JPS59134819A - Manufacture of semiconductor substrate - Google Patents
Manufacture of semiconductor substrateInfo
- Publication number
- JPS59134819A JPS59134819A JP15376682A JP15376682A JPS59134819A JP S59134819 A JPS59134819 A JP S59134819A JP 15376682 A JP15376682 A JP 15376682A JP 15376682 A JP15376682 A JP 15376682A JP S59134819 A JPS59134819 A JP S59134819A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- silicon
- single crystal
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000010408 film Substances 0.000 claims abstract description 108
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 33
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 12
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 38
- 239000010703 silicon Substances 0.000 claims description 38
- 239000012535 impurity Substances 0.000 claims description 9
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 239000012808 vapor phase Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical group CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000981595 Zoysia japonica Species 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Element Separation (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、表向に絶縁膜のパターンを有する単結晶シリ
コン基板上に選択的にシリコンエピタキシャル層を成長
させるよ、うな半導体基板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor substrate in which a silicon epitaxial layer is selectively grown on a single crystal silicon substrate having an insulating film pattern on its surface.
従来の半導体デバイスでは、シリコン基板にイオン注入
又は不純物拡散法を用いて所望のP型又はN型の伝導凰
にして能動素子とし、能動素子間の分離はPN&−合あ
るいは部分酸化(LOCO8)法を用いていた。しかる
に接合の浮遊容量の増大や部分酸化工程中の寸法変化(
バーズビークの形成)があり、素子の品速化・面密度化
の障害となっていた。In conventional semiconductor devices, a silicon substrate is made into a desired P-type or N-type conductive layer using ion implantation or impurity diffusion to form active elements, and active elements are separated using PN&- or partial oxidation (LOCO8) method. was used. However, the increase in the stray capacitance of the junction and the dimensional change during the partial oxidation process (
Bird's beak formation) was an obstacle to increasing device speed and areal density.
しかし上記の欠点を補う技術としてサファイアヲ基板ニ
用イルイわゆル5O8(Si on 5apphire
)がある。基板が絶縁体であるため浮遊容量が小さく、
素子の尚速比・尚密度化に有利である。しかしシリコン
エピタキシャル層はサファイア基板と格子定数の不整合
があるのでそれによって基板−シリコン界面に格子欠陥
が多く発生し、リーク電流の発生原因となり、SO8の
大きな欠点となっていた。However, as a technology to compensate for the above drawbacks, we have developed a technology that uses 5O8 (Si on 5apphire) for sapphire substrates.
). Since the substrate is an insulator, stray capacitance is small.
This is advantageous for increasing the speed ratio and density of the element. However, since the silicon epitaxial layer has a lattice constant mismatch with the sapphire substrate, many lattice defects occur at the substrate-silicon interface, causing leakage current, which is a major drawback of SO8.
さらに新しい絶縁基板上のシリコン膜の単結晶化技術と
してグラフオエピタキシィ技術とブリッジングエピタキ
シィ技術がある。Furthermore, there are graphite epitaxy technology and bridging epitaxy technology as new single crystallization technologies for silicon films on insulating substrates.
前者はアプライドフィズイックスレタアーズ第35巻、
第1番、71〜74頁、1979年(Appl ied
Physics’Letters、Vol・35.j
%l 。The former is Applied Physics Letters Volume 35,
No. 1, pp. 71-74, 1979 (Applied
Physics' Letters, Vol.35. j
%l.
pp、71〜74 、1979)に記載されており、石
英基板に溝加工を施し多結晶シリコンのCVD膜を基板
全面に成長し、レーザー照射によって単結晶化しようと
するものである。pp. 71-74, 1979), in which a quartz substrate is processed with grooves, a CVD film of polycrystalline silicon is grown over the entire surface of the substrate, and the film is made into a single crystal by laser irradiation.
後者はジャパンジャーナルオブアプライドフィズイック
ス第19巻、第1頁、L23〜L26頁、1980年(
Japan Journal of Applied
Physics。The latter is published in Japan Journal of Applied Physics Vol. 19, p. 1, pp. L23-L26, 1980 (
Japan Journal of Applied
Physics.
Vol−19、il 、 pp、L23〜L26 、1
980)に記載されており、それによると半導体単結晶
基板に部分的に絶縁膜を形成し、さらに多結晶シリコン
膜を基板の全面に堆積し、レーサー照射により基板全種
結晶とする再結晶化を施し、絶縁基板−ヒにも単結晶層
を形成しようとするものである。しかしながら、いずれ
の方法も単結晶化の程丸、絶縁膜上の結晶欠陥等に問題
があり、実用に耐えるデバイス特性を得るまでに到って
いない。また種々の高精度技術を要し、量産性にも欠け
、まだ実用化技術となるまでには到っていない。Vol-19, il, pp, L23-L26, 1
980), according to which an insulating film is partially formed on a semiconductor single crystal substrate, a polycrystalline silicon film is further deposited on the entire surface of the substrate, and the entire substrate is recrystallized as a seed crystal by laser irradiation. The aim is to form a single crystal layer also on an insulating substrate. However, all of these methods have problems such as poor single crystallization and crystal defects on the insulating film, and have not yet reached the point where device characteristics that can withstand practical use have been obtained. Furthermore, it requires various high-precision techniques, lacks mass productivity, and has not yet reached the point where it has become a practical technology.
