[go: up one dir, main page]

JPS5913567B2 - Manufacturing method for high-strength spring steel materials - Google Patents

Manufacturing method for high-strength spring steel materials

Info

Publication number
JPS5913567B2
JPS5913567B2 JP51075464A JP7546476A JPS5913567B2 JP S5913567 B2 JPS5913567 B2 JP S5913567B2 JP 51075464 A JP51075464 A JP 51075464A JP 7546476 A JP7546476 A JP 7546476A JP S5913567 B2 JPS5913567 B2 JP S5913567B2
Authority
JP
Japan
Prior art keywords
steel material
heating
temperature
heated
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51075464A
Other languages
Japanese (ja)
Other versions
JPS531623A (en
Inventor
利夫 土方
隆雄 山崎
清比古 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP51075464A priority Critical patent/JPS5913567B2/en
Publication of JPS531623A publication Critical patent/JPS531623A/en
Publication of JPS5913567B2 publication Critical patent/JPS5913567B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は高強靭はね用鋼材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-strength and tough spring steel material.

コイルばね、トーションバー等のばね材には、疲労強度
が高いこと、特にねじり疲労強度が高いことが最も必要
な特性として要求される。
Spring materials such as coil springs and torsion bars are most required to have high fatigue strength, especially high torsional fatigue strength.

一力、この種のばねの使用時においては、曲げ、ねじり
等の応力は中立線を中心として表面に向うに従って増加
し、表面層に最大応力がかへる。しかるに、従来、ばね
、例えばコイルばねを製造するには、ばね用鋼材を引抜
後、オイルテンパー処理を行って、高強度とした線材を
冷間で、コイルに成形するか、又はコイルに成形後、焼
入焼戻処理を行って強度を附与するという方法によって
おり、いづれも、通常の熱処理によって全断面に亘って
均一な焼入焼戻組織を得ることを目標としている。
When this type of spring is used, stress such as bending or torsion increases from the neutral line toward the surface, and the maximum stress is applied to the surface layer. However, conventionally, in order to manufacture springs, such as coil springs, after drawing the spring steel material, oil tempering is performed to make the wire material high in strength, and then the wire material is cold-formed into a coil, or after being formed into a coil. , is a method of imparting strength by performing quenching and tempering treatment, and both aim to obtain a uniform quenched and tempered structure over the entire cross section through normal heat treatment.

これに対し本発明においては、先づ、高周波誘導加熱法
を利用して、適当な周波数の高周波電力による短時間表
面加熱を行うことを第一の特徴とし、かつ、その短時間
加熱を所定の休止時間を置いて繰返すことにより結晶構
造の変態を短時間に繰返えさせるこきを第2の特徴とし
、それにより、ばね使用時における曲げ、ねじり等の応
力分布に対応した強度を有し、かつ最表面層は高強度、
高靭性の超微細組織を有する高疲労強度のばね用鋼材を
提供しようとするものである。
In contrast, the first feature of the present invention is to perform short-time surface heating using high-frequency electric power at an appropriate frequency using a high-frequency induction heating method, and to perform the short-time heating at a predetermined time. The second feature is that the transformation of the crystal structure is repeated in a short time by repeating it after a rest period, and as a result, it has strength that corresponds to the stress distribution such as bending and torsion when using the spring. And the outermost layer has high strength,
The present invention aims to provide a spring steel material with high fatigue strength and a high toughness ultra-fine structure.

鋼材の全断面に急熱急冷のサイクルを繰返し行うことに
よって全断面に亘り結晶粒の微細化を進め、鋼材の強度
や疲労強度を増大させることは公知である。
It is known that repeating cycles of rapid heating and cooling over the entire cross section of a steel material advances grain refinement over the entire cross section, thereby increasing the strength and fatigue strength of the steel material.

