JPS59136054A - Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same - Google Patents
Specifying method of axial position of rotational shaft of rotor and apparatus for executing the sameInfo
- Publication number
- JPS59136054A JPS59136054A JP58009035A JP903583A JPS59136054A JP S59136054 A JPS59136054 A JP S59136054A JP 58009035 A JP58009035 A JP 58009035A JP 903583 A JP903583 A JP 903583A JP S59136054 A JPS59136054 A JP S59136054A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- cylindrical cavity
- mold
- cavity
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、異方性円筒状磁石に回転軸を一体的に取付
けてなる回転電機用ロータを製造するに際し、該ロータ
回転軸の軸方向位置規制を行う方法およびこれを実施す
るだめの装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for regulating the axial position of a rotor rotating shaft when manufacturing a rotor for a rotating electric machine in which the rotating shaft is integrally attached to an anisotropic cylindrical magnet, and a method for regulating the axial position of the rotating shaft. The invention relates to a device for carrying out this process.
一般に回転電機用のロータ、例えば円筒状磁石に回転軸
を挿通固定してなる自転車発電機用のロータを製造する
には、Baフェライト磁石粉末またはSrフェライト磁
石粉末の如き等方性フエライ1〜の強磁性粉末に少量の
バインダーを添加し、約1〜2tz/c%の圧力でプレ
ス成形して中心に貫通孔を有する円筒状の成形体に得、
この成形体を1150℃〜1250’Cの高温で焼結し
、外周をセンターレス加工により研摩してロータ本体1
0を製造した後、第1図に示すように回転軸12をロー
タ本体10の中心貫通孔14に挿通し、熱硬化性接着剤
16を充填塗布し加熱硬化させ、次いで着磁ヨークによ
りN極、S極か交互になるよう多極着磁する工程を経て
いる。Generally, in order to manufacture a rotor for a rotating electric machine, for example a rotor for a bicycle generator in which a rotating shaft is inserted and fixed through a cylindrical magnet, isotropic ferrite 1 to 1 such as Ba ferrite magnet powder or Sr ferrite magnet powder is used. A small amount of binder is added to the ferromagnetic powder and press-molded at a pressure of about 1 to 2 tz/c% to obtain a cylindrical molded body having a through hole in the center,
This molded body is sintered at a high temperature of 1150°C to 1250'C, and the outer periphery is polished by centerless processing to form the rotor body 1.
0, the rotary shaft 12 is inserted into the center through hole 14 of the rotor main body 10 as shown in FIG. , S poles are alternately magnetized.
しかしながら、前述した従来技術に係る回転電機用ロー
タの製造方法は、多くの工程数を要すると共に、プレス
成形後の焼結時における熱影響により貫通孔14の内径
が変動するため、ロータ回転軸12の芯出し精度が低く
、芯振れが生じ易い難点がある。また、等方性フェライ
ト磁石粉末では、前記のように焼結後に着磁するが、粉
末粒子の配列は既に固定しているため、該粒子の磁化容
易軸を磁化方向に揃えて配向度を高めることはできす、
従って磁気特性の向上にも限界があった。However, the method for manufacturing a rotor for a rotating electric machine according to the prior art described above requires a large number of steps, and the inner diameter of the through hole 14 varies due to the thermal influence during sintering after press forming. The problem is that the centering accuracy is low and center runout is likely to occur. In addition, isotropic ferrite magnet powder is magnetized after sintering as described above, but since the arrangement of the powder particles is already fixed, the degree of orientation is increased by aligning the axis of easy magnetization of the particles with the magnetization direction. It is possible,
Therefore, there was a limit to the improvement in magnetic properties.
そこで本願の発明者は、複雑な製造工程を簡略化すると
共に回転軸の芯出し精度を向上させて芯振れをなくし、
併せて磁気特性を大幅に向上させた回転電機用ロータの
製造方法およびその装置を案出し、本願と同日付で別途
特許出願を行った。Therefore, the inventor of this application simplified the complicated manufacturing process and improved the centering accuracy of the rotating shaft to eliminate center runout.
In addition, we devised a method and device for manufacturing rotors for rotating electric machines with significantly improved magnetic properties, and filed a separate patent application on the same date as the present application.