これらの技術に対して、選択エピタキシャル技術がある
。これは半導体単結晶基板上に部分的に絶縁膜を形成し
、その絶縁膜上には堆積しないで露出した基板領域のみ
に基板と同種の半導体単結晶層をエピタキシャル成長し
、それを素子の能動領域とするものである。このエピタ
キシャル方法はホモエピタキシャルであるため極めて面
品質な結晶性をボし、しかも簡便で量産性罠富んだ優れ
た特性をもつ。In contrast to these techniques, there is a selective epitaxial technique. In this method, an insulating film is partially formed on a semiconductor single crystal substrate, and a semiconductor single crystal layer of the same type as the substrate is epitaxially grown only on the exposed substrate area without depositing on the insulating film, and then it is applied to the active area of the device. That is. Since this epitaxial method is homoepitaxial, it does not require crystallinity with extremely good surface quality, and has excellent properties such as being simple and easy to mass-produce.
しかし従来の選択エピタキシャルに用いられる基板は、
単結晶基板上に絶縁膜を形成した後、絶縁膜を部分的に
開口して形成していたので、絶縁膜とエピタキシャル膜
との界面は、用いる単箱晶基板の面方位の影響を強く受
ける。例えば、(1001基板を用いると、(111)
面を有する4回対称ファセ、トが生成される。表面は平
担であるが、絶縁膜−エピタキシャル膜界面は非対称形
状の凹凸が形成される。However, the substrate used in conventional selective epitaxial
Since the insulating film was formed on a single crystal substrate and then partially opened, the interface between the insulating film and the epitaxial film was strongly influenced by the plane orientation of the single crystal substrate used. . For example, if you use a (1001 board), (111)
A 4-fold symmetric facet with a surface is generated. Although the surface is flat, asymmetrical irregularities are formed at the insulating film-epitaxial film interface.
従来方法で得られるエピタキシャル膜の表面形状を図を
用いてさらに説明する。第1図(a)は(100)シリ
コン基板を用It17’c場合のエピタキシャルシリコ
ンの成長形状を示す模式的な平面図で、(b)は(a)
のB−B’で切断した時の模式的な断面図である。また
第2図(a)および(b)は(111)シリコン基板を
用いた場合で、第1図(a)および(b)とそれぞれ対
応する模式的な平面図及び断面図である。The surface shape of the epitaxial film obtained by the conventional method will be further explained using figures. FIG. 1(a) is a schematic plan view showing the growth shape of epitaxial silicon when using a (100) silicon substrate, and FIG.
FIG. 2 is a schematic cross-sectional view taken along line BB' of FIG. Further, FIGS. 2(a) and 2(b) are a schematic plan view and a sectional view corresponding to FIGS. 1(a) and (b), respectively, in the case where a (111) silicon substrate is used.
flえば(100)シリフン基板1の上にシリコン酸化
膜2を堆積し、工、チング法によって開口し露出したシ
リコン領域3にエピタキシャル膜4を成長するとシリコ
ン酸化膜−エピタキシャルシリフ、ン界面からテーパー
状の4回対称性ファセット5が形成される。これは、材
質が不連続的であるエピタキシャル膜4とシリコン酸化
膜2の界面伺近では、種々の面方位が形成され易いので
、結果的に成長速度の遅い(111)面が形成されたこ
とによる。それに対して(111)基板11を用いた場
合にはファセットのない平t13−な表面が得られるが
、三回対称性であるため、矩形内の界面付近の形状は対
称性がなく、ピラミッド状のギザツキが観察される。こ
のように絶縁膜が存在する基板上にエピタキシャル層を
形成する場合、基板の面方位の影響を強く受けるので、
絶縁膜の開口部全体にわたって平担な表面を得ることは
従来においては不可能であった。更に、エピタキシャル
シリコン膜と絶縁膜との界面付近は積層欠陥密度が向い
こともデバイス作成上大きな問題点であった、例えばこ
のような従来方法によって製造された基板上に形成され
た絶縁ダート電界効果型トランンスクは、表面の凹凸の
ためゲート絶縁膜の耐圧が低く、配線の断線も起り易く
シしかも従来のLOCO8法で形成されたトランジスタ
に比べ前記結晶欠陥によってソースとドレイン間に数桁
太きなリーク電流か絶縁膜界面を介して流れるという欠
点があった。またこのようなエピタキシャル膜にバイポ
ーラトランジスタを形成する場合においても表面の凹凸
のためその後のレジストのパターン化が困難となったり
、ベースやエミッタ領域が一様に形成されないという欠
点がある。しかも結晶欠陥等によってベース−コレクタ
間の絶縁膜−エピタキシャル膜界面にリーク電流が発生
し易いという問題点も生じた。For example, a silicon oxide film 2 is deposited on a (100) silicon substrate 1, and an epitaxial film 4 is grown on the exposed silicon region 3 by etching and etching. A four-fold symmetrical facet 5 is formed. This is because various plane orientations are likely to be formed near the interface between the epitaxial film 4 and the silicon oxide film 2, which are discontinuous in material, and as a result, a (111) plane with a slow growth rate was formed. by. On the other hand, when the (111) substrate 11 is used, a flat surface with no facets can be obtained, but since it has three-fold symmetry, the shape near the interface within the rectangle is not symmetrical and has a pyramidal shape. Jagged edges are observed. When forming an epitaxial layer on a substrate with an insulating film in this way, it is strongly influenced by the plane orientation of the substrate.
