[go: up one dir, main page]

JPS59136089A - Normal and reverse switching method of digital thyristor leonard - Google Patents

Normal and reverse switching method of digital thyristor leonard

Info

Publication number
JPS59136089A
JPS59136089A JP58009859A JP985983A JPS59136089A JP S59136089 A JPS59136089 A JP S59136089A JP 58009859 A JP58009859 A JP 58009859A JP 985983 A JP985983 A JP 985983A JP S59136089 A JPS59136089 A JP S59136089A
Authority
JP
Japan
Prior art keywords
motor
thyristor
converter
reverse
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009859A
Other languages
Japanese (ja)
Inventor
Makoto Tachikawa
真 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58009859A priority Critical patent/JPS59136089A/en
Publication of JPS59136089A publication Critical patent/JPS59136089A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/293Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To switch positive/reverse side thyristor converters by detecting the interruption time of the armature current of a motor by providing a current continuation/interruption detector and applying a counterelectromotive force via a microprocessor, thereby obtaining an accurate counter electromotive force value. CONSTITUTION:Positive/reverse side thyristor converters 2, 3 are connected to a DC motor 5, an armature current is applied from a shunt 4 to an A/D converter 7, and a voltage is applied to an A/D conveter 11, inputted to a bus 9, a normal/reverse switch 17 is controlled by a microprocessor 13, thereby switching the converters 2, 3. At this time a current continuation/interruption detector 20 is provided in the shunt 4 to detect the interruption of the armature current, the terminal voltage, i.e., the counterelectromotive voltage of the motor 5 is applied at a timing that the current is zero, and the switch 17 is controlled by the counterelectromotive voltage value. Accordingly, expected firing angle can be accurately calculated by the accurate counterelectromotive voltage value, thereby preventing the excess armature current.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロプロセッサを用いた全デジタル式サイ
リスタレオナード制御装置に係り、特に、作動側のサイ
リスタ変換器から待期側のサイリスク変換器に切替る方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an all-digital thyristor Leonard control device using a microprocessor, and in particular to a thyristor Leonard control device on the active side to a thyristor converter on the standby side. Regarding the method.

〔従来技術〕[Prior art]

第1図は正側サイリスタ変換器Slが動作して直流電動
機Mを正回転している状態であり、この状態がある時間
経過すると、電機子電流■8−0の状態を経て、第2図
に示した逆側サイリスタ変換器S2が作動して逆変換の
状態となる。第3図は上記2つの状態の動作タイムチャ
ートでアシ、初め正側電流(上記電機子電流に同じ)■
2(正)が連続状態で流れている。次に正側サイリスク
変換器の出力電圧VTH(正)を減少せしめ、工、(正
)を断続状態とする。完全に1.(正)が零となつてか
ら、正側のサイリスタの点弧パルスを停止してこのサイ
リスク変換器の出力を停止させる。次に、逆側のサイリ
スクへ点弧パルスを与えて逆側のサイリスタ変換器の出
力を生かす。この時の点弧位相を決定するにめたシ、直
流電動機の逆起電圧E M Fが必反となる。とれは、
第3図の逆変換側サイリスタの動作初期状態に於いて、
初めVTR(逆)を逆起電圧EMFより高い値力・ら出
発させることによシ、動作初期時に過大な1.(逆)が
直流電動機Mに流れるのを防止して、直流電動機及びサ
イリスク変換器の劣化を防止するだめである。
Figure 1 shows a state in which the positive side thyristor converter Sl operates to rotate the DC motor M in the forward direction, and after a certain period of time in this state, the armature current changes to a state of 8-0, and as shown in Figure 2. The reverse thyristor converter S2 shown in FIG. 1 operates to enter a state of reverse conversion. Figure 3 shows the operation time chart for the above two states.
2 (positive) is flowing continuously. Next, the output voltage VTH (positive) of the positive side SiRisk converter is decreased, and the output voltage VTH (positive) is brought into an intermittent state. Completely 1. After (positive) becomes zero, the firing pulse of the positive thyristor is stopped to stop the output of this thyristor converter. Next, a firing pulse is applied to the opposite thyristor converter to utilize the output of the opposite thyristor converter. In order to determine the ignition phase at this time, the back electromotive force EMF of the DC motor is required. Tore is
In the initial operation state of the inverse conversion side thyristor in Fig. 3,
By starting the VTR (reverse) with a value higher than the back electromotive force EMF, an excessive 1. This is to prevent the (reverse) current from flowing to the DC motor M, thereby preventing deterioration of the DC motor and the Cyrisk converter.

