[go: up one dir, main page]

JPS59136708A - Automatic connecting device for optical fiber - Google Patents

Automatic connecting device for optical fiber

Info

Publication number
JPS59136708A
JPS59136708A JP996083A JP996083A JPS59136708A JP S59136708 A JPS59136708 A JP S59136708A JP 996083 A JP996083 A JP 996083A JP 996083 A JP996083 A JP 996083A JP S59136708 A JPS59136708 A JP S59136708A
Authority
JP
Japan
Prior art keywords
optical fibers
directions
optical fiber
those
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP996083A
Other languages
Japanese (ja)
Other versions
JPH0352604B2 (en
Inventor
Iwao Kitazawa
北澤 「巌」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP996083A priority Critical patent/JPS59136708A/en
Publication of JPS59136708A publication Critical patent/JPS59136708A/en
Publication of JPH0352604B2 publication Critical patent/JPH0352604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To realize high-precision alignment by observing butting end parts of optical fibers in two directions with transmission lighting, and moving those two optical fibers automatically and relatively by picture processing from contour parts of core parts so that the core parts are aligned to each other. CONSTITUTION:A fixed base 11 and a movable base 12 which face each other are provided with metallic pressers 15 for fixing the optical fibers 13 and 14 respectively; and those metallic pressers 15 are freely slidable in the facing direction of the butting end parts of the optical fibers 13 and 14 and in a direction perpendicular to said facing direction. Movements in those two directions are carried out by two driving motors. A couple of discharge electrode 18 for connecting the butting end parts of the two optical fibers 13 and 14 by welding are provided and a couple of light guides 20 and 21 connected to a light source 19 are positioned so that their projection end parts are in those two directions.

Description

【発明の詳細な説明】 本発明は、極めて高精度な永久接続を迅速且つ自動的に
行ない得るように企図した光7アイ2バの融着接続装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical 7-eye 2-bar fusion splicing device designed to quickly and automatically perform permanent connections with extremely high precision.

光ファイバの接続方法として従来から行なゎnているも
のに、接続後でも任意に分離することが可能なコネクタ
による方法と、接続後では分離することができない永久
接続(スプライシング)による方法とがある。一般に、
コネクタによるものは光ファイバの端面での反射損失が
あるため、永久接続によるものよりもその接続損失の大
きいことが知られており、これらはその使用条件に応じ
て適宜使い分けさnている。
Conventional methods for connecting optical fibers include a method using a connector that can be separated at will even after connection, and a method using a permanent connection (splicing) that cannot be separated after connection. be. in general,
It is known that connectors have a greater connection loss than permanent connections due to reflection loss at the end face of the optical fiber, and these are used appropriately depending on the conditions of use.

とζろで、長距離伝送路として使われることが多す海底
光ケーブル等の通信用光ファイバの永久接続に際しては
、経時劣化の虞の少ない融着接続法が採用される。通常
、光ファイバには保護及び補強用の被覆層がその周囲に
形成されており、光ファイバを相互に融着接続する際に
この被覆層があると種々の点で不都合を生ずるため、従
来では被覆層を除去して光フアイバ素線を外部に露出さ
せた状態とし、とnらの端面を同軸に突き合わせたのち
に放電加熱して融着接続するようにしていた。この場合
、光の伝送にあずかるコア部が光フアイバ素線に対して
偏心していると、単にこの光フアイバ素線を同軸に位置
決めしただけでは最良の接続状態にすることが不可能で
あり、この傾向はコア部の径の小さな単一モード光ファ
イバにおいて特に顕著に表れる。このため、一般には一
方の光ファイバから他方の光ファイバへ光を通し、他方
の光ファイバでの受光量が最大となるように二本の光フ
ァイバの突き合わせ端部の相対位置を調整する方法が採
用されている。しかし、海底光ケーブルのようにすでに
中継器等が光ファイバに連結さn、ている場合には、上
述した方法全採用することが根本的に不可能であり、し
かも海底光ケーブルの接続は海上で行なわ几ることとな
るため、船舶の振動や海洋気象等による制約が多くて良
好な永久接続全行ない離い欠点があった。
Therefore, when permanently connecting communication optical fibers such as submarine optical cables, which are often used as long-distance transmission lines, fusion splicing is used because there is less risk of deterioration over time. Normally, optical fibers have a protective and reinforcing coating layer formed around them, and the presence of this coating layer causes various problems when optical fibers are fusion spliced to each other. The coating layer was removed to expose the optical fiber to the outside, and the end faces of the fibers and the fibers were coaxially abutted against each other and then fusion spliced by electrical discharge heating. In this case, if the core part that participates in light transmission is eccentric with respect to the optical fiber wire, it is impossible to achieve the best connection state simply by positioning the optical fiber wire coaxially. This tendency is particularly noticeable in single mode optical fibers with small core diameters. For this reason, the general method is to pass light from one optical fiber to the other and adjust the relative position of the butt ends of the two optical fibers so that the amount of light received by the other optical fiber is maximized. It has been adopted. However, in cases where repeaters, etc. are already connected to the optical fiber, such as submarine optical cables, it is fundamentally impossible to employ all of the above methods, and furthermore, the submarine optical cables must be connected at sea. Because of this, there were many restrictions due to ship vibrations, ocean weather, etc., and there was a drawback that a good permanent connection could not be completely separated.