It has heretofore been impossible to obtain a flat surface over the entire opening of the insulating film. Furthermore, the density of stacking faults tends to be higher near the interface between the epitaxial silicon film and the insulating film, which is a major problem in device fabrication. In the case of transistors formed using the conventional LOCO8 method, the breakdown voltage of the gate insulating film is low due to the unevenness of the surface, and wire breakage is also likely to occur.Furthermore, compared to transistors formed using the conventional LOCO8 method, the distance between the source and drain is several orders of magnitude wider due to the crystal defects. The drawback is that leakage current flows through the insulating film interface. Further, even when a bipolar transistor is formed on such an epitaxial film, there are disadvantages in that the unevenness of the surface makes subsequent patterning of the resist difficult and that the base and emitter regions are not formed uniformly. Moreover, a problem arises in that leakage current is likely to occur at the insulating film-epitaxial film interface between the base and the collector due to crystal defects and the like.
本発明は、単結晶基板方位に依存しないで、極めて平担
な表面を得ることができ、しかも絶縁膜とエピタキシャ
ル膜の界面に存在する結晶欠陥密度を著しく低減するこ
とのできる半導体基板の製造方法を提供するものである
。The present invention provides a method for manufacturing a semiconductor substrate, which can obtain an extremely flat surface without depending on the orientation of a single crystal substrate, and can significantly reduce the density of crystal defects existing at the interface between an insulating film and an epitaxial film. It provides:
本発明によればシリコン単結晶基板上に絶縁膜を形成し
、次いで該絶縁膜の所望の部分に開口部を設け、該開口
部の絶縁膜の側壁罠のみシリコン結晶中でP型又はN型
を呈する不純物をドープした多結d1シリコンもしくは
非晶質シリコンの薄膜、あるいはノンドープの多結晶シ
リコンもしくは非晶質シリコンの薄膜を形成し、次いで
前記絶縁膜開口部にのみ選択的にエピタキシャル成長し
、該成長中に前記多結晶シリコンもしくは非晶質シリコ
ンの薄膜を単結晶化することを特徴とした半導体基板の
製造方法が得られる。According to the present invention, an insulating film is formed on a silicon single crystal substrate, and then an opening is provided in a desired portion of the insulating film, and only the side wall traps of the insulating film in the opening are P-type or N-type in the silicon crystal. A thin film of polycrystalline d1 silicon or amorphous silicon doped with impurities, or a thin film of non-doped polycrystalline silicon or amorphous silicon exhibiting the following properties is formed, and then epitaxial growth is selectively performed only in the opening of the insulating film. A method for manufacturing a semiconductor substrate is obtained, characterized in that the thin film of polycrystalline silicon or amorphous silicon is made into a single crystal during growth.
このようにシリコン単結晶基板表面に形成した絶縁膜の
パターンの側壁に多結晶シリコン薄膜あるいは非晶質シ
リコン薄膜、を形成しておいてから選択エピタキシャル
成長を行うと(100)基板ではファセットが極めて少
くなり、平担な表面を得ることができ、(111)基板
では非対称性でギザツキや凹みを緩和し一平担で対称性
のある表面を得ることができる。また(110)や(5
11) 等の他の基板を用いても同様に平担なエピタキ
シャル表面を得ることができる。If a polycrystalline silicon thin film or amorphous silicon thin film is formed on the sidewalls of the insulating film pattern formed on the surface of a silicon single crystal substrate in this way and then selective epitaxial growth is performed, the (100) substrate will have extremely few facets. Therefore, a flat surface can be obtained, and in the case of a (111) substrate, jaggedness and dents can be alleviated due to the asymmetry, and a symmetrical surface can be obtained with a flat surface. Also (110) and (5
A similarly flat epitaxial surface can be obtained using other substrates such as 11).
更に上記多結晶シリコン薄膜あるいは非晶質シリコン薄
膜中にn型あるいはn型の不純物をドープしておけば、
エピタキシャル膜に電界効果トランジスタやハイポーラ
トランンスタを形成するときにチャネルストッパの役割
を果たし、絶縁膜の側壁に接するシリコン膜に形成され
やすいリーク電流を著しく低減できる。Furthermore, if n-type or n-type impurities are doped into the polycrystalline silicon thin film or amorphous silicon thin film,
It plays the role of a channel stopper when a field effect transistor or hyperpolar transistor is formed in an epitaxial film, and can significantly reduce leakage current that tends to be formed in the silicon film in contact with the sidewall of the insulating film.
次に、図を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using figures.