第4図は上記直流電動機の逆起電圧EMFを検出する従
来の方法を用いたマイクロプロセッサによる全デジタル
式ザイリスクレオナード制御装置の構成を示したもので
ある。三相交流電源1が正側三相全波サイリスタ変換器
2と逆側三相全波サイリスタ変換器3の入力側に接続さ
れている。これら正、逆側三相全波サイリスク変換器2
,3の出力側はシャント抵抗4を介して直流電動機5に
接続されている。シャント抵抗4の両側の電圧はフィル
タ6を介してA/D変換器7に入力され、このA/D変
換器7は直流電動機5の電流値8を共通バス9に出力す
る。直流電動機5の両端の電圧はフィルタ10を介して
A/D変換器11に人力され、このA/D変換器11は
共通バス9に直流電動機の端子電圧値12を出力する。
FIG. 4 shows the configuration of a microprocessor-based all-digital Zairis Leonard control system using the conventional method for detecting the back electromotive force EMF of the DC motor. A three-phase AC power supply 1 is connected to the input sides of a positive three-phase full-wave thyristor converter 2 and a reverse three-phase full-wave thyristor converter 3. These forward and reverse three-phase full-wave Cyrisk converters 2
, 3 are connected to a DC motor 5 via a shunt resistor 4. The voltage on both sides of the shunt resistor 4 is inputted to an A/D converter 7 via a filter 6, and this A/D converter 7 outputs a current value 8 of the DC motor 5 to a common bus 9. The voltage across the DC motor 5 is input to the A/D converter 11 via the filter 10, and the A/D converter 11 outputs the terminal voltage value 12 of the DC motor to the common bus 9.

共通バス9にはマイクロプロセッサ13と、このマイク
ロプロセッサ13の実行プログラムを格納しているメモ
リ14が接続されている。マイクロプロセッサ14から
の点弧角指令15は共通バス9を介してゲートパルス発
生器16に入力され、このゲートパルス発生器16の出
力信号は正逆切替器17を介して正、逆側三相全波サイ
リスタ変換器2,3のゲートのどちらかに入力される。
A microprocessor 13 and a memory 14 storing an execution program for the microprocessor 13 are connected to the common bus 9. The firing angle command 15 from the microprocessor 14 is input to the gate pulse generator 16 via the common bus 9, and the output signal of the gate pulse generator 16 is switched to the forward and reverse three-phase via the forward/reverse switch 17. The signal is input to either the gate of the full-wave thyristor converter 2 or 3.

ゲートパルス発生器16は、正側三相全波サイリスク変
換器2と逆側三相全波サイリスク変換器3のゲートパル
スを作成する。又、正逆切替器17はデジタル出力18
の指令に従い動作し、このデジタル出力18には共通バ
ス9を通してマイクロプロセッサ13からの正逆切替指
令19が入力される。
The gate pulse generator 16 generates gate pulses for the positive three-phase full-wave thyrisk converter 2 and the reverse three-phase full-wave thyrisk converter 3. In addition, the forward/reverse switch 17 has a digital output 18.
The forward/reverse switching command 19 from the microprocessor 13 is input to this digital output 18 through the common bus 9.