本発明はこのような知見に基づき、光ファイバを透、過
照明で観察した場合にコア部の位置全正確に把握するこ
とができる点に着目し、光ファイバの永久接続を短時間
のうちに高精度で自動的に行ない得る装置を提供するこ
とを目的とする。
Based on this knowledge, the present invention focuses on the fact that the entire position of the core can be accurately determined when observing an optical fiber under transparent or super-illumination, and it is possible to permanently connect optical fibers in a short time. The purpose is to provide a device that can perform automatic processing with high precision.

この目的を達成する本発明の光フアイバ自動接続装置に
かかる構成は、永久接続さnる二本の光ファイバの突き
合わせ端部會その対向方向及び当該対向方向に対してそ
れぞn直角な二つの方向に相対移動し得る位置決め駆動
装置と、前記二本の光ファイバの突き合わせ端部全加熱
融着する融着装置と、前記二本の光ファイバの突き合わ
せ端部を透過照明する照明装置と、この照明装置の透過
照明光により前記二本の光ファイバ、の突き合わせ端部
を前記二つの方向から観察する顕微鏡と、この顕微鏡に
よる観察画像に基づいて前記二つの方向に沿った前記二
本の光ファイバのコア部の位置ずれを検出する画像処理
、装置と、この画像処理装置からの検出信号に基づいて
前記二本の光7アイパのコア部が同軸となるように′前
記位置決め駆動装置の作動を制御する制御装置とからな
るものである。
The structure of the automatic optical fiber splicing device of the present invention that achieves this object is such that the butt ends of two optical fibers that are permanently connected are connected in opposite directions, and the two optical fibers are connected at right angles to the opposite directions. a positioning drive device capable of relative movement in a direction; a fusion device that fully heats and fuses the butt ends of the two optical fibers; an illumination device that transmits illumination of the butt ends of the two optical fibers; a microscope for observing the abutting ends of the two optical fibers from the two directions using transmitted illumination light from an illumination device; and a microscope for observing the butt ends of the two optical fibers from the two directions using transmitted illumination light from an illumination device; an image processing device for detecting a positional deviation of the core portion of the image processing device, and an operation of the positioning drive device so that the core portions of the two optical 7-eyepers are coaxial based on the detection signal from the image processing device. It consists of a control device that controls the