第3図(a) 、 (b) 、 (C) 、 (d)
、 (e)は本発明の第1の実施例を説明するだめの図
で4R造工程をl1lLfを追ってボした模式的な断面
図である。(100)面をもつシリコン基板11の上に
1000℃で熱酸化し約1μmの膜厚のSin、膜を堆
積した後、通常の写真蝕刻技術と反応性イオンエツチン
グ法によって500λ程度のSin、膜を残−し、且つ
垂直壁面をもっSin、絶縁膜パターン12を形成する
と第3図(a)を得る。500A程度のS i02膜は
後の多結晶シリコン膜13のエツチングマスクに用いら
れる。次に多結晶シリコン膜13をCVD法で約100
OAの膜厚で堆積すると第3図(b)となり、続いて反
応性イオンエツチング技術等を用いて異方的に多結晶シ
リコン膜13をエツチングすると8i0.膜12の側壁
にのみ多結晶シリコンが初期の膜厚で残り、第3図(c
)が得られる。続いて通常の希釈されたフ、酸液でSi
n、膜をエツチングするとシリコン基板表面14が露出
し、第3図(d)となる。次にSiH,CB、 と水
累から構成されるガス系にHCIを大よそ1 vo1%
程度加え、900℃から1100℃の範囲の温度で、選
択的にエピタキシャル成長k長すると8i0.膜12の
表面には堆積しないで、露出したシリコン領域14にの
みSi単結晶膜15が成長する。エピタキシャルシリコ
ン膜が約1μm程度の時に第3図(、)が得られる。8
io、絶縁膜とエピタキシャルシリコンの界面に存在
する多結晶シリコンは単結晶化し、Siエピタキシャル
層15の一部となっていることがTEMの観察により確
かめられた。しかもSiH2界面付近にはファセットや
凹凸が認められず、使めて平担なエピタキシャル表面が
得られた。これはエピタキシャル成長中に絶縁膜壁面に
ある多結晶シリコン膜が基板面方位にしたがった再配列
化を受け、しかも壁面から常にSi*子を補給している
ためと考えられる。Figure 3 (a), (b), (C), (d)
, (e) is a schematic sectional view for explaining the first embodiment of the present invention, in which the 4R manufacturing process is omitted along the lines 111Lf. After thermally oxidizing at 1000°C and depositing a Si film with a thickness of about 1 μm on a silicon substrate 11 with a (100) plane, a Si film with a thickness of about 500λ is etched by ordinary photolithography and reactive ion etching. 3(a) is obtained by forming a sin insulating film pattern 12 with a vertical wall surface. The Si02 film of about 500 Å is used as an etching mask for the polycrystalline silicon film 13 later. Next, the polycrystalline silicon film 13 is coated with a thickness of approximately 100 mm using the CVD method.
When deposited with a film thickness of OA, the result is as shown in FIG. 3(b), and when the polycrystalline silicon film 13 is subsequently etched anisotropically using a reactive ion etching technique or the like, a film of 8i0. Polycrystalline silicon remains at the initial thickness only on the sidewalls of the film 12, as shown in FIG.
) is obtained. Next, Si
When the film is etched, the silicon substrate surface 14 is exposed, as shown in FIG. 3(d). Next, approximately 1 vol.1% HCI was added to the gas system consisting of SiH, CB, and water.
In addition, selective epitaxial growth at a temperature in the range of 900°C to 1100°C results in a length of 8i0. A Si single crystal film 15 is grown only on the exposed silicon region 14 without being deposited on the surface of the film 12. When the epitaxial silicon film has a thickness of about 1 μm, the pattern shown in FIG. 3 (,) is obtained. 8
io, it was confirmed by TEM observation that the polycrystalline silicon present at the interface between the insulating film and the epitaxial silicon became single crystallized and became a part of the Si epitaxial layer 15. Moreover, no facets or irregularities were observed near the SiH2 interface, and a flat epitaxial surface was obtained. This is considered to be because the polycrystalline silicon film on the wall surface of the insulating film undergoes rearrangement according to the substrate surface orientation during epitaxial growth, and Si* molecules are constantly replenished from the wall surface.
壁面材料について多結晶シリコンの他に非晶質シリコン
でも同様な効果をボした。Regarding wall materials, in addition to polycrystalline silicon, amorphous silicon also showed similar effects.
次に本発明の第2の実施例を説明する。第4図はnチャ
ネル絶縁ゲート電界効果型トランジスタを製造するさい
の製造工程を順を追って万(した模式的断面図である。Next, a second embodiment of the present invention will be described. FIG. 4 is a schematic cross-sectional view showing the manufacturing steps in order to manufacture an n-channel insulated gate field effect transistor.
用いる基&は1Ω・儂程度の比抵抗を有する(100)
シリコン単結晶基板である。The group used has a specific resistance of about 1Ω・I (100)
It is a silicon single crystal substrate.
基板401表面に厚さ1μmの5in2膜402と厚さ
約500λのSin、膜403のパターンを形成する工
程までは第1の実施例と同じである。次に多結晶シリコ
ンをCVD法で約1000λの厚さで堆積する。The steps up to forming a pattern of a 5in2 film 402 with a thickness of 1 μm and a Sin film 403 with a thickness of about 500λ on the surface of the substrate 401 are the same as in the first embodiment. Next, polycrystalline silicon is deposited to a thickness of about 1000λ using the CVD method.
堆積中あるいは堆積後にn型不純物であるボ゛ロンを1
0 α 程度ドー プする((a)図)。次に第1の実
施例と同様なエツチング法でSin、膜402の倶[壁
にのみ多結晶シリコン404を残し、次いでSin、膜
403を除去する。次に第1の実施例と同様にSiH,
C12と水素から構成されるガスにHCIをおよそ1
vo1%加えシリコン基板の露出部に選択的にシリコン
単結晶膜405がエピタキシャル成長する((b)図)
。成長中に例えはジボラン(B、H,)ガスを導入する
ことにより10〜2oΩ・傭の比抵抗のエピタキシャル
膜が容易に得られる。このエピタキシャルSi膜の平坦
性、結晶性は第1の実施例とほぼ同じであり、多結晶シ
リコンは同様に単結晶化している。側壁に形成した多結
晶シリコン中のポロンはエピタキシャル成長後絶縁膜か
ら0.1μm程度の範囲に分布している。これがチャネ
ルスト、バ領域4041となる。Boron, which is an n-type impurity, is added to 1 during or after deposition.