ところで、上記正逆切替器17の動作、即ちデジタル出
力18の動作はマイクロプロセッサ13の演算結果に基
づくものである。この演算では、VTR(逆)>EMF
      ・・・・・・・・・・・・(1)VTH(
逆)=1.35 EACCO8α  −(2)の両式を
満足する必要がおる。但し、EMFは直流電動機5の逆
起電圧(ボルト)、EAcは交流入力実効電圧(ボルト
)、αは制御遅れ角(度)をそれぞれ示している。
Incidentally, the operation of the forward/reverse switch 17, that is, the operation of the digital output 18, is based on the calculation result of the microprocessor 13. In this calculation, VTR (reverse) > EMF
・・・・・・・・・・・・(1) VTH(
Reverse) = 1.35 It is necessary to satisfy both equations of EACCO8α - (2). However, EMF represents the back electromotive voltage (volts) of the DC motor 5, EAc represents the AC input effective voltage (volts), and α represents the control delay angle (degrees).

(1)式の条件が満足されず、仮にVTH(逆)<EM
Fとなってしまうと、直流電動機5の電流1.(逆)は
過大な値となってしまう。又、Vtu> EMFとなる
と、サイリスタ変換器を正から逆に切替える時間が長く
なってしまう等の不都合が生じる。
If the condition of equation (1) is not satisfied and VTH (inverse) < EM
F, the current of the DC motor 5 becomes 1. (The opposite) results in an excessive value. Further, when Vtu>EMF, problems arise such as the time required to switch the thyristor converter from positive to reverse.

第2図の従来技術におけるデジタルサイリスタレオナー
ドの正逆切替方法では、EMFの検出を行うにあたシ、
フィルタ10とA/D変換器11を用いてマイクロプロ
セッサ13に入力する方式をとっている。しかし、この
ような従来の方式では、第5図に示す如く直流電動機5
の電機子電流工、が連続している時にはEMFとほぼ等
しい電圧を検出することができるが、第6図に示すよう
に、電機子電流■1が断続するような場合には、実際よ
シ高めのEMFを検出してしまう特性がある。又、一般
に、上記従来のEMF検出方式では、パワーが三相交流
電源1から直流電動機5へ流れる順変換時には普通真値
よシも篇めにEMFを検出し、パワーが直流電動機5か
ら三相交流電源1に流れる逆変換時にはEMFを低めに
検出する傾向がある。従って、従来のEMF検出方式で
は何れにしても真の直流電動機5の逆起電圧EMFを検
出することができない為、待期側変換器の待期電圧を正
確に算出することができず、上述した不都合を生じる欠
点があった。
In the prior art forward/reverse switching method of digital thyristor Leonard shown in FIG. 2, when detecting EMF,
A method is adopted in which the data is input to the microprocessor 13 using a filter 10 and an A/D converter 11. However, in such a conventional system, as shown in FIG.
When the armature current is continuous, it is possible to detect a voltage almost equal to the EMF, but as shown in Fig. It has the characteristic of detecting high EMF. Additionally, in general, in the conventional EMF detection method described above, during forward conversion when power flows from the three-phase AC power source 1 to the DC motor 5, the EMF is normally detected even when the true value is passed; During reverse conversion flowing through the AC power supply 1, there is a tendency for the EMF to be detected at a low level. Therefore, in any case, the conventional EMF detection method cannot detect the true back electromotive force EMF of the DC motor 5, so the standby voltage of the standby side converter cannot be accurately calculated, and as described above. There was a drawback that caused some inconvenience.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を解消し、正逆切替時間を
短縮し、且つ過大な電機子電流を流さないデジタルサイ
リスタレオナードの正逆切替方法を提供することにある
An object of the present invention is to provide a forward/reverse switching method for a digital thyristor Leonard that eliminates the above-mentioned drawbacks, shortens the forward/reverse switching time, and does not cause excessive armature current to flow.

〔発明の概要〕[Summary of the invention]