前記特許出願に係る回転電機用ロータの製造方法は、金
型の円筒状キャビティ中に軸心を一致させてロータ回転
軸を臨ませ、前記円筒状キャビティの半径方向外側から
等分割された複数極の磁界を印加しつつ強磁性粉末と合
成樹脂との溶融混合物を該キャビティ中に射出し、次い
で前記混合物を冷却固化させることにより回転軸が挿通
固着された円筒状異方性磁石を成形することを特徴とす
るものである。The method for manufacturing a rotor for a rotating electric machine according to the above patent application includes a cylindrical cavity of a mold, in which a rotor rotation axis is aligned with the axis thereof, and a plurality of poles are equally divided from the outside in the radial direction of the cylindrical cavity. Injecting a molten mixture of ferromagnetic powder and synthetic resin into the cavity while applying a magnetic field of It is characterized by:
ところで、前記製造方法を使用して回転電機用ロータを
製造するに際しては、ロータ回転軸を金型の円筒状キャ
ビティ中に軸心を一致させてセットする必要がある。こ
のため第2図に示すように、ロータ回転軸12は円筒状
キャビティ18の底部中央に穿設した貫通孔20に挿通
されて正確な芯出しがなされるようになっているが、射
出成形後の金型からの脱型を容易にするため、該貫通孔
20の内径は回転軸外径よりも若干大きめに設定しであ
るので、回転軸12は貫通孔20中を軸方向に摺動偏倚
し易く、従ってキャビティ18中で回転軸12か所定位
置に常に臨むよう軸方向の位置規制をするのが困難であ
った。殊に射出成形型の金型分割面が垂直になる左右開
放タイプの金型では、回転軸12は貫通孔20に対し水
平に挿通されることになるので、軸底端部を当板22に
より規制するようにしても、金型の振動等により該回転
軸12の頂部方向にすれ易くなり、その有効な対応策が
要請されている。この場合、射出成形後のロータ脱型の
容易化を図り、かつ成形時におけるキャビティ中のエア
ー抜きを行うために、回転軸挿通用の貫通孔20は前述
した如く回転軸12に対し若干の環状細隙を有している
必要があると共に、軸方向に回転軸12かずれることな
く所定位置に規制されている必要がある、という背反し
た要請の何れをも同時に満足しなければならない。By the way, when manufacturing a rotor for a rotating electrical machine using the above-mentioned manufacturing method, it is necessary to set the rotor rotating shaft in a cylindrical cavity of a mold so that its axis coincides with each other. For this reason, as shown in FIG. 2, the rotor rotation shaft 12 is inserted into a through hole 20 bored in the center of the bottom of the cylindrical cavity 18 to ensure accurate centering. In order to facilitate demolding from the mold, the inner diameter of the through hole 20 is set to be slightly larger than the outer diameter of the rotating shaft, so the rotating shaft 12 slides in the through hole 20 in the axial direction. Therefore, it is difficult to control the axial position of the rotary shaft 12 so that it always faces a predetermined position in the cavity 18. In particular, in the case of a left-right open type mold in which the mold dividing plane of the injection mold is vertical, the rotary shaft 12 is inserted horizontally into the through hole 20, so the bottom end of the shaft is held by the contact plate 22. Even if it is regulated, the rotary shaft 12 tends to slide toward the top due to vibrations of the mold, and an effective countermeasure is required. In this case, in order to facilitate demolding of the rotor after injection molding and to vent air from the cavity during molding, the through hole 20 for inserting the rotating shaft has a slight annular shape relative to the rotating shaft 12 as described above. It is necessary to simultaneously satisfy both contradictory requirements: it is necessary to have a narrow gap, and it is also necessary to be regulated at a predetermined position without shifting the rotating shaft 12 in the axial direction.
本発明は、このような要請に応えるため新たに提案され
たものであって、強磁性粉末と合成樹脂との溶融混合物
を射出成形する際に、円筒状キャビティ中に臨んでいる
回転軸を軸方向へ規制して常に定位置にセントし、しか
もキャビティへの回転軸の挿通および金型からのロータ
脱型に支障を来たすことのない回転軸の軸方向規制方法
を提供することを目的とする。The present invention has been newly proposed in response to such demands, and when injection molding a molten mixture of ferromagnetic powder and synthetic resin, a rotating shaft facing into a cylindrical cavity is An object of the present invention is to provide a method for regulating the axial direction of a rotary shaft so that the rotary shaft is always centered in a fixed position, and which does not impede the insertion of the rotary shaft into a cavity or the removal of the rotor from a mold. .