Dope to about 0 α (Figure (a)). Next, by the same etching method as in the first embodiment, the polycrystalline silicon 404 is left only on the wall of the Sin film 402, and then the Sin film 403 is removed. Next, as in the first embodiment, SiH,
Approximately 1 HCI is added to a gas composed of C12 and hydrogen.
A silicon single crystal film 405 is epitaxially grown selectively on the exposed portion of the silicon substrate in addition to vo1% (Figure (b)).
. For example, by introducing diborane (B, H,) gas during growth, an epitaxial film having a specific resistance of 10 to 2 ohms can be easily obtained. The flatness and crystallinity of this epitaxial Si film are almost the same as those in the first embodiment, and the polycrystalline silicon is also single crystallized. Poron in the polycrystalline silicon formed on the sidewall is distributed within a range of about 0.1 μm from the insulating film after epitaxial growth. This becomes the channel strike and bar region 4041.
次にゲート酸化膜406を形成後、イオン注入法等の手
段によりエピタキシャルシリコン基板表面に不純物40
7を制御して導入し、所望のトランジスタのしきい値電
圧に設定する((C)図)その後多結晶シリコンをCV
D法で堆積し、パターン化を行ってゲート電a!408
となしその後ヒ素等のN型不純物を10”cm−2以上
のドーズ量でイオン注入することによりソース・ドレイ
ン領域409を形成する((d)図)、、適当なアニー
リングを行ってイオン注入損傷を回復した後、眉間絶縁
膜としてP8G膜410をCVD法で堆積し、熱処理に
よって平担化を計る。通常の写真蝕刻技術を用いてコン
タクトホール411を形成して第4図(e)を得る。ア
ルミニウム412を真空蒸着法で被着させ、配線電極の
パターン化ヲ行い、水素中でアルミニウムとシリコンの
合金化を施すと仕上り図の第4図(f)を得る。必要に
応じてCVD法で保護膜を堆積して電極パッドの部分の
保護膜をエツチング除去する。こうして得られた絶縁ゲ
ート電界効果トランジスタの電気的特性は良好で、例え
ばpn接合リーク電流は印加電圧5■の時1o A
/m以下で、ソース・ドレインのサブスレ、ショルド特
性の傾きは約90 mV / decadeであった。Next, after forming a gate oxide film 406, an impurity 40 is added to the surface of the epitaxial silicon substrate by means such as ion implantation.
7 is controlled and introduced to set the desired transistor threshold voltage (Figure (C)). After that, the polycrystalline silicon is CV
The gate electrode a! is deposited using the D method and patterned. 408
After that, source/drain regions 409 are formed by ion-implanting N-type impurities such as arsenic at a dose of 10"cm-2 or more (Figure (d)), and appropriate annealing is performed to remove ion implantation damage. After recovery, a P8G film 410 is deposited as an insulating film between the eyebrows by the CVD method and planarized by heat treatment.Contact holes 411 are formed using ordinary photolithography to obtain the image shown in FIG. 4(e). .Aluminium 412 is deposited by vacuum evaporation method, wiring electrodes are patterned, and aluminum and silicon are alloyed in hydrogen to obtain the finished image shown in FIG. 4(f).If necessary, CVD method is applied. A protective film is deposited at the electrode pad portion, and the protective film is removed by etching.The electrical characteristics of the insulated gate field effect transistor thus obtained are good, for example, the pn junction leakage current is 1oA when the applied voltage is 5μ.
/m or less, the slope of the source-drain subthread and shoulder characteristics was approximately 90 mV/decade.
これらの値はいずれも従来LOCO8法で得られた特性
と同程度であり、満足されるものである。また素子分離
寸法としてLOCO8法で絶対実現できない05μmの
分胸幅も比較的容易に形成できた。All of these values are comparable to the characteristics obtained by the conventional LOCO8 method and are satisfactory. Furthermore, it was possible to relatively easily form an element isolation dimension of 05 μm, which could never be achieved by the LOCO8 method.
さらにシリコン基板の不純物濃度をトランジスタのしき
い値電圧と独立に選ぶことができるので、実施例で用い
られた1Ω硼比抵抗よりも低いm6度基板を使用すると
、α線によるソフトエラーを改善することができたり、
スイッチング速度の尚速比も果すことができる長所もあ
る。Furthermore, since the impurity concentration of the silicon substrate can be selected independently of the threshold voltage of the transistor, soft errors caused by α rays can be improved by using a m6 degree substrate, which has a lower specific resistance than the 1Ω boron resistivity used in the example. be able to do something,
It also has the advantage of achieving a high switching speed ratio.
、 本実施例中ではS iO,膜の側壁に多結晶シリ
コンを残したが、非晶質シソコンでも同様の効果を示し
た。In this example, polycrystalline silicon was left on the sidewalls of the SiO film, but a similar effect was obtained with amorphous silicon.
次に第3の実施例を述べる。第5図(a) 、 (b)
、 (c) 。Next, a third embodiment will be described. Figure 5 (a), (b)
, (c).