以下、本発明による光フアイバ自動接続装置の一実施例
について第1図〜第3図を参照しながら詳細に説明する
。本実施例による接続作業状態を表す第1図に示すよう
に、相互に対向する固定台11と可動台(位置決め駆動
装置)12とにはそ九ぞn光フアイバ13.14ffi
固定するための押え金具15が設けらnている。可動台
12の押え金具15は光ファイバ13.14の突き合わ
せ端部の対向方向及びこの対向方向に対してそnぞn直
角な二つの方向に摺動自在となっており、本実施例の制
御系統を表す第2図に示すように、前記二つの方向の移
動は可動台12内に組み込まnた二つの駆動モータ16
゜17の作動によって行なわn1前記対向方向の移動も
図示しない駆動54x作動によって行なわれるようにな
っている。この可動台12の押え金具15の駆動機構は
従来からのものをそのまま使用することができるし、固
定台11も可動台12と同様な構成としても良いが、要
するに二すnば良いのである。この固定台11と可動台
12との間には、光ファイバ13.14の突き合わせ端
部そ挾んで対向し且つここの部分を融着接続する一対の
放電電極(融着装置)18が設置され、更に光源19に
接続する一対のライトガイド20.21の投光端部がそ
れぞれ前記二つの方向を向くように位置決めされている
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an automatic optical fiber connection device according to the present invention will be described in detail below with reference to FIGS. 1 to 3. As shown in FIG. 1, which shows the connection work state according to this embodiment, there are nine optical fibers 13, 14 ffi between the fixed table 11 and the movable table (positioning drive device) 12 which face each other.
A presser metal fitting 15 for fixing is provided. The presser metal fitting 15 of the movable base 12 is slidable in two directions, one in which the butt ends of the optical fibers 13 and 14 face each other and two directions perpendicular to the opposite direction. As shown in FIG. 2, which represents the system, movement in the two directions is carried out by two drive motors 16 built into the movable table 12.
The movement in the opposite direction n1 is also carried out by the operation of the drive 54x (not shown). A conventional drive mechanism for the presser metal fitting 15 of the movable base 12 can be used as is, and the fixed base 11 may have the same structure as the movable base 12, but in short, two is sufficient. A pair of discharge electrodes (fusion splicing device) 18 are installed between the fixed base 11 and the movable base 12, facing each other across the butt ends of the optical fibers 13 and 14, and for fusion splicing these parts. Furthermore, the light emitting ends of a pair of light guides 20, 21 connected to the light source 19 are positioned so as to face the two directions, respectively.

光ファイバ13.14の突き合わせ端部全挾んでこれら
一対のライトガイド20,21の投光端部と対向する一
対のlll微鏡22,23にはそnぞnテレビカメラ2
4が装着されており、従ってこnらテレビカメラ24は
ライ1ガイド20゜21からの透過照明光により前記二
つの方向から光ファイバ13.14の突き合わせ端部を
観察する状態となる。なお、本実施例で#i顕微鏡22
.23とテレビカメラ24とを一対設けたが、本発明の
他の一実施例における光ファイバの突き合わせ端部近傍
を表す第3図に示すように、ライトガイド20.21の
いずnか一方と対向する反射@25全傾けて設置し、一
方の顕微鏡22が光ファイバ13.14の突き合わせ端
部を異なる二方向から観察するようにもできる。テレビ
カメラ24からの出力は画像処理装置26に入力される
が、この画像処理装置26は二本の光ファイバ13.1
4の前記二つの方向に沿ったコア部の位置すftt−電
気的に検出して演算するものであり、光ファイバ13.
14のコア部とクラッド部とには屈折率差があるため、
透過照明光(′:よる画像にはそnらの境界部分圧明暗
の差が表れることを利用しており、この状態は本実施例
マ設けたモニタテレビジョン27で観察することができ
る。具体的には図示しないテレビ受像器上で垂直なサン
プリングライン全設定し、このサンプリングラインに沿
って走査線の輝度分布全測定してコア部とクラッド部と
の境界を検出し、この境界の中央をコア部の中心位置と
している。なお、サンプリングラインは光ファイバ13
.14の突き合わせ端面からそnぞれ100〜300マ
イクロメートルの位置に設定さnている。画像処理装置
26には前述した駆動モータ16,17の作動を制御す
る制御装置28が接続しており、画像処理装置26から
の信号に基づいて光ファイバ13.14のコア部の中心
が同軸となるように働くが、実際には画像処理装置26
の検出信号が零となるように機能する差動回路である。
A television camera 2 is mounted on a pair of microscopic mirrors 22 and 23 which are placed between the butt ends of the optical fibers 13 and 14 and are opposed to the light emitting ends of the pair of light guides 20 and 21.
4 is attached, so that the television camera 24 is now in a condition to observe the abutting ends of the optical fibers 13 and 14 from the two directions using the transmitted illumination light from the lie 1 guides 20 and 21. In this example, #i microscope 22
.. A pair of light guides 20 and 23 and a television camera 24 are provided, but as shown in FIG. The opposing reflections @ 25 can also be installed at an angle so that one of the microscopes 22 observes the abutting ends of the optical fibers 13, 14 from two different directions. The output from the television camera 24 is input to an image processing device 26, which is connected to two optical fibers 13.1.
The position of the core portion along the two directions of the optical fiber 13.4 is electrically detected and calculated.
Since there is a refractive index difference between the core part and the cladding part of 14,
The image produced by transmitted illumination light (') takes advantage of the fact that differences in the brightness and darkness of the boundary parts appear, and this state can be observed on the monitor television 27 provided in this embodiment. Specifically, all vertical sampling lines are set on a television receiver (not shown), the entire brightness distribution of the scanning line is measured along these sampling lines, the boundary between the core part and the cladding part is detected, and the center of this boundary is detected. The sampling line is located at the center of the core part.The sampling line is the optical fiber 13.
.. 14 are set at positions of 100 to 300 micrometers from the abutting end faces of each. A control device 28 that controls the operation of the drive motors 16 and 17 described above is connected to the image processing device 26, and based on a signal from the image processing device 26, the centers of the core portions of the optical fibers 13 and 14 are aligned coaxially. However, in reality, the image processing device 26
This is a differential circuit that functions so that the detection signal of