すなわち、鋼を急速加熱して全断面をAc3変態点以上
とし、その後直ちに全断面を強制冷却して温度を常温に
下げるα→γへの結晶構造の変態を数回繰返すと、結晶
粒は次第に微細化され、最終的には全断面に亘り、結晶
粒度13〜14程度の超微細組織が得られる。しかし、
それは鋼材の全断面に亘って均一な超微細組織が得られ
るということであるから、これをばね用鋼材として用い
ると、使用時における曲げ、ねじりなどの応力分布に対
して不必要な強化処理を行うこと5なって好ましくなく
、かつ、鋼材全断面を加熱、冷却する処理を繰返すこと
によるエネルギー消費も大きいという問題点がある。
In other words, when steel is rapidly heated to bring the entire cross section to the Ac3 transformation point or higher, and then the entire cross section is immediately forcedly cooled to lower the temperature to room temperature and the crystal structure is transformed from α to γ several times, the crystal grains gradually change. It is refined, and finally an ultra-fine structure with a grain size of about 13 to 14 is obtained over the entire cross section. but,
This means that a uniform ultra-fine structure can be obtained over the entire cross section of the steel material, so if this is used as a spring steel material, unnecessary strengthening treatments will be required to prevent stress distribution such as bending and torsion during use. There is a problem in that this is not preferable, and energy consumption is large due to repeating the process of heating and cooling the entire cross section of the steel material.

これに対し、本発明の特徴は高周波誘導加熱法により、
鋼材の表面層のみをAc3変態点(鋼種、組成成分によ
って決まる)以上に短時間急速加熱した後、加熱を停止
する。この状態では中心部は未だ常温に近く、熱伝導に
よる鋼材の自己冷却作用によって表面層の温度は直ちに
変態点以下に低下する。このα→γ→αの熱サイクルを
繰返すと、加熱停止時における中心部の温度も漸次上昇
し、Ac3変態点温度との差が少くなる。本発明者の実
験によれば、この場合、加熱停止時に、表面温度を常温
に迄低下させる必要はなく、Arl変態点以下に低下さ
せれば、同様に、結晶粒の微細化効果をえられることが
判明している。本発明を図に示した実施例を引用しつつ
以下詳細に説明する。
On the other hand, the feature of the present invention is that by using high frequency induction heating method,
After rapidly heating only the surface layer of the steel material to the Ac3 transformation point (determined by the steel type and composition) for a short period of time, the heating is stopped. In this state, the center part is still close to room temperature, and the temperature of the surface layer immediately drops below the transformation point due to the self-cooling effect of the steel material due to heat conduction. When this thermal cycle of α→γ→α is repeated, the temperature at the center when heating is stopped also gradually increases, and the difference from the Ac3 transformation point temperature becomes smaller. According to the inventor's experiments, in this case, there is no need to lower the surface temperature to room temperature when heating is stopped, and if the surface temperature is lowered to below the Arl transformation point, a similar grain refinement effect can be obtained. It turns out that. The present invention will be described in detail below with reference to embodiments shown in the drawings.

図は、鋼材に本発明にか5る高周波誘導加熱による、連
続熱処理を行った場合における鋼材表面と中心部との温
度の変化を示したものであり、縦軸は温度、横軸は時間
を示す。
The figure shows the change in temperature between the surface and center of the steel material when the steel material is subjected to continuous heat treatment using high-frequency induction heating according to the present invention. The vertical axis represents temperature and the horizontal axis represents time. show.

この場合、加熱条件、すなわち被加熱鋼材の径および被
加熱鋼材の送り速度との関係において、送り通路に置か
れる誘導加熱コイル(L,,L,,L3・・・・・・)
の数、コイル長(11,12,13・・・・・・)隣接
する誘導加熱コイルのコイル間隔(Dl,d2,d3・
・・・・・)、誘導加熱コイルへの投入電力密度( P
,,P2,P3・・・・・・)等の諸元を適宜設定する
ことによって、図に示すごとく、表面温度は八曲線で示
すように、Ac3変態点以上およびArl変態点以下と
なるような熱サイクルを繰返し、又中心部温度はB曲線
で示すごとくA線より相当遅れた昇温曲線として表わさ
れる。
In this case, the induction heating coils (L, , L, , L3...) placed in the feed path are determined in relation to the heating conditions, that is, the diameter of the steel material to be heated and the feeding speed of the steel material to be heated.
number, coil length (11, 12, 13...), coil spacing between adjacent induction heating coils (Dl, d2, d3,
), the power density input to the induction heating coil ( P
, , P2, P3...), etc.), the surface temperature can be set to be above the Ac3 transformation point and below the Arl transformation point, as shown by the eight curves in the figure. Thermal cycles are repeated, and the temperature at the center is expressed as a temperature rise curve that lags considerably behind line A, as shown by curve B.