(d) 、 (e) 、 (f) 、 (g)はnpn
バイポーラトランジスタの製造プロセスの模式的断面図
を工程順にホしたものである。n型(100)面シリコ
ン基板501上に熱酸化膜502を形成し、通常の写真
蝕刻技術で酸化膜を開口し、リンを拡散すると高濃度コ
レクター領域503が形成される( (a)、図)。熱
酸化膜502を除去した後CVD法によってSin、膜
504を厚さ2μm程度堆積し、同様に写真蝕刻技術と
反応性イオンエツチングによってパターン化すると8i
0゜膜504の側壁は垂直に近い形状を得る。続いてポ
ロ:/をドープされた多結晶シリコンをCVD法によっ
て厚さ300〜1500A程度CVD法で堆積し、続い
て反応性イオンエツチング法を用いてエツチングすると
、Sin、膜504の側壁にのみボロンがドープされた
多結晶シリコン505が残る((b)図)。(d), (e), (f), (g) are npn
3 is a schematic cross-sectional view of a bipolar transistor manufacturing process shown in the order of steps. A thermal oxide film 502 is formed on an n-type (100) plane silicon substrate 501, the oxide film is opened by ordinary photolithography, and phosphorus is diffused to form a highly concentrated collector region 503 ((a), Fig. ). After removing the thermal oxide film 502, a Si film 504 is deposited to a thickness of about 2 μm using the CVD method, and similarly patterned using photolithography and reactive ion etching to form an 8i film.
The side wall of the 0° membrane 504 has a nearly vertical shape. Next, polycrystalline silicon doped with poro:/ is deposited to a thickness of about 300 to 1500 Å by CVD, and then etched using reactive ion etching, so that only the side walls of the film 504 are filled with Sin and boron. Polycrystalline silicon 505 doped with is left (see (b)).
次に例えばSin、C1,をソースガス、H2をキャリ
ヤガスとしたガス系に塩化水素等のハq/fン化水素ガ
スと更にホスフィン(P)(、)を適切量を加えて、9
00℃以上でエピタキシャル成長を行うと、Sin。Next, add an appropriate amount of Hq/f hydrogen fluoride gas such as hydrogen chloride and phosphine (P) (,) to a gas system using, for example, Sin, C1, as a source gas and H2 as a carrier gas.
When epitaxial growth is performed at 00°C or higher, Sin.
膜504上にはシリコンが堆積されずにシリコン基板開
口部にのみn型の単結晶シリコン膜506が形成される
。S io、側壁を覆っていた多結晶シリコン505は
、夏ピタキシャル成長中に再配列を受け、単結晶層50
6の一部となり、ポロン拡散領域505′になる。こう
して第5図(c)が得られる。写真蝕刻技術でレジスト
パターンを形成し、レジスト508をマスクにしてボロ
ンをイオン注入し、その後熱処理してベース領域509
を形成すると第5図(d)が得られる。次にSin、膜
510をCVD法によって堆積し、写真蝕刻技術と工、
チング法によってパターン化する。その後ベース・コン
タクトとなすべき領域のみレジスト膜511で覆い、そ
れをマスクトシテヒ累を10 cm 以上のドーズ
量でイオン注入するとエミ、り領域512とコレクター
尚濃度領域513が得られ、第5図(、)となる。次に
レジスト514をマスクK LでポロンをI O”cr
n ”以上のドーズ量でイオン注入することによってベ
ース簡濃度領域515が得られ、第5図(f)となる、
層間絶縁膜としてPSG膜516をCVD法で堆積し、
コンタクトホールを開口し、A1電極517を形成する
と第5図(g)となる。このようにして、ベース−コレ
クタ間のリーク電流が従来のLOCO8法で形成した場
合と同程度のnpn )ランジスタが得られる。No silicon is deposited on the film 504, and an n-type single crystal silicon film 506 is formed only in the opening of the silicon substrate. Sio, the polycrystalline silicon 505 covering the sidewalls undergoes rearrangement during the summer pitaxial growth, resulting in a monocrystalline layer 50.
6 and becomes a poron diffusion region 505'. In this way, FIG. 5(c) is obtained. A resist pattern is formed using photolithography, boron ions are implanted using the resist 508 as a mask, and then heat treatment is performed to form a base region 509.
5(d) is obtained. Next, a Sin film 510 is deposited by the CVD method, and photolithography and processing are performed.
Create a pattern using the ching method. Thereafter, only the region to be made the base contact is covered with a resist film 511, and ions are implanted into the resist film 511 at a dose of 10 cm or more using a mask to form an emitter region 512 and a collector concentration region 513, as shown in FIG. ). Next, the resist 514 is masked with a mask K L, and the poron is I O”cr
By implanting ions at a dose of n'' or more, a base simple concentration region 515 is obtained, as shown in FIG. 5(f).
A PSG film 516 is deposited as an interlayer insulating film by CVD method,
When a contact hole is opened and an A1 electrode 517 is formed, the result is as shown in FIG. 5(g). In this way, an npn transistor whose base-collector leakage current is comparable to that formed by the conventional LOCO8 method can be obtained.
以上第1〜第3の実施例においては厚さ300〜150
0Aの多結晶シリコンを用いたがエビ成長中のシリコン
原子の向配列化速度は非常に速いので絶縁膜側壁に堆積
する多結晶シリコン膜の膜厚は特に制約されることはな
い。本発明によって裏遺した基板を用いることにより、
良好な特性をもつ半導体装置を形成することができた。In the above first to third embodiments, the thickness is 300 to 150.
Although 0A polycrystalline silicon is used, the speed of orientation of silicon atoms during growth is very fast, so there is no particular restriction on the thickness of the polycrystalline silicon film deposited on the side wall of the insulating film. By using the substrate covered by the present invention,
A semiconductor device with good characteristics could be formed.
