JPS59137396A - Synthetic method of p type semiconductor diamond - Google Patents
Synthetic method of p type semiconductor diamondInfo
- Publication number
- JPS59137396A JPS59137396A JP58010225A JP1022583A JPS59137396A JP S59137396 A JPS59137396 A JP S59137396A JP 58010225 A JP58010225 A JP 58010225A JP 1022583 A JP1022583 A JP 1022583A JP S59137396 A JPS59137396 A JP S59137396A
- Authority
- JP
- Japan
- Prior art keywords
- type semiconductor
- volatile
- plasma
- hydrogen
- diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/04—Diamond
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はP型半導体ダイヤモンドの合成法に関する。[Detailed description of the invention] The present invention relates to a method for synthesizing P-type semiconductor diamond.
従来のP型半導体ダイヤモンドの2合成法としては、(
1)金属触媒を用いた高圧合成法、(2)ダイヤモンド
単結晶に硼素イオンを打込んで合成する方法が知られて
いる。The conventional two-synthesis method for P-type semiconductor diamond is (
1) A high-pressure synthesis method using a metal catalyst, and (2) a synthesis method by implanting boron ions into a diamond single crystal are known.
前記(1)の方法は高圧装置を必要とするばかりでなく
、金属触媒、窒素が混入されたりする欠点がある。また
成長した結晶は多面体で硼素がドープされる量は各面に
よって異なり、均質に硼素がトープされたP型半導体ダ
イヤモンドが得難く、更に塊状の単結晶となり膜状の物
が得善い欠点がある。The above method (1) not only requires a high-pressure device, but also has the disadvantage that a metal catalyst and nitrogen are mixed. In addition, the grown crystal is polyhedral and the amount of boron doped is different for each face, making it difficult to obtain a P-type semiconductor diamond that is homogeneously doped with boron.Furthermore, it becomes a lumpy single crystal, and a film-like product is better. .
前記(2)の方法は、20 k、eV以上のエネルギー
で硼素イオンを打込む必要がちるだめ、イオン注入で生
ずる放射線損傷による欠陥を生ずる。そのた成装置を必
要とし、その操作も面倒であると共に高度の技術を必要
とする欠点がある。The method (2) requires implantation of boron ions with an energy of 20 k, eV or more, which causes defects due to radiation damage caused by ion implantation. The disadvantage is that it requires a construction device, is troublesome to operate, and requires a high level of skill.
本発明は従来法における欠点をなくすべくなされたもの
であり、その目的は、高価な合成装置を必要とせず、プ
ラズマ化学気相析出法により均質なP型半導体ダイヤモ
ンド薄膜の合成する方法を提供するにある。The present invention has been made to eliminate the drawbacks of conventional methods, and its purpose is to provide a method for synthesizing a homogeneous P-type semiconductor diamond thin film by plasma chemical vapor deposition without requiring expensive synthesis equipment. It is in.
本発明の要旨は、基体を設置したプラズマ発生室に揮発
性炭化水素、水素及び揮発性硼素化合物算=を含んだダ
イヤモンド単結晶寸たは多結filH@、。The gist of the present invention is to provide a diamond single crystal or polycrystalline filH containing volatile hydrocarbons, hydrogen, and volatile boron compounds in a plasma generation chamber in which a substrate is installed.
の薄膜を成長させることを峙徴とするP型半導体ダイヤ
モンドの合成法にある。A method for synthesizing P-type semiconductor diamond is characterized by growing a thin film of P-type semiconductor.
これを図面に基いて説明すると、第1図はマイクロ波に
よって誘発したプラズマを用いる方法を4干、第2図は
高周波によって誘発したプラズマを一;ヤいる方法を示
す概要図である。To explain this based on the drawings, Fig. 1 is a schematic diagram showing four methods using plasma induced by microwaves, and Fig. 2 is a schematic diagram showing one method using plasma induced by radio frequency waves.