本発明は、マイクロプロセッサを用いて正逆サイリスク
変換器を無循環電流制御で切替えるサイリスクレオナー
ド制御装置に於いて、直流電動機の逆起電圧を、前記サ
イリスタ変換器の出力電流(又は、直流電動機の電機子
電流)が零であるタイミングで取込み、この逆起電圧値
を用いて時期側サイリスタ変換器の正確な切替初期点弧
角を決定することにより、上記目的を達成する。
The present invention provides a thyristor Leonard control device that uses a microprocessor to switch a forward and reverse thyristor converter by non-circulating current control, in which the back electromotive voltage of a DC motor is converted to the output current of the thyristor converter (or The above object is achieved by capturing the back electromotive voltage value at the timing when the armature current (armature current) is zero, and using this back electromotive force value to determine an accurate initial switching firing angle of the timing side thyristor converter.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を従来例と同部品は同符号を用い
て図面に従って説明する。第7図は本発明のデジタルサ
イリスタレオナードの正逆切替方法を適用したデジタル
式サイリスタレオナード制御装置の一実施例を示す構成
図である。三相交流電源1は正、逆側三相全波サイリス
タ変換器2゜3の入力側に接続され、これら正、逆側三
相全波サイリスタ変換器2,3の出力側はシャント抵抗
4を介して直流電動機5に接続されている。又、。
An embodiment of the present invention will be described below with reference to the drawings, using the same reference numerals for the same parts as in the conventional example. FIG. 7 is a block diagram showing an embodiment of a digital thyristor Leonard control device to which the digital thyristor Leonard forward/reverse switching method of the present invention is applied. A three-phase AC power supply 1 is connected to the input sides of positive and reverse three-phase full-wave thyristor converters 2 and 3, and a shunt resistor 4 is connected to the output sides of these positive and reverse three-phase full-wave thyristor converters 2 and 3. It is connected to the DC motor 5 via the DC motor 5. or,.

正、逆側三相全波サイリスタ変換器2,3のゲートは正
逆切替器17を介してゲートパルス発生器16に接続さ
れ、正逆切換器17にはデジタル出力18の出力信号が
入力されている。共通バス9・にはマイクロプロセッサ
13、メモリ14が接続され、マイクロプロセッサ13
の点弧角指令15、正逆切替指令19が共通バス9を通
ってゲートパルス発生器16、正逆切替器17にそれぞ
れ入力されている。
The gates of the three-phase full-wave thyristor converters 2 and 3 on the forward and reverse sides are connected to the gate pulse generator 16 via a forward/reverse switch 17, and the output signal of the digital output 18 is input to the forward/reverse switch 17. ing. A microprocessor 13 and a memory 14 are connected to the common bus 9.
A firing angle command 15 and a forward/reverse switching command 19 are input to a gate pulse generator 16 and a forward/reverse switch 17 through a common bus 9, respectively.

直流電動機5の両端の電圧は直接A/D変換器11に入
力され、このA/D変換器11は直流電動機端子電圧値
12を共通バス9に出力する。7ヤント抵抗4の両端の
電圧は電流連断検出装置20に入力され、ここで断続信
号21となってデジタル人力22に入力され、そのデジ
タル人力22の出力側は共通バス9に接続されている。
The voltage across the DC motor 5 is directly input to an A/D converter 11, which outputs a DC motor terminal voltage value 12 to the common bus 9. The voltage across the 7 Yant resistor 4 is input to the current continuity detection device 20, where it becomes an intermittent signal 21 and is input to the digital human power 22, and the output side of the digital human power 22 is connected to the common bus 9. .

シャント抵抗4の両端の電圧値はフィルタ6を介してA
/])変換器7に入力され、とのA/D変換器7は直流
電動機5の電流値8を共通バス9に出力する。このよう
に本実施例のデジタル式サイリスタレオナード制御装置
は殆ど従来例のそれと同様の構成をとっているが、従来
例と異なる点は、直流′電動機5の電流(電機子電流と
同じ)■1の連断を検出する電流連断検出装置20が付
加され、又、A/D変換器11に直接直流電動機5の両
端の電圧が入力されているところにある。
The voltage value across the shunt resistor 4 is changed to A via the filter 6.
/]) is input to the converter 7, and the A/D converter 7 outputs the current value 8 of the DC motor 5 to the common bus 9. As described above, the digital thyristor Leonard control device of this embodiment has almost the same configuration as that of the conventional example, but the difference from the conventional example is that the DC current of the motor 5 (same as the armature current) 1 A current continuity/disconnection detection device 20 is added to detect continuity/disconnection of the DC motor 5, and the voltage across the DC motor 5 is directly input to the A/D converter 11.