この場合、表面層にはα一γの変態が4回繰返され、そ
の間に中心部の温度は、漸次上昇し、4回目の加熱でA
e3変態点以上に加熱されて、全体加熱又はそれに近い
加熱状態となる。この状態で全体焼入れされる。なお、
図において点線で示したA1は変態点を概念的に示した
ものである。
In this case, the α-γ transformation is repeated four times in the surface layer, during which time the temperature in the center gradually rises, and in the fourth heating, A
It is heated to the e3 transformation point or higher, resulting in total heating or a heating state close to it. In this state, the entire piece is hardened. In addition,
A1 indicated by a dotted line in the figure conceptually indicates a transformation point.

このようにすることによって、中心部より表面層に向う
に従い、α一γの変態繰返しの効果が働いて、中心部か
ら表面層に至るに従い、より微細化された微細焼入組織
が得られることになる。
By doing this, the effect of repeated α-γ transformation works from the center toward the surface layer, and a finely quenched structure that becomes finer from the center to the surface layer can be obtained. become.

この場合、前述したごとく、α一γ変態を起させるため
に、加熱停止時に表面層の温度を強制冷却によって、常
温迄下げる必要はなく、鋼材の自己冷却で、本発明の目
的を十分達することができることが判明している。従っ
て、例えば、被加熱材の通路に沿い、所定間隔をおいて
誘導加熱コイルを複数個配置しておき、上記加熱コイル
によるAC3変態点以上への昇温、被加熱材の自己冷却
によるAr,点以下への降温という所定の熱サイクルを
繰返すことによって、前述した鋼材全断面を加熱、冷却
する処理を繰返す場合と比し、1/6程度のエネルギー
消費で、かつコイルばね用鋼材に最適な熱処理条件をう
ろことができる。換言すれは、鋼材全断面を加熱するに
要する電力エネルギーを1とし、4回熱サイクルを繰返
すとした場合、前述した方法においては全断面加熱を4
回繰返すので、IX4=4であるのに対し、本発明にお
いては鋼材全断面の1/6程度の断面の表層加熱を4回
繰返すのであるから/, X4=一ですみ、前述した方
法に対して1/6程度(4:24)の電気エネルギー消
費で十分であって、それによって伴らせられる消エネル
ギー効果はきわめて顕著であり、しかもそれによって使
用時の応力分布に対応した強度分布の鋼材が得られるの
である。
In this case, as mentioned above, in order to cause the α-γ transformation, it is not necessary to lower the temperature of the surface layer to room temperature by forced cooling when heating is stopped, and the purpose of the present invention can be sufficiently achieved by self-cooling of the steel material. It has been found that it is possible. Therefore, for example, by arranging a plurality of induction heating coils at predetermined intervals along the path of the material to be heated, the temperature can be raised to the AC3 transformation point or higher by the heating coils, Ar may be generated by self-cooling of the material to be heated, etc. By repeating a predetermined thermal cycle of lowering the temperature to below the point, the energy consumption is about 1/6 compared to the case of repeating the process of heating and cooling the entire cross section of the steel material, and it is the most suitable steel material for coil springs. Heat treatment conditions can be changed. In other words, if the electrical energy required to heat the entire cross section of the steel material is 1 and the thermal cycle is repeated 4 times, the method described above will heat the entire cross section 4 times.
In contrast, in the present invention, the surface heating of a cross section of approximately 1/6 of the total cross section of the steel material is repeated four times. It is sufficient to consume about 1/6th (4:24) of the electrical energy, and the resulting energy saving effect is extremely remarkable. is obtained.

焼入れが完了したら、被加熱材が線材であれば、連続的
に、また定尺の棒状材であれば、焼入れと連続的又は、
別のラインでなど適宜の方法により、高周波誘導加熱法
その他の公知の加熱法を用いて焼戻しを行って、鋼材に
所要の機械的性質を与える。
After quenching is completed, if the material to be heated is a wire rod, it is heated continuously, or if it is a rod-like material of a fixed length, it is heated continuously or continuously with quenching.
Tempering is performed in a suitable manner, such as on a separate line, using high frequency induction heating or other known heating methods to impart the required mechanical properties to the steel.

本発明者は本発明の効果を確認するため種々の実験を試
みた。
The present inventor attempted various experiments to confirm the effects of the present invention.