この目的を達成するため本発明に係るロータ回転軸の軸
方向位置規制方法は、金型の円筒状キャビティ中に軸心
を一致させてロータ回転軸を臨ませ、前記円筒状キャビ
ティの半径方向外側から等分割された複数極の磁界を印
加しつつ強磁性粉末と合成樹脂との溶融混合物を該キャ
ビティ中に射出して回転電機用ロータを製造するに際し
、円筒状キャビティの底部中央に挿通支持さhた前記ロ
ータ回転軸の頂部に向けて垂直方向から前記溶融混合物
詮射出し、当該溶融混合物射出時の流体圧によりロータ
回転軸を軸方向に押圧して円筒状キャビティ中の所定位
置まで移動させることを特徴とする。In order to achieve this object, the method for regulating the axial position of the rotor rotating shaft according to the present invention is such that the rotor rotating shaft is aligned in the cylindrical cavity of the mold and faces the radially outer side of the cylindrical cavity. When manufacturing a rotor for a rotating electric machine by injecting a molten mixture of ferromagnetic powder and synthetic resin into the cavity while applying a magnetic field of multiple poles equally divided from The molten mixture is vertically injected toward the top of the rotor rotation shaft, and the fluid pressure at the time of injection of the molten mixture presses the rotor rotation shaft in the axial direction to move it to a predetermined position in the cylindrical cavity. It is characterized by
また前記方法を実施するために好適に使用される本願の
別の発明に係るロータ回転軸の軸方向位置規制装置は、
円筒状キャビティを画成する非磁性体からなる金型と、
着磁コイルに接続しかつ前記円筒状キャビティの半径方
向外周に等中心角で臨む強磁性体からなる複数極の着磁
ヨークと、円筒状キャビティの底部中央に穿設したロー
タ回転軸挿通用の貫通孔と、円筒状キャビティ内に臨ん
で開口するピンポイン1−ケーl〜と、円筒状キャビテ
ィの開Iコ部を開閉自在に閉塞する非磁性体からなる金
型とからなり、円筒状キャビティ開口部に臨む開閉自在
な前記非磁性体金型の中央部に前記ピンポイントゲート
を前記貫通孔と対向的に穿設したことを特徴とする。Further, an axial position regulating device for a rotor rotating shaft according to another invention of the present application, which is suitably used to carry out the method, includes:
a mold made of a non-magnetic material defining a cylindrical cavity;
A multi-pole magnetizing yoke made of a ferromagnetic material connected to the magnetizing coil and facing the radial outer circumference of the cylindrical cavity at equal central angles; It consists of a through hole, a pin point 1-key that opens facing into the cylindrical cavity, and a mold made of a non-magnetic material that closes the opening part of the cylindrical cavity so that it can be opened and closed. The invention is characterized in that the pinpoint gate is bored in the center of the non-magnetic mold which can be freely opened and closed and faces the area, facing the through-hole.
次に、本発明に係るロータ回転軸の軸方向位置規制方法
およびこれを実施するための装置につき、好適な実施例
を挙げて添付図面を参照しながら以下詳細に説明する。Next, a method for regulating the axial position of a rotor rotating shaft according to the present invention and an apparatus for implementing the method will be described in detail below with reference to the accompanying drawings, citing preferred embodiments.
先ず、第3図に示すロータ回転軸の軸方向位置規制装置
(これは回転電機用ロータ製造装置そのものでもある)
の−実施例において、参照符号]8は金型中に形成され
る円筒状キャビティを示し、このキャビティ18は非磁
性体からなる固定側金型24により、底部26および円
筒状内周壁面が画成されている。また、第3図のA−A
線断面をなす第4図に示すように、キャビティ18の半
径方向外周には等中心角で複数極の強磁性体からなる着
磁ヨーク2Bが配設され、各着磁ヨーク28の先端が直
接キャビティ18内に臨んで、該キャビティ18の内周
壁面の一部を形成するようになっている。前記着磁ヨー
ク28は、4極以上の偶数個で構成され、S極およびN
極が交互になるよう所定の中心角で配設されるものであ
って、本実施例では4極構造となっている。また、着磁
ヨーク28は図示しない着磁コイルに接続され、この着
磁コイルを励起することにより前記円筒状キャビティ1
8中に強磁界が印加されることになる。First, the axial position regulating device for the rotor rotating shaft shown in Fig. 3 (this is also the rotor manufacturing device for rotating electric machines itself)
In this embodiment, reference numeral 8 indicates a cylindrical cavity formed in the mold, and this cavity 18 has a bottom portion 26 and a cylindrical inner circumferential wall surface defined by a fixed mold 24 made of a non-magnetic material. has been completed. Also, A-A in Figure 3
As shown in FIG. 4, which is a line cross section, magnetizing yokes 2B made of a ferromagnetic material and having multiple poles are arranged at equal central angles on the radial outer periphery of the cavity 18, and the tips of each magnetizing yokes 28 are directly connected to each other. It faces into the cavity 18 and forms a part of the inner peripheral wall surface of the cavity 18. The magnetizing yoke 28 is composed of an even number of 4 or more poles, and has an S pole and an N pole.
