ液状プロピレン99.5kg/
hrで供給したこと以外は、実施列1と同様に操作した
。このときの供給管6内のレイノルズ数は600であっ
た。その結果、供給開始後約5分間経過した時点で、供
給管乙の重合帯域1への入口部が閉塞し、重合を停止す
る拠至った。
Comparative Example 2 In Example 1, liquid propylene was supplied at a rate of 0.5 ky/hr into the supply pipe 6 through which the composite catalyst was supplied, and 99.5 kg/hr of liquid propylene was supplied through another supply pipe (not shown).
The procedure was the same as in Example 1, except that the feed was carried out at hr. At this time, the Reynolds number inside the supply pipe 6 was 600. As a result, about 5 minutes after the start of the supply, the inlet of the supply pipe B to the polymerization zone 1 was blocked, leading to the termination of the polymerization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の方法を実施するだめの
装置の模式図である。 1・・・重合帯域、2・・・加圧筒、3・・・供給管。 4.5・−・触媒供給ライン 特許出願人  出光石油化学株式会社
1 and 2 are schematic diagrams of an apparatus for carrying out the method of the invention. 1... Polymerization zone, 2... Pressurizing cylinder, 3... Supply pipe. 4.5.--Catalyst supply line patent applicant Idemitsu Petrochemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  チタン触媒成分(A)および有機アルミニウ
ム触媒成分(B)を必須とする複合触媒を用いてα−オ
レフィンを連続的に重合するにあた9、該複合触媒を全
供給量の少なくとも一部のα−オレフィンと共に重合帯
域に接続する供給管に導入し、かつ前記供給管内を乱流
状態に維持しつつ重合帯域に供給することを特徴とする
α−オレフィンの連続重合方法。
(1) When continuously polymerizing α-olefin using a composite catalyst that essentially includes a titanium catalyst component (A) and an organoaluminum catalyst component (B), at least one portion of the total amount of the composite catalyst supplied must be 1. A continuous polymerization method for α-olefins, characterized in that the α-olefins are introduced into a supply pipe connected to a polymerization zone together with another α-olefin, and the α-olefins are supplied to the polymerization zone while maintaining the inside of the supply pipe in a turbulent state.
(2)  乱流状態においてレイノルズ数が3000以
上である特許請求の範囲第1項記載の連続重合方法。
(2) The continuous polymerization method according to claim 1, wherein the Reynolds number is 3000 or more in a turbulent flow state.
(3)  供給管に導入されたα−オレフィンを液体状
態に維持する特許請求の範囲第1項記載の連続重合方法
(3) The continuous polymerization method according to claim 1, wherein the α-olefin introduced into the supply pipe is maintained in a liquid state.
(4)  α−オレフイ〉がプロピレジ、ブチ〉−11
オクテン−1,4−メチルペンテン−1あるいはこれら
の混合物である特許請求の範囲第1項記載の連続重合方
法。
(4) α-olefin> is propylene resin, buty>-11
The continuous polymerization method according to claim 1, wherein octene-1,4-methylpentene-1 or a mixture thereof is used.
JP1372683A 1983-02-01 1983-02-01 Continuous polymerization of alpha-olefin Granted JPS59140205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372683A JPS59140205A (en) 1983-02-01 1983-02-01 Continuous polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372683A JPS59140205A (en) 1983-02-01 1983-02-01 Continuous polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS59140205A true JPS59140205A (en) 1984-08-11
JPH0373564B2 JPH0373564B2 (en) 1991-11-22

Family

ID=11841245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372683A Granted JPS59140205A (en) 1983-02-01 1983-02-01 Continuous polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS59140205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635521A1 (en) * 1993-07-19 1995-01-25 Union Carbide Chemicals & Plastics Technology Corporation A process for the production of polypropylene
JP2002121202A (en) * 2000-10-19 2002-04-23 Japan Polychem Corp Polymerization of alfa-olefin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635521A1 (en) * 1993-07-19 1995-01-25 Union Carbide Chemicals & Plastics Technology Corporation A process for the production of polypropylene
US6005049A (en) * 1993-07-19 1999-12-21 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of polypropylene
JP2002121202A (en) * 2000-10-19 2002-04-23 Japan Polychem Corp Polymerization of alfa-olefin
JP4495846B2 (en) * 2000-10-19 2010-07-07 日本ポリプロ株式会社 Polymerization method of α-olefin

Also Published As

Publication number Publication date
JPH0373564B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
FI68063B (en) FOERFARANDE FOER FRAMSTAELLNING AV ALFA-OLEFINPOLYMERER ELLER -KOPOLYMERER
JP2529923B2 (en) Multi-stage process for polyethylene synthesis
KR100269774B1 (en) Method of producing a deposited catalyst for the polymerization of ethylene and copolymerization of ethylene with ñ -olefins
JP2905185B2 (en) Olefin polymerization method
JPH029045B2 (en)
JP2005529997A (en) Method for preparing olefin polymerization catalyst
PL152519B1 (en) Catalytic solid to be used in stereospecific polymerization of alpha-olefins, process for its preparation and process for polymerizing alpha-olefins in its presence
JPH09176226A (en) Production of supported catalyst for polymerization of ethylene and for copolymerization of ethylene with alpha-olefin
CN104628912A (en) Preparation methods of polybutylene alloy material
JPH0119407B2 (en)
JPS59140205A (en) Continuous polymerization of alpha-olefin
CN104774394A (en) Preparation methods for polyolefin alloy
JPS6351404A (en) Injection of catalyst for ziegler polymerization
CN109096423B (en) Preparation method of low-entanglement ultra-high molecular weight polyolefin
KR100218045B1 (en) Method for producing supported catalyst for ethylene polymerization and ethylene/alpha-olefin copolymerization
JPH08134124A (en) Method of polymerizing olefin by using ziegler/natta catalyst
FI87656B (en) BEHANDLING AV KATALYSATORPARTIKLAR
JPS58215408A (en) Polymerization of olefin
JPS6365083B2 (en)
RU2682163C1 (en) Method for preparation of vanadium magnesium polymerization catalyst of ethylene and copolimerization of ethylene with alpha olefines
RU2257264C1 (en) Catalyst preparation process and ethylene polymerization and ethylene-alpha-olefin copolymerization processes utilizing this catalyst
JPH0662704B2 (en) Gas phase polymerization of olefin
JPH01213314A (en) Alpha-olefin polymerization, solid catalyst complex usable therein and preparation thereof
JP3713316B2 (en) Olefin polymerization method
JPH02225503A (en) Polymerization of olefin