従って、押え金具15により二本の光ファイバ13.1
4’にそれぞれ固定台11及び可動台12上に固定し、
こ几らの突き合わせ端部が相互に近接するように駆動源
を操作したのち、自動運転を開始する。一方の顕微鏡2
3全介してテレビカメラ24で観察さnfc画像から、
この観察方向に対して垂@な平面内での光ファイバ13
.14のコア部の位置ずれが画像処理装置26によって
検出さn1制御装置28はこの値が零となるように一方
の駆動モータ16金作動する。同様に他方の顕微鏡22
を介してテレビカメラ24で観察さnた画像から、この
観察方向に対して垂直な平面内での光ファイバ13゜1
4のコア部の位置ずれが画像処理装置26によって検出
され、制御装置28はこの値が零となるように他方の駆
動モータ17vi−作動する。
Therefore, the two optical fibers 13.1 are
4' on a fixed base 11 and a movable base 12, respectively,
After operating the drive source so that the butt ends of the two units come close to each other, automatic operation is started. One microscope 2
3. From the NFC image observed by the TV camera 24,
Optical fiber 13 in a plane perpendicular to this observation direction
.. 14 is detected by the image processing device 26, and the n1 control device 28 operates one of the drive motors 16 so that this value becomes zero. Similarly, the other microscope 22
From the image observed by the television camera 24 through the optical fiber 13°1 in a plane perpendicular to this observation direction,
4 is detected by the image processing device 26, and the control device 28 operates the other drive motor 17vi so that this value becomes zero.

実験によると、拡大率が200倍の顕微鏡22゜23を
用いると共に走査線の数が約千本のテレビカメラ24に
用いて画像処理を行なった所、コア部の中心を1マイク
ロメートル以下の検出精度で位置決めすることが可能で
あり、平均で0.5マイクロメートル以下の心ず九に抑
えられることが判明した。この状態から可動台12の押
え金具15を固定台ll側へ一定量移動させると共に放
電電極18に通電し、光ファイバ13゜14の突き合わ
せ端部を放電加熱により融着接続するが、最終的に接続
損失を約Q、ldBの低い値にすることができる。なお
、船舶上での作業の場合には装置全体を防′振台上に設
置すると共に各部の寸法形状等を共振が発生しないよう
に設定すると良い。
According to experiments, when image processing was performed using a microscope 22° 23 with a magnification of 200 times and a television camera 24 with approximately 1,000 scanning lines, the center of the core could be detected with an accuracy of less than 1 micrometer. It has been found that positioning can be kept to an average of 0.5 micrometers or less. From this state, the presser metal fitting 15 of the movable base 12 is moved a certain amount toward the fixed base 11, and the discharge electrode 18 is energized, and the butt ends of the optical fibers 13 and 14 are fused and spliced by discharge heating. The connection loss can be reduced to a low value of approximately Q, 1 dB. When working on a ship, it is preferable to install the entire apparatus on a vibration-proof table and to set the dimensions and shapes of each part so that resonance does not occur.