The poles are arranged alternately at a predetermined central angle, and in this embodiment, the poles are arranged in a four-pole structure. Further, the magnetizing yoke 28 is connected to a magnetizing coil (not shown), and by exciting the magnetizing coil, the cylindrical cavity 1 is
A strong magnetic field will be applied during the test.
前記円筒状キャビティ18の底部26を形成する固定金
型24には、その底部中央において、後述する如くロー
タ回転@30を挿通するための貫通孔32が、その軸線
をキャビティ18の中Iら1軸線と一致させて垂直に穿
設されている。この場合、貫通孔32の内径は、回転軸
30の外径しこ対し2/100乃至3/100程度の環
状細隙が形成されるよう予め寸法設定してあり、更に貫
通孔32の略中間から下方には大径の段付孔部34が一
体的し;形成しである。これは射出成形後にロータを脱
型するに際し、回転軸30か貫通孔32内壁に接触する
摩擦抵抗を軽減させるためである。また、前記中心貫通
孔32の周囲に隣接して複数の貫通孔36が穿設され(
第4図)、この貫通孔36にノックアウトピン38が昇
降自在に挿通され、キャビティ18中に突出可能となっ
ている。The fixed mold 24 forming the bottom part 26 of the cylindrical cavity 18 has a through hole 32 at the center of the bottom part for inserting the rotor rotation @ 30 as described later. It is perpendicularly drilled in line with the axis. In this case, the inner diameter of the through hole 32 is set in advance so that an annular gap of about 2/100 to 3/100 of the outer diameter of the rotating shaft 30 is formed, and further, the inner diameter of the through hole 32 is A large-diameter stepped hole portion 34 is integrally formed below. This is to reduce the frictional resistance that comes into contact with the rotating shaft 30 and the inner wall of the through hole 32 when the rotor is demolded after injection molding. Further, a plurality of through holes 36 are bored adjacent to the periphery of the central through hole 32 (
(FIG. 4), a knockout pin 38 is inserted into this through hole 36 so as to be able to move up and down, and can protrude into the cavity 18.
なお、中心貫通孔32の外部開放端には、当板22を着
脱自在に位置させ、この当板22しこより回転軸30の
キャビティ中での位置規制をさせるのが好ましい。It is preferable that the abutment plate 22 is removably positioned at the externally open end of the central through-hole 32, and that the position of the rotary shaft 30 in the cavity is regulated by the abutment plate 22.
また円筒状キャビティ18の開口部上方に番よ、該開口
部を開閉自在に閉塞する非磁性体からなる可動金型40
が昇降自在に配設されてb′Xる。この可動金型40が
キャビティ18の開口部に臨む部分には、キャビティ内
方に向けて若干突出する円錐台形の隆起部42が一体的
に形成され、この隆起部42の中心部に溶融混合物射出
用ピンポイントゲート44が垂直に穿設されてしする。Further, a movable mold 40 made of a non-magnetic material is placed above the opening of the cylindrical cavity 18 and can freely open and close the opening.
is arranged so that it can be raised and lowered freely. A truncated conical protuberance 42 that slightly protrudes inward of the cavity is integrally formed in the portion of the movable mold 40 facing the opening of the cavity 18, and the molten mixture is injected into the center of the protrusion 42. A pinpoint gate 44 is vertically drilled.
すなわちこのピンポイントゲート44は、前記ロータ回
転軸挿通用の貫通孔32に対し中心軸線を一致させて、
キャビティ18中の空間を介して対向的に配設されてい
るものである。That is, this pinpoint gate 44 has its central axis aligned with the through hole 32 for inserting the rotor rotation shaft,
They are arranged opposite to each other with a space in the cavity 18 interposed therebetween.