この場合Sin、絶縁膜12はぎ予分離領域となること
は明白である。In this case, it is clear that the insulating film 12 becomes a pre-separation region.
また前記実施例においては、選択エピタキシャル成長に
用いるガスとしてS iH,CI 、 、 HCI 、
)12を混合させたものを用いたが、これに限定され
るものではなく、S 1Hc1 s 、 HCI 、
H2の混合ガス、S 1c14 、 HCI 、 H2
の混合ガス、5iHa 、 HCI 、 H。Furthermore, in the above embodiments, the gases used for selective epitaxial growth include SiH, CI, , HCI,
) 12 was used, but the mixture is not limited to this, and includes S 1Hc1 s , HCI ,
Mixed gas of H2, S 1c14, HCI, H2
A mixed gas of 5iHa, HCI, H.
の混合ガス等を用いてもよい。A mixed gas or the like may also be used.
更に上記HC+の代わりにHI 、 HBr等を用いて
もよい、即ち一般にハロゲン化水素であればよい。Furthermore, HI, HBr, etc. may be used instead of the above-mentioned HC+, that is, in general, any hydrogen halide may be used.
また前記実施例では絶縁膜としてSin、膜を用いたが
他に8i3N、膜、Sin、膜と5isN4 膜を積
層した膜、PSG膜(リンガラス膜)等でもよい。Further, in the above embodiments, a Sin film was used as the insulating film, but it may also be an 8i3N film, a stacked film of a Sin film and a 5isN4 film, a PSG film (phosphorous glass film), or the like.
【図面の簡単な説明】
第1図および第2図は従来方法による(100)面およ
び(111)母基板を用いたエピタキシャル膜の形状を
それぞれ模式的に示した図である。
また第3図は本発明の第1の実施例を工程順に示した模
式的断面図である。
第4図は本発明の第2の実施例を工程順に示した模式的
断面図である。
第5図は本発明の第3の実施例を工程順に示した模式的
断面図である。
図中の番号は以下のものをホす。
1 、401 、501・・・(100)面シリコン基
板、11−・(111)面シリコン基板、2・・−絶縁
膜、3・−露出されたシリコン基板表面、4−・エピタ
キシャルシリコン層、5−・・テーパー状ファセット、
6・−・非対称形状の凹凸、12.502,504,5
10・・・8i0□絶縁膜、13・・・多結晶シリコン
膜、14・−・露出された(100)面シリコン基板表
面、15・・・エピタキシャルシリコン層、404 、
505−・不純物がドープされた多結晶シリコン、40
5 、506 ・・・エピタキシャルシリフン層、40
4’、 505’−・チャネルスト、バー領域、406
・・・ゲート酸化膜、407・・・チャネルドープ領域
、408・・・デート電極用多結晶シリコン、409・
−・ソース・ドレイン領域、410 、516・・・層
間絶縁膜用PSGJl’%、411・・コンタクトホー
ル、412 、517・・・アルミニウムi4Q、50
3・・・フレフタ領域、514 508 511・・・
レジスト膜、509・・・ベース領域、512・・・エ
ミッタ領域、513・−・コレクタ商濃度領域、515
・・・ベース尚濃度領域つ才 7 口
(α)
(b)
牙2 ロ
) 3 し
)4図
410 4//
牙 5回
(α)
(乙)
(9)
手続補正書(方式)
%式%
事件の表示 昭和57年 特許 願第153766
号発幅名称 半導体基板の製造方法
補正をする者
事件との関係 出 願 人東京都港区芝五
丁目33番1号
(423) 日本電気株式会社
代表者 関本忠弘
′代理人
゛r大乎 、7・
5、補正命令の日付 昭和59年1月31日(発送日
)6.補正の対象
図面
のように補正する。
叉、2.・BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are diagrams schematically showing the shapes of epitaxial films using a (100) plane and a (111) mother substrate, respectively, according to a conventional method. Further, FIG. 3 is a schematic cross-sectional view showing the first embodiment of the present invention in the order of steps. FIG. 4 is a schematic sectional view showing the second embodiment of the present invention in the order of steps. FIG. 5 is a schematic sectional view showing the third embodiment of the present invention in the order of steps. The numbers in the figure refer to the following. 1, 401, 501...(100) plane silicon substrate, 11--(111) plane silicon substrate, 2...-insulating film, 3--exposed silicon substrate surface, 4--epitaxial silicon layer, 5 −・・Tapered facet,
6.--Asymmetrical unevenness, 12.502,504,5
10...8i0□ Insulating film, 13... Polycrystalline silicon film, 14... Exposed (100) plane silicon substrate surface, 15... Epitaxial silicon layer, 404,
505--polycrystalline silicon doped with impurities, 40
5, 506...Epitaxial silicon layer, 40
4', 505'--Channel strike, bar area, 406
...Gate oxide film, 407... Channel doped region, 408... Polycrystalline silicon for date electrode, 409...
- Source/drain region, 410, 516... PSGJl'% for interlayer insulating film, 411... Contact hole, 412, 517... Aluminum i4Q, 50
3...Frefter area, 514 508 511...