′・1轡1図K > I″i・1は反応”′供0装5・
2+″1′マイクロ波発振機、3は導波管、4はプラズ
マ発生室、5は基体、6は支持台、7は排気装置、8゜
9.10.11は調整弁を示す。プラズマ発生室4内の
支持台6の上に基体5を置いた後、排気装置7を作動し
調整弁8を調整して、プラズマ発生室4内を減圧にする
と共に、反応ガス供給袋fil 1より調整弁9 、1
0 、11を通して水素ガス、揮発性炭化水素、揮発性
硼素化合物の流量を調整し、所定圧に保持する。次にマ
イクロ波発振機2を作動してマイクロ波無極放電を誘発
する。これにより励起状態の炭化水素、硼化水素が生成
し、基体の表面に硼素イオンを含んだダイヤモンドのP
型半導体薄膜が成長する。'・1轡1Figure K >I"i・1 is the reaction"
2+"1' microwave oscillator, 3 is a waveguide, 4 is a plasma generation chamber, 5 is a base, 6 is a support, 7 is an exhaust device, 8゜9.10.11 is a regulating valve. Plasma generation After placing the substrate 5 on the support stand 6 in the chamber 4, the exhaust device 7 is activated and the regulating valve 8 is adjusted to reduce the pressure in the plasma generation chamber 4, and the pressure is adjusted from the reaction gas supply bag fil 1. Valve 9, 1
0 and 11 to adjust the flow rates of hydrogen gas, volatile hydrocarbons, and volatile boron compounds, and maintain them at a predetermined pressure. Next, the microwave oscillator 2 is activated to induce microwave non-polar discharge. As a result, excited state hydrocarbons and hydrogen borides are generated, and diamond P containing boron ions is formed on the surface of the substrate.
type semiconductor thin film is grown.
第2図は高周波プラズマによって誘発したプラズマを用
いる方法の概要図を示す。第1図のマイクロ波発振機2
に代え高周波発振機15を使用し、同軸ケーブル12を
通じて平行電極板13に出力ダイヤモンド薄膜が成長す
る。FIG. 2 shows a schematic diagram of the method using plasma induced by radio frequency plasma. Microwave oscillator 2 in Figure 1
Instead, a high frequency oscillator 15 is used, and an output diamond thin film is grown on the parallel electrode plate 13 through the coaxial cable 12.
本発明に用いる揮発性炭化水素としては、例えばメタン
、エタン、アセチレン、ブタン等の炭化水素が挙げられ
る。メタンは高純度ガスが容易に得られる点で好ましい
。また揮発性硼素化合物としてはB2H6,BCl3等
が挙げられるが、B2H6が好ましい。揮発性炭化水素
と水素との割合は、1゜:100以下であることが好ま
しい。P型半導体の比抵抗値は硼素のドープする割合に
よって変化すくは50Torrである。100 Tor
r以上になると、粒状結晶、また黒鉛状炭素が析出する
ので好ましくない。Examples of volatile hydrocarbons used in the present invention include hydrocarbons such as methane, ethane, acetylene, and butane. Methane is preferable since high purity gas can be easily obtained. Examples of volatile boron compounds include B2H6 and BCl3, with B2H6 being preferred. The ratio of volatile hydrocarbon to hydrogen is preferably 1°:100 or less. The specific resistance value of the P-type semiconductor varies depending on the boron doping ratio and is 50 Torr. 100 Tor
If it exceeds r, granular crystals and graphitic carbon will precipitate, which is not preferable.
ダイヤモンド単結晶の半導体膜を成長させるためにはダ
イヤモンドの単結晶の基体を用いることが望ましい。(
111)面、(100)面、 (110)面のいずれで
も良いが、(110)面が望ましい。In order to grow a diamond single-crystal semiconductor film, it is desirable to use a diamond single-crystal substrate. (
111) plane, (100) plane, or (110) plane, but (110) plane is preferable.