このように本発明の光フアイバ自動接続装置によると、
光ファイバの突き合わせ端部を透過照明によって二方向
から観察し、コア部の輪郭から画像処理によって二本の
光ファイバのコア部の中心が一致するようにこnらを自
動的に相対移動させるようにしたので、単一モードファ
イバのようなコア部の径が小さいものでも極めて高精度
にて軸合わせを行うことができ、作業時間の短縮化及び
自動化と相俟って船舶上での光ケーブルの接続を高信頼
化させることが可能である。
As described above, according to the optical fiber automatic connection device of the present invention,
The butted ends of the optical fibers are observed from two directions using transmitted illumination, and image processing is performed based on the contours of the core parts to automatically move the two optical fibers relative to each other so that the centers of the core parts coincide. This makes it possible to perform axis alignment with extremely high precision even for single-mode fibers with small core diameters, which, together with shortening work time and automation, makes it easier to use optical cables on ships. It is possible to make the connection highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光フアイバ自動接続装置の一実施
例の概略構造を表す作業概念図、第2図はその制御原理
を表すブロック図、第3図は本発明の他の一実施例の一
部を表す配置図であり、図中の符号で 11は固定台、 12は可動台、 13.14は光ファイバ、 15は押え金具、 16.17F:l:駆動モータ、 18は放電電極、 19は光源、 20.21はライトガイド、 22.23は顕微鏡、 24はテレビカメラ、 25は反射鏡、 26は画像処理装置、 28は制御装置である。 特許出願人 日本電信電話公社 代   理   人 弁理士光石士部 (他1名) 第1図 4 第2図 第3図
FIG. 1 is a working conceptual diagram showing a schematic structure of an embodiment of an automatic optical fiber connection device according to the present invention, FIG. 2 is a block diagram showing its control principle, and FIG. This is a layout diagram showing a part of the structure, and the symbols in the figure are: 11 is a fixed base, 12 is a movable base, 13.14 is an optical fiber, 15 is a presser metal fitting, 16.17F:l: drive motor, 18 is a discharge electrode, 19 is a light source, 20.21 is a light guide, 22.23 is a microscope, 24 is a television camera, 25 is a reflector, 26 is an image processing device, and 28 is a control device. Patent applicant Nippon Telegraph and Telephone Public Corporation representative Patent attorney Shibu Mitsuishi (and 1 other person) Figure 1 4 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 永久接続される二本の光ファイバの突き合わせ端部をそ
の対向方向及び当該対向方向に対してそれぞn直角な二
つの方向に相対移動し得る位置決め駆動装置と、前記二
本の光7アイパの突き合わせ端部を加熱融着する融着装
置と、前記二本の光ファイバの突き合わせ端部全透過照
明する照明装置と、この照明装置の透過照明光により前
記二本の光ファイバの突き合わせ端部を前記二つの方向
から観察する顕微鏡と、この顕微鏡による観察画像に基
づいて前記二つの方向に沿った前記二本の光ファイバの
コア部の位置ずれ全検出する画像処理装置と、この画像
処理装置からの検出信号に基づいて前記二本の光ファイ
バのコア部が′同軸となるように前記位置決め駆動装置
の作動全制御する制御装置とからなる光フアイバ自動接
続装置。
a positioning drive device capable of relatively moving the abutted ends of two optical fibers to be permanently connected in two directions, one in an opposing direction and one perpendicular to the opposing direction; a fusion device that heats and fuses the butt ends of the two optical fibers; an illumination device that completely illuminates the butt ends of the two optical fibers; a microscope for observing from the two directions; an image processing device for detecting all positional deviations of the core portions of the two optical fibers along the two directions based on images observed by the microscope; and from the image processing device. an optical fiber automatic connecting device comprising: a control device that completely controls the operation of the positioning drive device so that the core portions of the two optical fibers are coaxial based on the detection signal of the optical fiber.
JP996083A 1983-01-26 1983-01-26 Automatic connecting device for optical fiber Granted JPS59136708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP996083A JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP996083A JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Publications (2)

Publication Number Publication Date
JPS59136708A true JPS59136708A (en) 1984-08-06
JPH0352604B2 JPH0352604B2 (en) 1991-08-12