更に、可動金型40の上方には非磁性体からなる別の可
動金型46が昇降自在に配設され、前記可動金型40の
頂部および前記側の可動金型46の合わせ境界面には、
図示の如くランナ48が形成されると共に、このランナ
48は可動金型46に穿設したスプルー50およびノズ
ル口52に連通接続している。なお、各金型24,40
および46を構成する非磁性体としては、例えばオース
テナイト系ステンレスが好適に使用される。Furthermore, another movable mold 46 made of a non-magnetic material is arranged above the movable mold 40 so as to be movable up and down, and a boundary surface between the top of the movable mold 40 and the side movable mold 46 is ,
As shown, a runner 48 is formed and is connected to a sprue 50 and a nozzle port 52 formed in the movable mold 46. In addition, each mold 24, 40
As the non-magnetic material constituting 46 and 46, for example, austenitic stainless steel is preferably used.
このように構成した本発明に係る位置規制装置を使用し
て、ロータ回転軸の軸方向位置を規制する方法につき、
次に説明する。先ず、第3図に示す如く円筒状キャビテ
ィ18の底部に穿設した貫通孔32中に回転軸30を挿
通して、該回転軸30の細心をキャビティ18の軸心と
一致させる。Regarding the method of regulating the axial position of the rotor rotating shaft using the position regulating device according to the present invention configured as described above,
This will be explained next. First, as shown in FIG. 3, the rotary shaft 30 is inserted into a through hole 32 formed at the bottom of the cylindrical cavity 18, and the narrow center of the rotary shaft 30 is aligned with the axis of the cavity 18.
この場合、中心貫通孔32の下部開口を当板22により
閉塞することにより、回転軸30の下端部はこの当板2
2に当接して所定の位置規制がなされ、従って回転軸3
0は常に所定寸法長たけ該キャビティ18中に臨むよう
セットされることになる。In this case, by closing the lower opening of the center through hole 32 with the contact plate 22, the lower end of the rotating shaft 30 is connected to the contact plate 22.
2 and is regulated in a predetermined position, so that the rotating shaft 3
0 is always set so as to face into the cavity 18 by a predetermined length.
ところで貫通孔32には前述したように若干の環状細隙
か形成されていて、回転軸30はこの貫通孔32に対し
て緩く挿通されているたけである。By the way, the through hole 32 has a slight annular slit formed therein as described above, and the rotating shaft 30 is only loosely inserted into the through hole 32.
このため、金型に加わる外部振動その他によって、該回
転軸30は第5図(a)に示す如く軸方向に移動し、キ
ャビティ18中における所定位置Aからずれる惧れがあ
る。このように回転軸30がキャビテイ18開で軸方向
にずれた状態のまま射出成形がなされると、製品として
のロータは寸法規格に適合しない不良品として排除され
、歩留りが低下することになる。そこで、このような事
態に対処するため、本発明に係る装置では、前述したよ
うにキャビテイ18開口部に臨んでいる開閉自在な非磁
性体金型40の中央部に、溶融混合物射出用ピンポイン
トケ−1−44か前記貫通孔32と対向的に細心を一致
させて穿設しである。そしてこのピンポイントゲート4
4からの溶融混合物射出時の流体圧により、回転軸30
を軸方向に強制的に押下ばて、常に所定の位置規制をな
しうるようになっている。Therefore, due to external vibrations applied to the mold or other factors, the rotary shaft 30 may move in the axial direction as shown in FIG. If injection molding is performed with the rotary shaft 30 being shifted in the axial direction with the cavity 18 open, the rotor as a product will be rejected as a defective product that does not meet the dimensional standards, resulting in a decrease in yield. Therefore, in order to cope with such a situation, in the apparatus according to the present invention, a pin point for injecting the molten mixture is installed in the center of the openable and closable non-magnetic mold 40 facing the opening of the cavity 18 as described above. The case 1-44 is bored oppositely to the through-hole 32 in exact alignment. And this pinpoint gate 4
Due to the fluid pressure during injection of the molten mixture from 4, the rotating shaft 30
By forcibly pushing down in the axial direction, the predetermined position can always be regulated.