これらの基体面に析出するダイヤモンドは基体結晶面に
配向しており、従ってドープされた硼素へ
、pip出層中に均質に分散している。また多結晶体の
半導体膜を形成するにはザファイヤ、シリコン。The diamonds deposited on these substrate planes are oriented in the substrate crystal planes and are therefore homogeneously distributed in the pip layer to the doped boron. Also, zaphire and silicon are used to form polycrystalline semiconductor films.
タンタル、モリブデン等の基体が用いられる。Substrates such as tantalum and molybdenum are used.
実施例1゜
第1図に示す装置を使用し、プラズマ発生室4の基体支
持台6上にダイヤモンド(11,0)面の研磨面を基体
5として置き、プラズマ発生室4内を排気装置7により
排気した後、水素にメタンを2容量%混合したガスと、
水素にジボランを11001)p混合したガスを各々5
Q 、、z7 min 、 Q、5 ml /mj−
nのを通じてプラズマ発生室4に入射し、プラズマを誘
発させた。プラズマ空間で反応ガスの励起及びダイヤモ
ンド単結晶の基体の加熱が行われ、3時間析出を行った
ところ、厚さ3μmのP型半導体ダイヤモンド膜を得だ
。膜の抵抗は室温で2X10’第2図の装置において、
プラズマ発生室4の平行電極板13上にダイヤモンド単
結晶の基体5を置いた後、排気装置7で排気してプラズ
マ発生室4を減圧にすると共に、ヒーター14で基体5
を800℃に上昇させた。次に反応ガス供給装置1より
調整弁9 、10 、1’ 1を調製し、水素にメタン
を1容量%混合したガス、及び水素にジボラン100
ppm混合したガスをそれぞれ、毎分50 cc、0、
]、ccの割合で流し、排気装置を作動すると共に、4
)1丼弁8,9,10.11を調整して、プラズマ発生
室を40 ’I’orrの減圧、混合ガスの流速毎分7
6cTILに保持した。次に高周波発振機15を作動し
、900Wの出力を同軸ケーブル12を通じて平行電極
板13に与え、プラズマを誘発させた。こ永、さ1
: (□
て容易に均質な薄膜のエピタキシャル成長を行うことが
できる優れた作用効果を有している。Example 1 Using the apparatus shown in FIG. 1, a diamond (11,0) polished surface is placed as the substrate 5 on the substrate support 6 of the plasma generation chamber 4, and the inside of the plasma generation chamber 4 is operated by an exhaust device 7. After exhausting the gas with hydrogen and methane at 2% by volume,
A mixture of hydrogen and diborane (11,001)p each
Q,, z7 min, Q, 5 ml/mj-
The plasma was introduced into the plasma generation chamber 4 through the ion beam, and plasma was induced. Excitation of the reactive gas and heating of the diamond single crystal substrate were performed in a plasma space, and after 3 hours of precipitation, a P-type semiconductor diamond film with a thickness of 3 μm was obtained. The resistance of the membrane is 2X10' at room temperature in the apparatus shown in Figure 2.
After placing the diamond single crystal substrate 5 on the parallel electrode plate 13 of the plasma generation chamber 4, the plasma generation chamber 4 is evacuated by the exhaust device 7 to reduce the pressure, and the substrate 5 is placed on the parallel electrode plate 13 of the plasma generation chamber 4.
was raised to 800°C. Next, the regulating valves 9, 10, 1' 1 were prepared from the reaction gas supply device 1, and a gas containing 1% by volume of methane in hydrogen and 100% diborane in hydrogen were added.
ppm mixed gas at 50 cc/min, 0,
], cc at a rate of 4 cc, operating the exhaust system,
) 1 Adjust the bowl valves 8, 9, 10.11 to reduce the pressure of the plasma generation chamber to 40'I'orr and the flow rate of the mixed gas to 7/min.
Retained at 6cTIL. Next, the high frequency oscillator 15 was activated, and an output of 900 W was applied to the parallel electrode plate 13 through the coaxial cable 12 to induce plasma. Konaga, Sa1: (□) It has an excellent function and effect that allows epitaxial growth of a homogeneous thin film to be easily performed.