その一部を示すと次のとおりである。実験例 1 I )実験条件 (1)試験片 直 径 10間 材 質 S35Cボロン入 (2)加熱条件 表面温度 880℃〜900 加熱時間 2秒間 加熱サイクル 4回 焼入液 水 2)実験結果 試験片の焼入焼戻後の断面の結晶粒度を、同一試験片に
同一加熱条件で一回、高周波焼入、焼戻処理したもの5
それと比較した。
Some of them are as follows. Experimental example 1 I) Experimental conditions (1) Test piece diameter 10 Material S35C with boron (2) Heating conditions Surface temperature 880°C to 900°C Heating time 2 seconds Heating cycle 4 times Quenching liquid Water 2) Experimental results Test piece The crystal grain size of the cross section after quenching and tempering of the same test piece was induction hardened and tempered once under the same heating conditions.5
I compared it to that.

結果は第1表に示すとおりであった。実験例 2 I )試験線材 直 径 畑 材 質 Sup6 上記試験線材に図に示したごとく、連続高周波焼入焼戻
しをしたものト、引張強度と両振り曲げ疲労強度を、高
知のオイルテンパー線、通常の高周波焼入焼戻処理をし
たもの、および前述した鋼材全断面を加熱、冷却する処
理を繰返す方法で処理したものと比較した。
The results were as shown in Table 1. Experimental example 2 I) Test wire diameter Field material Sup6 As shown in the figure above, the test wire was subjected to continuous induction quenching and tempering. A comparison was made between a steel material subjected to induction quenching and tempering treatment, and a steel material treated by the above-mentioned method of repeatedly heating and cooling the entire cross section of the steel material.

結果は第2表に示すとおりであった。The results were as shown in Table 2.

なお、「鋼材全断面を加熱、冷却する処理を繰返した線
材」の結晶粒度は13であった。
Note that the grain size of the "wire rod in which the entire cross section of the steel material was repeatedly heated and cooled" was 13.

本発明は、たとえばJISSUP3,SUP4.,SU
P6,SUP7,SUP9,SUPlO或いはSAE9
254,SA.E5l6O,SAE926O等のごとき
、はね用鋼材ならびに上記鋼材を基礎として所定元素を
添加したもの等、はね用鋼材はもちろんのこと、公知の
焼入れ可能な鋼材を素材として用いても十分その効果を
実現できるものである。
The present invention can be applied to, for example, JISSUP3, SUP4. ,SU
P6, SUP7, SUP9, SUPIO or SAE9
254, SA. In addition to spring steel materials such as E5l6O and SAE926O, as well as steel materials with predetermined elements added to the above-mentioned steel materials, known hardenable steel materials can be used as materials to achieve sufficient effects. This is something that can be achieved.

以上の実験結果からも知られるように、本発明によるば
ね用鋼材は中心部から表層部に向うに従い、結晶粒度が
微細化され、かつ表面層の結晶粒度が超微細組織である
ので、従来のオイルテンパー線や高周波焼入焼戻線材で
は得られない超微細組織のはね特性に適した強度分布を
得られるとともに従来の鋼材全断面に亘り、加熱、冷却
する処理を複数回繰返して全断面を超微細組織としたも
のに対しても数分の1の熱エネルギー付与で、ばね材と
して同等ないし、それ以上の機械的性質が得られること
5なるので、不必要なエネルギーを消費した上、過剰品
質材をうる不合理性を避けることができる。
As is known from the above experimental results, the grain size of the spring steel material according to the present invention becomes finer from the center to the surface layer, and the grain size of the surface layer is an ultra-fine structure. It is possible to obtain a strength distribution suitable for the spring characteristics of ultra-fine structures that cannot be obtained with oil-tempered wire or induction hardened and tempered wire, and the entire cross-section can be improved by repeating the heating and cooling process multiple times over the entire cross-section of conventional steel materials. Even if the material has an ultra-fine structure, it is possible to obtain mechanical properties equivalent to or better than that of a spring material with a fraction of the thermal energy applied5, so in addition to consuming unnecessary energy, The unreasonableness of purchasing over-quality materials can be avoided.