Family

ID=11734503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP996083A Granted JPS59136708A (en) 1983-01-26 1983-01-26 Automatic connecting device for optical fiber

Country Status (1)

Country Link
JP (1) JPS59136708A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber
EP0216307A2 (en) * 1985-09-26 1987-04-01 Siemens Aktiengesellschaft Mechanical fixture for positioning two optical-fibre ends
JPS62131209A (en) * 1985-12-03 1987-06-13 Sumitomo Electric Ind Ltd Optical fiber automatic connection method
JPS63222206A (en) * 1987-03-11 1988-09-16 Sumitomo Electric Ind Ltd Image processing device for measuring optical fiber structure
WO1996041220A1 (en) * 1995-06-07 1996-12-19 Siemens Aktiengesellschaft Splicing device for welding optical fibres
JP2008003170A (en) * 2006-06-20 2008-01-10 Fujikura Ltd Method and apparatus for fusion splicing optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447671A (en) * 1977-09-21 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Monitoring device for axial alignment of optical fibers
JPS54126555A (en) * 1978-03-24 1979-10-01 Nec Corp Automatic coupler of optical fibers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219707A (en) * 1983-05-27 1984-12-11 Fujikura Ltd Method for aligning core of single mode optical fiber
JPH0234002B2 (en) * 1983-05-27 1990-08-01 Fujikura Ltd
EP0216307A2 (en) * 1985-09-26 1987-04-01 Siemens Aktiengesellschaft Mechanical fixture for positioning two optical-fibre ends
EP0216307A3 (en) * 1985-09-26 1989-08-02 Siemens Aktiengesellschaft Mechanical fixture for positioning two optical-fibre ends
JPS62131209A (en) * 1985-12-03 1987-06-13 Sumitomo Electric Ind Ltd Optical fiber automatic connection method
JPS63222206A (en) * 1987-03-11 1988-09-16 Sumitomo Electric Ind Ltd Image processing device for measuring optical fiber structure
JPH0746043B2 (en) * 1987-03-11 1995-05-17 住友電気工業株式会社 Image processing device for optical fiber structure measurement
WO1996041220A1 (en) * 1995-06-07 1996-12-19 Siemens Aktiengesellschaft Splicing device for welding optical fibres
US6120192A (en) * 1995-06-07 2000-09-19 Siemens Aktiengesellschaft Splicing means for welding light waveguides
JP2008003170A (en) * 2006-06-20 2008-01-10 Fujikura Ltd Method and apparatus for fusion splicing optical fiber
JP4610524B2 (en) * 2006-06-20 2011-01-12 株式会社フジクラ Optical fiber fusion splicing method and apparatus

Also Published As

Publication number Publication date
JPH0352604B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
US7255498B2 (en) Low profile system for joining optical fiber waveguides
US4854701A (en) Arrangement for inspecting light waveguide end faces
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
US7077579B2 (en) Low profile splicing stage for optical fiber waveguides
JPS59136708A (en) Automatic connecting device for optical fiber
JPS59219707A (en) Method for aligning core of single mode optical fiber
JPS6215843B2 (en)
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
JPH0534646B2 (en)
JPS6046509A (en) Method and device for detecting and aligning core of optical fiber
US4317631A (en) Method and apparatus for measuring attenuation in light waveguides for communications transmission purposes
JP2823887B2 (en) Method and apparatus for manufacturing optical unit
JPH11167039A (en) Alignment method for optical fiber
KR102064838B1 (en) Fusion splicer for optical fiber
JP2888730B2 (en) Optical fiber observation method and observation apparatus
JPH0625809B2 (en) Optical fiber core observation device
JPH0233107A (en) Welding connection device for optical fiber
JP3273489B2 (en) Core alignment method for optical fiber
JPS6095506A (en) Aligning device for optical fiber axis
JPH0361926B2 (en)
Uenoya et al. A new field-use single-mode fiber splicer using a direct core observation technique and its application
KR20240074205A (en) Hybrid fusion splicer for optical fiber
JPH0943447A (en) Fusion splicing device for optical fibers
JPS6161108A (en) Welding connection device of optical fiber
JP2938317B2 (en) How to align optical fiber with V-groove