実施例3゜
第1図に示す装置を使用し、プラズマ発生室4の基体支
持台6上にサファイア板を基体5として置き、−プラズ
マ発生室4内を排気装置7により排気した後、水素にメ
タンを0.3容量%混合したガスと、水素にジボランを
100 ppm混合したガスを各々80 vl / m
in 、 0.5 ml / minの割合で流し、プ
ラズマ発生室4を4 Q Torrに保持した。次にマ
イクロ波発振機2を作動し、400Wの出力を導波管3
を通じてプラズマ発生室4に入射し、プラズマを誘発さ
せた。プラズマ空間でガスの励起。Example 3 Using the apparatus shown in FIG. 1, a sapphire plate was placed as the substrate 5 on the substrate support 6 of the plasma generation chamber 4, and after the inside of the plasma generation chamber 4 was evacuated by the exhaust device 7, it was replaced with hydrogen. 80 vl/m of a gas containing 0.3% by volume of methane and a gas containing 100 ppm of hydrogen and diborane.
in, at a rate of 0.5 ml/min, and the plasma generation chamber 4 was maintained at 4 Q Torr. Next, the microwave oscillator 2 is activated, and the output of 400W is transmitted to the waveguide 3.
It entered the plasma generation chamber 4 through the plasma and induced plasma. Excitation of gas in plasma space.
解離及びサファイア板の加熱が行われ6時間析出図面は
本発明方法の実施態様を示すものであシ、第1図はマイ
クロ波によって誘発したプラズマを用いる方法の概要図
、第2図は高周波によって誘発したプラズマを用いる方
法の概要図である。Dissociation and heating of the sapphire plate were carried out for 6 hours. 1 is a schematic diagram of a method using induced plasma; FIG.
1:反応ガス供給装置、2:マイクロ波発振機、3:導
波管、 4:プラズマ発生室、5:基体、
6:支持台、
7:排気装置、 12:同軸ケーブル、13:平
行電極板、 14:ヒーター、8 、9 、10
、11 :調整弁。1: Reaction gas supply device, 2: Microwave oscillator, 3: Waveguide, 4: Plasma generation chamber, 5: Substrate,
6: Support stand, 7: Exhaust device, 12: Coaxial cable, 13: Parallel electrode plate, 14: Heater, 8, 9, 10
, 11: Regulating valve.
円:満圃浅焚脹儀。Circle: Manpaku shallow burning ceremony.
Claims (1)
及び揮発性硼素化合物を供給し、該混合カスに高周波捷
だはマイクロ波を入射し、プラズマを誘発して励起状態
の炭化水素、靜1化水素を生成せしめ、基体の表面にダ
イヤモンドのP型半導体榊膜を成長させることを特徴と
するP型半導体ダイヤモンドの合成法。 ・13)゛[Claims] Volatile hydrocarbons, hydrogen, and volatile boron compounds are supplied to a plasma generation chamber in which a substrate is installed, and high-frequency waves or microwaves are applied to the mixed residue to induce plasma and bring it into an excited state. 1. A method for synthesizing P-type semiconductor diamond, which is characterized in that a hydrocarbon, hydrogen chloride, is generated, and a P-type semiconductor sakaki film of diamond is grown on the surface of a substrate.・13)゛
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58010225A JPS59137396A (en) | 1983-01-25 | 1983-01-25 | Synthetic method of p type semiconductor diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58010225A JPS59137396A (en) | 1983-01-25 | 1983-01-25 | Synthetic method of p type semiconductor diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59137396A true JPS59137396A (en) | 1984-08-07 |
Family
ID=11744334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58010225A Pending JPS59137396A (en) | 1983-01-25 | 1983-01-25 | Synthetic method of p type semiconductor diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59137396A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246115A (en) * | 1988-03-26 | 1989-10-02 | Semiconductor Energy Lab Co Ltd | Method for forming coating film of carbon or material composed mainly of carbon |
JPH01246867A (en) * | 1988-03-28 | 1989-10-02 | Sumitomo Electric Ind Ltd | schottky junction |