従って本願は従来のものと比し、劃期的な消電力エネル
ギーで、ばねの使用時における応力分布に対応した強度
分布を有する高強靭性のばね用鋼材を提供する点におい
て、その技術的効果は顕著である。なお、本発明を適用
するに当っては、複数の加熱コイルを所定間隔をおいて
配置し、当該加熱コイル内に鋼材を送って熱サイクルを
繰返すという方法によっても、また短尺の鋼材を固定と
し、固定加熱コイルで同様の熱サイクルを繰返すという
方法によってもよく、要は鋼材に上述したような熱サイ
クルを与えることができさえすればよい。
Therefore, compared to conventional products, the present application has technical effects in that it provides a steel material for springs with high strength and toughness that has a strength distribution that corresponds to the stress distribution when the spring is used, with limited power consumption energy. is remarkable. In addition, in applying the present invention, a method of arranging a plurality of heating coils at predetermined intervals and repeating the thermal cycle by feeding the steel material into the heating coils may also be used, or a short steel material may be fixed. Alternatively, a method of repeating the same thermal cycle using a fixed heating coil may be used, as long as the steel material can be subjected to the thermal cycle as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による熱サイクルを説明するための説明図で
ある。 t1〜T4・・・・・・繰返し表面加熱時間。
The figure is an explanatory diagram for explaining a thermal cycle according to the present invention. t1-T4...Repeated surface heating time.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼材の表面を高周波誘導加熱手段でAc_3変態点
温度以上に短時間加熱した後、短時間加熱を停止して表
面温度を熱伝導による自己冷却によってAr_1変態点
温度以下の温度に低下させるという熱サイクルを繰返す
ことによって、全体加熱か又はそれに近い加熱状態とな
った後、焼入れを行ない、しかる後任意の加熱手段で焼
戻しすることを特徴とする高強靭ばね用鋼材の製造方法
1 Heat treatment in which the surface of a steel material is heated for a short time to a temperature above the Ac_3 transformation point using high-frequency induction heating means, and then the heating is stopped for a short time to lower the surface temperature to a temperature below the Ar_1 transformation point by self-cooling through thermal conduction. A method for producing a high-strength steel material for springs, characterized in that by repeating the cycle, the entire steel material is heated or heated to a state close to it, then quenched, and then tempered using any heating means.
JP51075464A 1976-06-28 1976-06-28 Manufacturing method for high-strength spring steel materials Expired JPS5913567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51075464A JPS5913567B2 (en) 1976-06-28 1976-06-28 Manufacturing method for high-strength spring steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51075464A JPS5913567B2 (en) 1976-06-28 1976-06-28 Manufacturing method for high-strength spring steel materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18920183A Division JPS59133350A (en) 1983-10-12 1983-10-12 Steel material for high-strength and toughness spring

Publications (2)

Publication Number Publication Date
JPS531623A JPS531623A (en) 1978-01-09
JPS5913567B2 true JPS5913567B2 (en) 1984-03-30

Family

ID=13577044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51075464A Expired JPS5913567B2 (en) 1976-06-28 1976-06-28 Manufacturing method for high-strength spring steel materials

Country Status (1)

Country Link
JP (1) JPS5913567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130150B2 (en) * 2008-08-25 2013-01-30 Ntn株式会社 Induction hardening method and bearing parts
JP6053916B2 (en) * 2013-03-12 2016-12-27 本田技研工業株式会社 Steel wire for spring and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936520A (en) * 1972-08-10 1974-04-04

Also Published As

Publication number Publication date
JPS531623A (en) 1978-01-09

Similar Documents

Publication Publication Date Title
EP0092815B1 (en) A car stabilizer and a manufacturing method therefor
US4619714A (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
US4016009A (en) Producing rolled steel products
CN101983247A (en) Steel material, process for producing steel material, and apparatus for producing steel material
US6235131B1 (en) System for heat treating coiled springs
KR20170052612A (en) Method for producing hot-formed steel springs
US4222799A (en) High-strength spring steel and its manufacturing process
JPS5913567B2 (en) Manufacturing method for high-strength spring steel materials
JPH0235022B2 (en)
KR820001821B1 (en) High strenght spring steel and its manufacturing process
JPH0124848B2 (en)
JPS609827A (en) Manufacture of high strength spring
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPS59166626A (en) Continuous spheroidizing heat treatment of rod steel
US2222263A (en) Method of heat treatment for pipes
GB2036806A (en) Spring steel and the production thereof
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPS6359775B2 (en)
KR890002619B1 (en) Manufacturing method of high tensile wire
JPS62260015A (en) Spring with excellent fatigue resistance and its manufacturing method
JPS5913024A (en) Manufacture of directly spheroidized steel material
JP2557052B2 (en) Method for manufacturing spring steel
JPS61139625A (en) Method and device for improving permanent deformation strength of toothed shaft member
JPS6456827A (en) Production of wire rod for high-strength spiral hoop and high-strength spiral hoop
JPS58204123A (en) High frequency heat treatment