Resist film, 509...Base region, 512...Emitter region, 513...Collector quotient concentration region, 515
...Base concentration area strength 7 Mouth (α) (b) Fang 2 B) 3 Shi) 4 Figure 410 4// Fang 5 times (α) (Otsu) (9) Procedural amendment (method) % formula % Display of case 1981 Patent Application No. 153766
Issue name: Relationship to the case of a person amending the manufacturing method of semiconductor substrates: Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) Representative: Tadahiro Sekimoto, Representative: Tadahiro Sekimoto, 7. 5. Date of amendment order: January 31, 1982 (shipment date) 6. Correct as shown in the drawing to be corrected.叉、2.・
Claims (1)
所望の部分に開口部を設け、該開口部の絶縁膜の但り壁
にのみシリコン結晶中でP型又はN型を呈する不純物を
ドープした多結晶シリコンもしくは非晶質シリコンの薄
膜、あるいは/ンドーブの多結晶シリコンもしくは非晶
質シリコンの薄膜を形成し、次いで前記絶縁膜開口部に
のみ選択的に単結晶シリコン膜をエピタキシャル成長し
、該成長中に前記多結晶シリコンもしくは非晶質シリコ
ンの薄膜を単結晶化することを特徴とした半導体基板の
製造方法。An insulating film is formed on a Si single crystal substrate, and then an opening is provided in a desired portion of the insulating film, and an impurity exhibiting P type or N type in the silicon crystal is added only to the wall of the insulating film in the opening. forming a thin film of polycrystalline silicon or amorphous silicon doped with or doped with polycrystalline silicon or a thin film of undoped polycrystalline silicon or amorphous silicon, and then epitaxially growing a single crystal silicon film selectively only in the opening of the insulating film. . A method for manufacturing a semiconductor substrate, characterized in that the thin film of polycrystalline silicon or amorphous silicon is made into a single crystal during the growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15376682A JPS59134819A (en) | 1982-09-03 | 1982-09-03 | Manufacture of semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15376682A JPS59134819A (en) | 1982-09-03 | 1982-09-03 | Manufacture of semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59134819A true JPS59134819A (en) | 1984-08-02 |
JPH0113210B2 JPH0113210B2 (en) | 1989-03-03 |
Family
ID=15569659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15376682A Granted JPS59134819A (en) | 1982-09-03 | 1982-09-03 | Manufacture of semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59134819A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4758531A (en) * | 1987-10-23 | 1988-07-19 | International Business Machines Corporation | Method of making defect free silicon islands using SEG |
US5135884A (en) * | 1991-03-28 | 1992-08-04 | Sgs-Thomson Microelectronics, Inc. | Method of producing isoplanar isolated active regions |
US5202284A (en) * | 1989-12-01 | 1993-04-13 | Hewlett-Packard Company | Selective and non-selective deposition of Si1-x Gex on a Si subsrate that is partially masked with SiO2 |
US5213989A (en) * | 1992-06-24 | 1993-05-25 | Motorola, Inc. | Method for forming a grown bipolar electrode contact using a sidewall seed |
-
1982
- 1982-09-03 JP JP15376682A patent/JPS59134819A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4758531A (en) * | 1987-10-23 | 1988-07-19 | International Business Machines Corporation | Method of making defect free silicon islands using SEG |
US5202284A (en) * | 1989-12-01 | 1993-04-13 | Hewlett-Packard Company | Selective and non-selective deposition of Si1-x Gex on a Si subsrate that is partially masked with SiO2 |
US5135884A (en) * | 1991-03-28 | 1992-08-04 | Sgs-Thomson Microelectronics, Inc. | Method of producing isoplanar isolated active regions |
US5213989A (en) * | 1992-06-24 | 1993-05-25 | Motorola, Inc. | Method for forming a grown bipolar electrode contact using a sidewall seed |
Also Published As
Publication number | Publication date |
---|---|
JPH0113210B2 (en) | 1989-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6399429B1 (en) | Method of forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device | |
JPH0582439A (en) | Manufacture of semiconductor device with grown layer on insulating layer and mos semiconductor device | |
US9129938B1 (en) | Methods of forming germanium-containing and/or III-V nanowire gate-all-around transistors | |
US4808546A (en) | SOI process for forming a thin film transistor using solid phase epitaxy | |
KR100914807B1 (en) | Method for manufacturing semiconductor device | |
EP0449589A1 (en) | Method of producing a SOI structure | |
JPS62570B2 (en) | ||
JPH0563439B2 (en) | ||
JP2989051B2 (en) | Silicon carbide bipolar semiconductor device and method of manufacturing the same | |
JP3320180B2 (en) | Method for manufacturing thin film transistor | |
JP2001284468A (en) | Semiconductor device and manufacturing method therefor | |
JPS59134819A (en) | Manufacture of semiconductor substrate | |
JP2687393B2 (en) | Method for manufacturing semiconductor device | |
JP2756320B2 (en) | Crystal formation method | |
JPS58121642A (en) | Manufacture of semiconductor device | |
JP2527016B2 (en) | Method for manufacturing semiconductor film | |
JPS62124736A (en) | Silicon thin-film and manufacture thereof | |
JPH04373121A (en) | Manufacture of crystal base material | |
JPH0249019B2 (en) | HANDOTAISOCHINOSEIZOHOHO | |
JP2527015B2 (en) | Method for manufacturing semiconductor film | |
JP2981777B2 (en) | Semiconductor substrate manufacturing method | |
JPS6060716A (en) | Manufacture of semiconductor substrate | |
JPH0435019A (en) | Thin film transistor | |
JP2503626B2 (en) | Method of manufacturing MOS field effect transistor | |
JPS63192223A (en) | Manufacture of semiconductor device |