US5250149A (en) * | 1990-03-06 | 1993-10-05 | Sumitomo Electric Industries, Ltd. | Method of growing thin film |
US5270028A (en) * | 1988-02-01 | 1993-12-14 | Sumitomo Electric Industries, Ltd. | Diamond and its preparation by chemical vapor deposition method |
US5371383A (en) * | 1993-05-14 | 1994-12-06 | Kobe Steel Usa Inc. | Highly oriented diamond film field-effect transistor |
US5424561A (en) * | 1993-05-14 | 1995-06-13 | Kobe Steel Usa Inc. | Magnetic sensor element using highly-oriented diamond film and magnetic detector |
US5442199A (en) * | 1993-05-14 | 1995-08-15 | Kobe Steel Usa, Inc. | Diamond hetero-junction rectifying element |
EP0691413A2 (en) | 1993-04-06 | 1996-01-10 | Sumitomo Electric Industries, Ltd. | Diamond reinforced composite material and method of preparing the same |
US5491348A (en) * | 1993-05-14 | 1996-02-13 | Kobe Steel Usa, Inc. | Highly-oriented diamond film field-effect transistor |
US5493131A (en) * | 1993-05-14 | 1996-02-20 | Kobe Steel Usa, Inc. | Diamond rectifying element |
US5512873A (en) * | 1993-05-04 | 1996-04-30 | Saito; Kimitsugu | Highly-oriented diamond film thermistor |
US5523160A (en) * | 1993-05-14 | 1996-06-04 | Kobe Steel Usa, Inc. | Highly-oriented diamond film |
US5677372A (en) * | 1993-04-06 | 1997-10-14 | Sumitomo Electric Industries, Ltd. | Diamond reinforced composite material |
US5803967A (en) * | 1995-05-31 | 1998-09-08 | Kobe Steel Usa Inc. | Method of forming diamond devices having textured and highly oriented diamond layers therein |
US8916125B2 (en) | 2001-12-28 | 2014-12-23 | Toyo Tanso Co., Ltd. | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
WO2019059123A1 (en) * | 2017-09-19 | 2019-03-28 | 住友電気工業株式会社 | Monocrystal diamond and production method therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5963732A (en) * | 1982-10-04 | 1984-04-11 | Hitachi Ltd | Thin film forming equipment |
-
1983
- 1983-01-25 JP JP58010225A patent/JPS59137396A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5963732A (en) * | 1982-10-04 | 1984-04-11 | Hitachi Ltd | Thin film forming equipment |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270028A (en) * | 1988-02-01 | 1993-12-14 | Sumitomo Electric Industries, Ltd. | Diamond and its preparation by chemical vapor deposition method |
JPH01246115A (en) * | 1988-03-26 | 1989-10-02 | Semiconductor Energy Lab Co Ltd | Method for forming coating film of carbon or material composed mainly of carbon |
JPH01246867A (en) * | 1988-03-28 | 1989-10-02 | Sumitomo Electric Ind Ltd | schottky junction |
US5250149A (en) * | 1990-03-06 | 1993-10-05 | Sumitomo Electric Industries, Ltd. | Method of growing thin film |
EP0691413A2 (en) | 1993-04-06 | 1996-01-10 | Sumitomo Electric Industries, Ltd. | Diamond reinforced composite material and method of preparing the same |
US5677372A (en) * | 1993-04-06 | 1997-10-14 | Sumitomo Electric Industries, Ltd. | Diamond reinforced composite material |
US5512873A (en) * | 1993-05-04 | 1996-04-30 | Saito; Kimitsugu | Highly-oriented diamond film thermistor |
US5424561A (en) * | 1993-05-14 | 1995-06-13 | Kobe Steel Usa Inc. | Magnetic sensor element using highly-oriented diamond film and magnetic detector |
US5491348A (en) * | 1993-05-14 | 1996-02-13 | Kobe Steel Usa, Inc. | Highly-oriented diamond film field-effect transistor |