すなわち、磁気異方性定数の大きい強磁性粉末と合成樹
脂とからなる混合物を加熱溶融し、この溶融混合物を前
記可動金型46のノスルロ52から注入し、スプルー5
0およびピンポイントゲート44を介して円筒状キャビ
ティ18中に射出する。このとき、第5図(b)に示す
ようにキャビティ18中に射出された溶融混合物54は
、回転軸30の頂部に相当の流体圧をもって衝突し、こ
の圧力により回転軸30を軸方向に押下げて(軸端部が
当Fj、22に当接する所定位置まで)位置規制を行う
。That is, a mixture consisting of a ferromagnetic powder with a large magnetic anisotropy constant and a synthetic resin is heated and melted, this molten mixture is injected through the nozzle 52 of the movable mold 46, and the sprue 5
0 and into the cylindrical cavity 18 through the pinpoint gate 44. At this time, as shown in FIG. 5(b), the molten mixture 54 injected into the cavity 18 collides with the top of the rotating shaft 30 with considerable fluid pressure, and this pressure pushes the rotating shaft 30 in the axial direction. The position is regulated by lowering it (to a predetermined position where the shaft end comes into contact with the contact Fj, 22).
また、これと同期して図示しない着磁コイルを励磁し、
前記着磁ヨーク28を介してキャビティ18に半径方向
外方から強磁界を印加する。このように磁石粉末と合成
樹脂との混合物か溶融状態にあり、粒子配列が固まって
いない間に複数極の磁界を印加することによって、磁石
粉末粒子の磁化容易軸を半径方向に配向させることかで
き、磁気特性の優れた円筒状異方性磁石かキャビティ1
8中に成形される。Also, in synchronization with this, a magnetizing coil (not shown) is excited,
A strong magnetic field is applied to the cavity 18 from the outside in the radial direction via the magnetizing yoke 28. In this way, by applying a multi-pole magnetic field while the mixture of magnet powder and synthetic resin is in a molten state and the particle arrangement is not solidified, it is possible to orient the axis of easy magnetization of the magnet powder particles in the radial direction. Cylindrical anisotropic magnet or cavity 1 with excellent magnetic properties
It is molded into 8.
なお、キャビティ中に射出される溶融混合物の成分につ
いて説明すると、磁気異方性定数の大きい強磁性粉末と
しては、例えばBaフェライト磁石粉末またはSrフェ
ライト磁石粉末、または希土類磁石粉末(RCos型ま
たはR2C017型。ここに艮は希土類元素の一種以上
を示す)その地異方性マンガンアルミ(ルーAl−C)
磁石粉末等か好適に使用される。Regarding the components of the molten mixture injected into the cavity, examples of ferromagnetic powder with a large magnetic anisotropy constant include Ba ferrite magnet powder, Sr ferrite magnet powder, or rare earth magnet powder (RCos type or R2C017 type). .Here 艮 indicates one or more rare earth elements) its regionally anisotropic manganese aluminum (Al-C)
Magnetic powder or the like is preferably used.
なお、これらの強磁性粉末の粒子径は、単磁区粒子径付
近にあるものとするのか望ましい。Note that it is desirable that the particle size of these ferromagnetic powders be around the single magnetic domain particle size.
合成樹脂は有機バインダーとして使用され、例えば熱可
塑性樹脂としてポリエチレン、ナイロン、ポリプロピレ
ン、ポリフェニールサイファイトが、また熱硬化性樹脂
として1フエノール、エポキシなどが使用可能である。Synthetic resins are used as organic binders; for example, thermoplastic resins such as polyethylene, nylon, polypropylene, polyphenyl cyphite, and thermosetting resins such as phenol and epoxy can be used.
また、強磁性粉末と合成樹脂との望ましい配合割合は、
磁石粉末体積率で約50〜65%である。更に、射出成
形時の溶融混合物の成形温度は150〜350°Cの範
囲が望ましく、また印加される磁界は300000以上
とする必要かある。In addition, the desirable blending ratio of ferromagnetic powder and synthetic resin is
The magnet powder volume fraction is about 50 to 65%. Further, the molding temperature of the molten mixture during injection molding is preferably in the range of 150 to 350°C, and the applied magnetic field needs to be 300,000 or more.
このようにして溶融混合物がキャビティ18中に射出さ
れ、磁化した後冷却固化する結果として、キャビティ1
8中に臨むよう予めセットされていた回転軸30はキャ
ビティ中で成形された円筒状樹脂磁石56の中心部に挿
通された状態で一体的に固定され、第6図に示す如き回
転電機用ロータが得られる。本発明によれは、この溶融
混合物の射出成形時に、前記回転電機用ロータの回転軸
30は円筒状キャビティ18中において軸方向所定位置
し;常し;規制されることになるので、得られる製品は
全て規格寸法に適合し、製造上の歩留り会大幅に向上さ
せることかできる。しかも回転軸製軸方向の所定位置に
規制するための特別な冶具やその他複雑な特殊構造を必
要とせす、また貫通孔32に回転軸30を挿通するセノ
ティンクおよび金型からのロータ脱型に全く支障を来す
ことがない等、多くの利点を有するものである。In this way, the molten mixture is injected into the cavity 18, magnetized, and then cooled and solidified.