次に本実施例の動作について説明する。本実施例の動作
を一訂で言ってしまえば、電機子電流■、の断続時にA
/Di換器11を通して直流電動機5の逆起電圧EMF
をマイクロプロセッサ12が取9込んで検出するところ
にある。第8図はその動作タイムチャートを示している
。即ち電機子電流(又は、正、逆側サイリスク変換器の
出力電流)1.19が断である時点を電流連断検出装置
20が検出し、このタイミングで直流電動機5の端子電
圧をA/D変換器11を通して増り込む動作を行う。尚
、電流連断検出装置20による■1°゛断”検出がハイ
レベルの時は、電動機5の端子電圧を検出するタイミン
グとなシ、その検出方法には以下に示す二つの方法があ
る。
Next, the operation of this embodiment will be explained. To summarize the operation of this embodiment, when the armature current
The back electromotive force EMF of the DC motor 5 is generated through the /Di converter 11.
is detected by the microprocessor 12. FIG. 8 shows the operation time chart. That is, the current connection/disconnection detection device 20 detects the point in time when the armature current (or the output current of the forward and reverse side risk converter) 1.19 is disconnected, and at this timing, the terminal voltage of the DC motor 5 is detected by the A/D. An increasing operation is performed through the converter 11. It should be noted that when the current continuity/disconnection detection device 20 detects ``1° disconnection'' at a high level, it is the timing to detect the terminal voltage of the motor 5.There are two methods of detection as shown below.

第9図(イ)はその一つの方法を示すフローチャートで
ある。これはステップ101で第7図のデジタル人力2
2の出力信号、即ち電流断信号が1か否かを見て、1な
らばステップ102で直流電動機5の逆起電圧EMFを
入力する方法である。
FIG. 9(a) is a flowchart showing one method. This is step 101 and digital human power 2 in Figure 7
In this method, it is checked whether the output signal No. 2, that is, the current interruption signal, is 1 or not, and if it is 1, the back electromotive force EMF of the DC motor 5 is inputted in step 102.

第9図(B)は電機子電流■、が断した時に、割り込み
が発生し、この時ステップ101で逆起電圧EMFを入
力する方式である。第7図の電流連断検出装置20の出
力側からマイクロプロセッサ13へ連絡する点線で示し
た経路が上記割シ込みのラインでおる。
FIG. 9(B) shows a system in which an interrupt occurs when the armature current (2) is cut off, and at this time, the back electromotive force EMF is input in step 101. The path shown by the dotted line connecting the output side of the current continuity detection device 20 to the microprocessor 13 in FIG. 7 is the above-mentioned interrupt line.

本実施例によれば、電流連断検出装置20により直流電
動機の電機子電流工、の断時を検出し、この電流断時に
マイクロプロセッサ13が直流電動機5の端子電圧、即
ち逆起電圧EMFをA/D変換器11を通して取シ込む
ことにより、第8図に示す如く正確なEMFを検出する
ことができる。
According to this embodiment, the current disconnection detection device 20 detects disconnection of the armature current of the DC motor, and when the current disconnection occurs, the microprocessor 13 detects the terminal voltage of the DC motor 5, that is, the back electromotive force EMF. By inputting the signal through the A/D converter 11, accurate EMF can be detected as shown in FIG.