US5493131A (en) * | 1993-05-14 | 1996-02-20 | Kobe Steel Usa, Inc. | Diamond rectifying element |
US5442199A (en) * | 1993-05-14 | 1995-08-15 | Kobe Steel Usa, Inc. | Diamond hetero-junction rectifying element |
US5523160A (en) * | 1993-05-14 | 1996-06-04 | Kobe Steel Usa, Inc. | Highly-oriented diamond film |
US5371383A (en) * | 1993-05-14 | 1994-12-06 | Kobe Steel Usa Inc. | Highly oriented diamond film field-effect transistor |
US5803967A (en) * | 1995-05-31 | 1998-09-08 | Kobe Steel Usa Inc. | Method of forming diamond devices having textured and highly oriented diamond layers therein |
US8916125B2 (en) | 2001-12-28 | 2014-12-23 | Toyo Tanso Co., Ltd. | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
WO2019059123A1 (en) * | 2017-09-19 | 2019-03-28 | 住友電気工業株式会社 | Monocrystal diamond and production method therefor |
CN111133134A (en) * | 2017-09-19 | 2020-05-08 | 住友电气工业株式会社 | Single crystal diamond and method for producing the same |
JPWO2019059123A1 (en) * | 2017-09-19 | 2020-10-15 | 住友電気工業株式会社 | Single crystal diamond and its manufacturing method |
EP3686321A4 (en) * | 2017-09-19 | 2021-07-28 | Sumitomo Electric Industries, Ltd. | MONOCRISTALLINE DIAMOND AND MANUFACTURING PROCESS FOR IT |
CN111133134B (en) * | 2017-09-19 | 2022-06-14 | 住友电气工业株式会社 | Single crystal diamond and method for producing the same |
TWI852913B (en) * | 2017-09-19 | 2024-08-21 | 日商住友電氣工業股份有限公司 | Single crystal diamond |
US12215438B2 (en) | 2017-09-19 | 2025-02-04 | Sumitomo Electric Industries, Ltd. | Single-crystal diamond and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59137396A (en) | Synthetic method of p type semiconductor diamond | |
JP3728465B2 (en) | Method for forming single crystal diamond film | |
US4873115A (en) | Method of sythesizing carbon film and carbon particles in a vapor phase | |
JP6046237B2 (en) | Microwave plasma chemical vapor deposition system | |
JPS58135117A (en) | Diamond manufacturing method | |
JPH1081587A (en) | Synthesis of phosphorus-doped diamond | |
JPH0259493A (en) | Method for growing diamond | |
JPH0650730B2 (en) | Method for manufacturing semiconductor thin film | |
JP5822259B2 (en) | Diamond crystal growth method and diamond crystal growth apparatus | |
JPS63117993A (en) | Device for synthesizing diamond in vapor phase | |
JPS6115150B2 (en) | ||
JPS60112698A (en) | Manufacture of diamond | |
JPH064915B2 (en) | Method for synthesizing cubic boron nitride | |
JPH06321688A (en) | Forming method of highly oriented diamond thin film | |
JPH0481556B2 (en) | ||
JPS593098A (en) | Synthesizing method of diamond | |
JPH0323295A (en) | Method for synthesizing semiconductor diamond | |
JPH0637355B2 (en) | Method for producing silicon carbide single crystal film | |
JPH0532489A (en) | Diamond synthesis method using plasma | |
JPS63117995A (en) | Device for synthesizing diamond in vapor phase | |
JPH02263796A (en) | Vapor hetero epitaxial growth method for silicon carbide | |
JPH0547518B2 (en) | ||
JPH06236851A (en) | Method for manufacturing n-type cubic boron nitride semiconductor | |
JPS60127292A (en) | Production of diamond | |
JPH0637356B2 (en) | Method for producing silicon carbide single crystal film |