The rotating shaft 30, which was previously set so as to face inside the cavity, is inserted into the center of a cylindrical resin magnet 56 molded in the cavity and fixed integrally therewith, thereby forming a rotor for a rotating electric machine as shown in FIG. is obtained. According to the present invention, during injection molding of this molten mixture, the rotating shaft 30 of the rotor for the rotating electric machine is positioned at a predetermined position in the axial direction in the cylindrical cavity 18 and is always regulated, so that the product obtained is All of them conform to standard dimensions, and manufacturing yields can be greatly improved. Moreover, it requires a special jig or other complicated special structure to regulate the rotary shaft to a predetermined position in the axial direction, and it is also difficult to remove the rotor from the mold by inserting the rotary shaft 30 into the through hole 32. It has many advantages such as not causing any trouble.
本発明の実施例では、自転車用発電機のロータを製造す
る際の軸方向位置規制について説明したが、その他面流
電動機のロータ等、回転電機一般の磁石ロータの製造に
際しても広く好適に使用されるものである。In the embodiments of the present invention, axial position regulation was explained when manufacturing the rotor of a bicycle generator, but it can also be widely and suitably used when manufacturing magnet rotors of general rotating electric machines, such as rotors of other surface current motors. It is something that
第1図は従来技術に係る回転電機用ロータの縦断面図、
第2図はキャビティ中に回転軸を挿通した状態を示す概
略断面図、第3図は本発明に係る軸方向位置規制装置の
縦断面図、第4図は第3図のA−A線描断面図、第5図
(a)および(b)はキャビティ中において回転軸が軸
方向に摺動偏倚する状態を示す断面図、第6図は本発明
方法により製造した回転電機用ロータの縦断面図である
。
18・・・円筒状キャビティ
24・・・・固定側金型 28・・・・着磁ヨーク3
0・・・・ロータ回転軸 32・・・貫通孔40・・・
・可動金型
44・・・・ピンポイントゲート
FIG、5
−282−
FIG、6
56FIG. 1 is a longitudinal cross-sectional view of a rotor for a rotating electric machine according to the prior art;
Fig. 2 is a schematic cross-sectional view showing a state in which the rotating shaft is inserted into the cavity, Fig. 3 is a longitudinal cross-sectional view of the axial position regulating device according to the present invention, and Fig. 4 is a cross-sectional view taken along line A-A in Fig. 3. Figures 5(a) and 5(b) are cross-sectional views showing the state in which the rotating shaft is slid in the axial direction in the cavity, and Figure 6 is a longitudinal cross-sectional view of a rotor for a rotating electric machine manufactured by the method of the present invention. It is. 18... Cylindrical cavity 24... Fixed side mold 28... Magnetizing yoke 3
0...Rotor rotation axis 32...Through hole 40...
・Movable mold 44...Pinpoint gate FIG, 5 -282- FIG, 6 56
Claims (2)
ータ回転軸を臨ませ、前記円筒状キャビティの半径方向
外側から等分割された複数極の磁界を印加しつつ強磁性
粉末と合成樹脂との溶融混合物を該キャビティ中に射出
して回転電機用ロータを製造するに際し、円筒状キャビ
ティの底部中央に挿通支持された前記ロータ回転軸の頂
部に向けて垂直方向から前記溶融混合物を射出し、当該
溶融混合物射出時の流体圧によりロータ回転軸を軸方向
に抑圧して円筒状キャビティ中の所定位置まで移動させ
ることを特徴とするロータ回転軸の軸方向位置規制方法
。(1) Synthesize ferromagnetic powder by aligning the axes and facing the rotor rotation axis into the cylindrical cavity of the mold, and applying a magnetic field of multiple equally divided poles from the outside in the radial direction of the cylindrical cavity. When manufacturing a rotor for a rotating electric machine by injecting a molten mixture with a resin into the cavity, the molten mixture is injected from a vertical direction toward the top of the rotor rotation shaft inserted through and supported at the center of the bottom of the cylindrical cavity. A method for regulating the axial position of a rotor rotating shaft, characterized in that the rotor rotating shaft is axially suppressed by fluid pressure during injection of the molten mixture and moved to a predetermined position in a cylindrical cavity.