従って、マイクロプロセッサ13はこの正確なEMFを
用いて時期側サイリスタ変換器(例えば正から逆に切替
える時には逆側サイリスタ変換器3が時期側となる)の
時期点弧角を精度よく演算することができる為、正逆切
替時間を短縮することができるとともに、時期側サイリ
スタ変換器の動作開始時点に於いて過大な電機子電流■
、が流れることを防止して、装置の耐久性及び信頼性を
向上させることができる。
Therefore, the microprocessor 13 can accurately calculate the timing firing angle of the timing side thyristor converter (for example, when switching from positive to reverse, the reverse side thyristor converter 3 becomes the timing side) using this accurate EMF. This reduces forward/reverse switching time, and prevents excessive armature current from starting when the thyristor converter starts operating.
, can be prevented from flowing, thereby improving the durability and reliability of the device.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明のデジタルサイリスタレオナー
ドの正逆切替方法によれば、正、逆側サイリスタ変換器
の出力電流が零であるタイミングで直流電動機の逆起電
圧を取り込み、この逆起電圧を用いて時期側サイリスク
変換器の時期点弧角を演算することによシ、正逆切替時
間を短くし、且つ過大な電機子電流を流さない効果があ
る。
As described above, according to the forward/reverse switching method of the digital thyristor Leonard of the present invention, the back electromotive voltage of the DC motor is captured at the timing when the output current of the forward and reverse side thyristor converters is zero, and this back electromotive voltage is used. By calculating the timing firing angle of the timing side risk converter, it is possible to shorten the forward/reverse switching time and prevent excessive armature current from flowing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は正逆サイリスク変換器によシ直流電
動機を駆動する際の正逆切替方法について示した説明図
、第3図は第1図及び第2図の動作タイムチャート図、
第4図は従来の正逆切替方法を用いたデジタルサイリス
タレオナード制御装置の一例を示す構成図、第5図は第
4図に示しだ装置の電機子電流連続時の各部の動作波形
線図、第6図は第4図に示した装置の電機子電流断続時
の各部の動作波形線図、第7図は本発明のデジタルサイ
リスタレオナードの正逆切替方法を適用したデジタルサ
イリスタレオナード制御装置の一実施例を示した構成図
、第8図は第7図に示した本実施例の動作タイムチャー
ト図、第9図(5)及びIB)は、第7図に示した直流
電動機の逆起電圧を取り込む方式例を示したフローチャ
ート図である。 1・・・交流電源、2・・・正側三相全波サイリスク変
換器、3・・・逆側三相全波サイリスタ変換器、5・・
・直流電動機、11・・・A/D変換器、13・・・マ
イクロプロセッサ、16・・・ゲートパルス発生器、1
7・・・正逆切替器、20・・・電流連断検出器、21
・・・デジ1 区 第7 目 茅8 ロ 41− 茅  タ   Uす (A)
1 and 2 are explanatory diagrams showing a forward/reverse switching method when driving a DC motor using a forward/reverse sirisk converter, and FIG. 3 is an operation time chart diagram of FIGS. 1 and 2.
Fig. 4 is a configuration diagram showing an example of a digital thyristor Leonard control device using the conventional forward/reverse switching method, and Fig. 5 is an operating waveform diagram of each part of the device shown in Fig. 4 when the armature current is continuous. FIG. 6 is an operating waveform diagram of each part of the device shown in FIG. 4 when the armature current is intermittent, and FIG. 7 is an illustration of a digital thyristor Leonard control device to which the digital thyristor Leonard forward/reverse switching method of the present invention is applied. A configuration diagram showing the embodiment, FIG. 8 is an operation time chart of the embodiment shown in FIG. 7, and FIG. 9 (5) and IB) show the back electromotive force of the DC motor shown in FIG. 7. FIG. 3 is a flowchart illustrating an example of a method for capturing. 1... AC power supply, 2... Positive side three-phase full-wave thyristor converter, 3... Reverse-side three-phase full-wave thyristor converter, 5...
・DC motor, 11... A/D converter, 13... Microprocessor, 16... Gate pulse generator, 1
7... Forward/reverse switch, 20... Current connection detector, 21
... Digi 1 Ward 7 Mekaya 8 Ro41- Kayata Usu (A)

Claims (1)

【特許請求の範囲】 1、交流電源に接続される正、逆側サイリスタ変換器と
、これら正、逆側サイリスタ変換器に接続される直流電
動機とを有し、サイリスタ変換器の正、逆を切換えて、
直流電動機を制御するマイクロプロセッサを使用したデ
ジタルサイリスタレオナード制御装置において、作動中
のサイリスタ変換器の直流電動機への出力電流が零であ
る期間に、直流電動機の逆起電圧をマイクロプロセッサ
が取り込み、この逆起電圧を用いて待期側サイリスタ変
換器の切替初期点弧角を決定して、待期側サイリスタ変
換器を作動させることを特徴とするデジタルサイリスタ
レオナードの正逆切替方法。 2、サイリスク変換器の出力電流を取シ込んでこの電流
が断続する時点を検出する電流連断検出器の検出タイミ
ングにより、マイクロプロセッサが直流電動機の端子電
圧をA/D変換器を介して直接域シ込むことを特徴とす
る特許請求の範囲第1項記載のデジタルサイリスタレオ
ナードの正逆切替方法。
[Claims] 1. It has positive and reverse thyristor converters connected to an AC power source and a DC motor connected to these positive and reverse thyristor converters, and has a positive and reverse thyristor converter. Switch and
In a digital thyristor Leonard control device that uses a microprocessor to control a DC motor, the microprocessor captures the back electromotive force of the DC motor during the period when the output current of the operating thyristor converter to the DC motor is zero, and this A method for forward/reverse switching of a digital thyristor Leonard, characterized in that the switching initial firing angle of a standby side thyristor converter is determined using a back electromotive voltage, and the standby side thyristor converter is operated. 2. Based on the detection timing of the current continuity detector, which takes in the output current of the Cyrisk converter and detects when this current is intermittent, the microprocessor directly detects the terminal voltage of the DC motor via the A/D converter. 2. A forward/reverse switching method for a digital thyristor Leonard according to claim 1, characterized in that the forward/reverse switching method of a digital thyristor Leonard is carried out in the following manner.
JP58009859A 1983-01-26 1983-01-26 Normal and reverse switching method of digital thyristor leonard Pending JPS59136089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009859A JPS59136089A (en) 1983-01-26 1983-01-26 Normal and reverse switching method of digital thyristor leonard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009859A JPS59136089A (en) 1983-01-26 1983-01-26 Normal and reverse switching method of digital thyristor leonard

Publications (1)

Publication Number Publication Date
JPS59136089A true JPS59136089A (en) 1984-08-04

Family

ID=11731855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009859A Pending JPS59136089A (en) 1983-01-26 1983-01-26 Normal and reverse switching method of digital thyristor leonard

Country Status (1)

Country Link
JP (1) JPS59136089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128784A (en) * 1984-11-26 1986-06-16 Fuji Electric Co Ltd Controller for load rotating speed
CN110063015A (en) * 2016-11-10 2019-07-26 西门子股份公司 Start the method and permanent magnet synchronous motor of permanent magnet synchronous motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128784A (en) * 1984-11-26 1986-06-16 Fuji Electric Co Ltd Controller for load rotating speed
CN110063015A (en) * 2016-11-10 2019-07-26 西门子股份公司 Start the method and permanent magnet synchronous motor of permanent magnet synchronous motor
CN110063015B (en) * 2016-11-10 2022-07-12 西门子股份公司 Method for starting permanent magnet synchronous motor and permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
US4400657A (en) Triac failure detector
JP3864834B2 (en) PWM cycloconverter
JPS59136089A (en) Normal and reverse switching method of digital thyristor leonard
US6385066B1 (en) Method and system for detecting a zero current level in a line commutated converter
JPH1066386A (en) Inverter instantaneous power failure restart device
JP3824189B2 (en) PWM cycloconverter and driving method thereof
JP3011965B2 (en) Fault diagnosis device for pulse width modulation circuit
JP7102473B2 (en) Parallel operation power supply
JPS631369A (en) DC common converter switching control circuit
JP2607751Y2 (en) Switching circuit for reversible Leonard device
JPH0634624B2 (en) Instantaneous power failure restart device for voltage-type inverter
JPS61240870A (en) Failure detection device for motor control system
JPS6144789Y2 (en)
JPH07222434A (en) Phase control circuit
JPH069550Y2 (en) Judgment phase order switching circuit
JP3092826B2 (en) DC motor constant detection method
JPS6126307B2 (en)
JPS60156277A (en) Control method to prevent continuous commutation failure
JPS5951238B2 (en) Control device for anti-parallel connected thyristor converter
JPH0159834B2 (en)
JPH02141368A (en) Load drive method
JPH0332301B2 (en)
JPH0258871B2 (en)
JPS5942555B2 (en) How to control cycloconverter
JPH01157292A (en) Inverter equipment