型と1着磁コイルに接続しかつ前記円筒状キャビティの
半径方向外周に等中心角で臨む強磁性体からなる複数極
の着磁ヨークと、円筒状キャピティの底部中央に穿設し
たロータ回転軸挿通用の貫通孔と、円筒状キャビティ内
に臨んで開口するピンポイントゲートと、円筒状キャビ
ティの開口部を開閉自在に閉塞する非磁性体からなる金
型とからなり、円筒状キャビティ開口部に臨む開閉自在
な前記非磁性体金型の中央部に前記ピンポイントゲート
を前記貫通孔と対向的に穿設したことを特徴とするロー
タ回転軸の軸方向位置規制装置。(2) Magnetization of a mold made of a non-magnetic material defining a cylindrical cavity and multiple poles made of a ferromagnetic material connected to one magnetizing coil and facing the radial outer circumference of the cylindrical cavity at equal central angles. A yoke, a through hole for inserting the rotor rotating shaft drilled in the center of the bottom of the cylindrical cavity, a pinpoint gate that opens facing into the cylindrical cavity, and a gate that closes the opening of the cylindrical cavity so that it can be opened and closed. The pinpoint gate is formed in the center of the non-magnetic mold which faces the cylindrical cavity opening and can be opened and closed, facing the through-hole. Axial position regulating device for rotor rotation axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58009035A JPS59136054A (en) | 1983-01-21 | 1983-01-21 | Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58009035A JPS59136054A (en) | 1983-01-21 | 1983-01-21 | Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59136054A true JPS59136054A (en) | 1984-08-04 |
JPS6333379B2 JPS6333379B2 (en) | 1988-07-05 |
Family
ID=11709391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58009035A Granted JPS59136054A (en) | 1983-01-21 | 1983-01-21 | Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59136054A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617382U (en) * | 1992-07-27 | 1994-03-04 | 東京電気株式会社 | PM type stepping motor |
JP2018148694A (en) * | 2017-03-06 | 2018-09-20 | 三菱電機株式会社 | Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator |
-
1983
- 1983-01-21 JP JP58009035A patent/JPS59136054A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617382U (en) * | 1992-07-27 | 1994-03-04 | 東京電気株式会社 | PM type stepping motor |
JP2018148694A (en) * | 2017-03-06 | 2018-09-20 | 三菱電機株式会社 | Permanent magnet rotator, mold for manufacturing permanent magnet rotator and manufacturing method of permanent magnet rotator |
Also Published As
Publication number | Publication date |
---|---|
JPS6333379B2 (en) | 1988-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0016960B1 (en) | Anisotropic polymeric magnet in the tubular form and process for producing the same | |
US5181971A (en) | Magnet and method of manufacturing the same | |
US4441875A (en) | Mold apparatus for forming article under influence of magnetic field | |
JP6575202B2 (en) | Internal magnet type rotor manufacturing equipment | |
US4954800A (en) | Magnet and method of manufacturing the same | |
JPS59136054A (en) | Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same | |
JPH027856A (en) | Manufacturing device for rotor of rotary electric machine | |
JPH0220129B2 (en) | ||
JPS59136053A (en) | Method and equipment for manufacturing rotor for rotary electric machine | |
US4904175A (en) | Magnetic plastic rotor disk manufacturing apparatus | |
JPH02178011A (en) | Manufacture of annular permanent magnet, annular permanent magnet manufactured thereby and mold for annular permanent magnet | |
JP2017034763A (en) | Manufacturing device for magnet-inclusion type rotor | |
JPS639109A (en) | Manufacture of ring-shaped resin magnet | |
JPH0382350A (en) | Electric motor field rotor and its manufacturing method | |
JPS60931B2 (en) | Anisotropic magnet manufacturing method and manufacturing device | |
JP2571578B2 (en) | Bonded magnet | |
JPH02305A (en) | Plastic magnet | |
JP2973440B2 (en) | Manufacturing method of rotary transformer | |
JPH10177928A (en) | Molding device for cylindrical radial anisotropic magnet | |
JPH0629139A (en) | Anisotropic resin magnet with functional member | |
JPH0349547A (en) | Mold for semicylindrical radially anisotropic magnet | |
JPH05101956A (en) | Manufacture of anisotropic magnet of cylindrical shape | |
JPH071726B2 (en) | Anisotropic resin magnet and manufacturing method thereof | |
JPH03274413A (en) | magnetic encoder | |
JPS61125010A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet |