[go: up one dir, main page]

JPS5913476B2 - Manufacturing method for wood cement moldings - Google Patents

Manufacturing method for wood cement moldings

Info

Publication number
JPS5913476B2
JPS5913476B2 JP55043298A JP4329880A JPS5913476B2 JP S5913476 B2 JPS5913476 B2 JP S5913476B2 JP 55043298 A JP55043298 A JP 55043298A JP 4329880 A JP4329880 A JP 4329880A JP S5913476 B2 JPS5913476 B2 JP S5913476B2
Authority
JP
Japan
Prior art keywords
wood
cement
molding material
parts
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55043298A
Other languages
Japanese (ja)
Other versions
JPS56140058A (en
Inventor
博敏 加藤
幸男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP55043298A priority Critical patent/JPS5913476B2/en
Publication of JPS56140058A publication Critical patent/JPS56140058A/en
Publication of JPS5913476B2 publication Critical patent/JPS5913476B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 この発明は、建材等に用いられる木質セメント成型物の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a wood cement molded product used as a building material or the like.

従来、木毛セメント板、木片セメント板等と呼ばれる木
質セメント成型物は主として建築材料として用いられて
いるが、これらは火災に対する安全性と、切断、釘打等
の加工性の良さ、更に耐久性に優れる等の長所があり、
今後も使用量の増大が見込まれる有力な材料である。
Conventionally, wood cement molded products called wood wool cement boards, wood chip cement boards, etc. have been mainly used as building materials, but these have good fire safety, ease of processing such as cutting and nailing, and durability. It has advantages such as being excellent in
It is a powerful material whose usage is expected to increase in the future.

しかしこの木質セメント成型物には、製造上きわめて重
大な欠点がある。
However, this wood cement molded product has a very serious manufacturing drawback.

その第1は、木材の種類によっては、木材から溶出する
成分が、セメントの硬化阻害を引起すと言う事実である
The first is the fact that depending on the type of wood, components eluted from the wood may inhibit cement hardening.

この事実は以前からよく知られて居り、溶出成分のうち
主として糖類等の有機物質がセメントの硬化を阻害する
と言われている。
This fact has been well known for a long time, and it is said that among the eluted components, organic substances such as sugars mainly inhibit the hardening of cement.

溶出成分はほとんど、どの樹種に於ても多少は見られる
が、特にセメントの硬化に悪影響を及ぼす成分の種類と
量については実用的範囲に於て、樹種により顕著な差が
あることもわかっている。
Although leached components can be found to some extent in almost all wood species, it has been found that there are significant differences depending on the wood species within the practical range, especially in terms of the types and amounts of components that have a negative effect on cement hardening. There is.

例えば一般的に針葉樹ではベイツガ、ニジマツ、アカマ
ツ等は適するがスギ、カラマツ等は不適であり、広葉樹
ではアカラワン、ブナは適するがメラビ等は全く使用出
来ない。
For example, in general, coniferous trees such as hemlock, rainbow pine, and red pine are suitable, but cedar and larch are not suitable, and broad-leaved trees are suitable, such as redwood and beech, but melabi and the like cannot be used at all.

更に同一の木材でも芯材は使えるが辺材は使えない又は
その逆に芯材が使えない等の例は多く、このように安心
して使用出来る木材はきわめて限定されているのが実情
である。
Furthermore, there are many cases where the same wood can be used as a core material but not as a sapwood, or vice versa, and the reality is that the types of wood that can be used safely are extremely limited.

第2の欠点として木質セメント成型物の生産性が非常に
低いことが挙げられる。
A second drawback is that the productivity of wood cement molded products is very low.

一般に用いられるセメントはその硬化に長い時間を要し
、そのため従来木質セメント成型物製造では、硬化促進
剤の添加等様々の工夫がなされているものの、成型して
から脱型する迄に最低一昼夜は放置しておかねばならな
かった。
Commonly used cement takes a long time to harden, and for this reason, in the conventional manufacturing of wood cement moldings, various measures have been taken, such as adding hardening accelerators, but it takes at least one day and night from molding to demolding. I had to leave it alone.

このため設備、労力、広い貯蔵場所を要し、コストが高
くなる原因となっていた。
This requires equipment, labor, and a large storage area, leading to high costs.

また、加熱硬化型のセメントを用いて、木質セメント成
型物を製造することも考えられるが、木質材料が混入さ
れたセメント混合物は非常に熱伝導率が悪く、通常の加
熱プレス、スチーム加熱成型法では成型物の表層と内部
との温度差による熱膨張の差の為、表層と内部層との間
にずれが生じ強度が低下するとともに、上記木材からの
溶出成分の影響をも受けて強度低下が避けられないので
ある。
It is also possible to manufacture wood cement molded products using heat-curing cement, but cement mixtures mixed with wood materials have very poor thermal conductivity, and conventional heat press and steam heat molding methods are not suitable. Due to the difference in thermal expansion caused by the temperature difference between the surface layer and the inside of the molded product, a shift occurs between the surface layer and the inside layer, resulting in a decrease in strength, and the strength also decreases due to the influence of the components eluted from the wood. is unavoidable.

以上2点の大きな欠点のため、木質セメント成型物は優
れた性質を持ち、セメントと木材と言う基本的には安価
な材料の組合せで、ありながら、製品としては比較的高
価とならざ′るを得なかったのであり、しかもこの傾向
は最近の経済情勢からますます強くなりつ5あると言え
る。
Due to the above two major drawbacks, although wood cement molded products have excellent properties and are basically a combination of inexpensive materials such as cement and wood, they are relatively expensive as products. Moreover, it can be said that this trend is becoming stronger due to the recent economic situation5.

この発明は上記の点に鑑みてなされたものであり、その
要旨は、加熱硬化型セメント、細片化された木質材料、
水を混合してなる成型材料を二つの電極間に介在させ、
該電極間に電流を通ずることにより前記成型材料を加熱
して硬化させることを特徴とする木質セメント成型物の
製造方法に存する。
This invention was made in view of the above points, and the gist thereof is to provide heat-curing cement, shredded wood material,
A molding material made by mixing water is interposed between two electrodes,
The method of manufacturing a wood cement molded product is characterized in that the molding material is heated and hardened by passing an electric current between the electrodes.

この発明において、加熱硬化型セメントとは一定温度以
上に加熱すると急速にカルシウムスルホアルミネート(
3CaO−A1203・3CaS04・30〜32H2
0)の針状結晶を生成し硬化する性質を有するセメント
組成物を言う。
In this invention, heat-curing cement is defined as calcium sulfoaluminate (calcium sulfoaluminate) that rapidly forms when heated above a certain temperature.
3CaO-A1203・3CaS04・30~32H2
0) refers to a cement composition that has the property of producing needle-like crystals and hardening.

この加熱硬化型セメントとしてはたとえば、ポルトラン
ドセメント(普通ポルトランドセメント、早強ポルトラ
ンドセメント、超早強ポルトランドセメント、白色ポル
トランドセメントなど)、アルミナセメント、無水石膏
又は(及び)半水石膏を主成分とし必要に応じ消石灰を
加え更に好ましくは有機カルボン酸のアルカリ金属塩又
はりん酸のアルカリ金属塩を添加した混合組成物が挙げ
られる。
Examples of this heat-curing cement include portland cement (ordinary portland cement, early strength portland cement, ultra early strength portland cement, white portland cement, etc.), alumina cement, anhydrite, or (and) hemihydrate gypsum as the main component. Examples include mixed compositions in which slaked lime is added depending on the situation, and more preferably an alkali metal salt of an organic carboxylic acid or an alkali metal salt of phosphoric acid is added.

上記混合組成物の望ましい組成範囲としては、ポルトラ
ンドセメント50〜96重量部(80〜96重量部)、
アルミナセメント25〜2.0重量部(10〜2.0重
量部)、無水石膏又は(及び)半水石膏15〜1.5重
量部(5〜1.5重量部)及び消石灰10〜0重量部(
5〜0重量部)の混合比(かっこ内は更に好ましい範囲
)であり、この混合物100重量部に対し有機カルボン
酸のアルカリ金属塩0.2〜2.0重量部又はリン酸の
アルカリ金属塩0.4〜2.5重量部を添加すればセメ
ントペーストの可使時間が延長されるとともに加熱硬化
した際の成型物の強度がより向上するので好ましい。
The desirable composition range of the above mixed composition includes 50 to 96 parts by weight (80 to 96 parts by weight) of Portland cement;
25-2.0 parts by weight of alumina cement (10-2.0 parts by weight), 15-1.5 parts by weight (5-1.5 parts by weight) of anhydrite or/and hemihydrate, and 10-0 parts by weight of slaked lime. Department (
5 to 0 parts by weight) (more preferred ranges are in parentheses), and 0.2 to 2.0 parts by weight of an alkali metal salt of organic carboxylic acid or an alkali metal salt of phosphoric acid to 100 parts by weight of this mixture. Adding 0.4 to 2.5 parts by weight is preferable because it extends the pot life of the cement paste and further improves the strength of the molded product when heated and hardened.

この発明において細片化された木質材料としては各種木
材の木片、木粉、木毛などが用いられる。
In this invention, wood chips of various types of wood, wood flour, wood wool, etc. are used as the wood material cut into pieces.

また、この発明では成型材料は加熱硬化型セメント、木
質材料、水の混合物の他に必要に応じてたとえは、防水
剤、撥水剤、発泡剤、木質材料の腐蝕防止剤、燃焼防止
剤などを添加したもの、更に補強、増量の目的で各種の
骨材、繊維類などの物質を混合したものが用いられる。
In addition to the mixture of heat-curing cement, wood material, and water, the present invention also uses molding materials such as waterproofing agents, water repellents, foaming agents, corrosion inhibitors for wood materials, and combustion inhibitors. , and mixtures with various aggregates, fibers, and other substances for the purpose of reinforcement and weight increase.

この発明では上記の如き組成の成型材料を少なくとも内
面が絶縁材料からなる型に入れ、型内に設けた二つの電
極間に電流を通ずることにより或いはそれぞれ電極とし
た二つの金属製無端帯に挾みつつ移行させる間に成型材
料を加熱するなどして硬化させるものであるが、その時
の温度は60℃〜90℃が好適である。
In this invention, a molding material having the composition as described above is placed in a mold whose inner surface is made of an insulating material, and the molding material is placed between two metal endless bands each serving as an electrode, by passing an electric current between two electrodes provided in the mold. During the transfer, the molding material is cured by heating, and the temperature at this time is preferably 60°C to 90°C.

60℃よりも低いと成型材料の硬化速度が遅く、90°
Cよりも高温で加熱すると得られる成型物は長期強度の
低いものとなり易い。
If the temperature is lower than 60°C, the curing speed of the molding material will be slow;
When heated at a higher temperature than C, the molded product obtained tends to have low long-term strength.

尚、このような条件下では一般に成型材料の加熱開始か
ら約一時間以内には型から取り出し得る程度の硬化が完
了する。
Under such conditions, the molding material is generally cured to the extent that it can be removed from the mold within about one hour from the start of heating.

第1図はこの発明方法の一例を示すもので、1は絶縁材
料より作られた型であり、一方の相対する内面にそれぞ
れ金属板が設置されて電極2,2とされている。
FIG. 1 shows an example of the method of this invention, in which numeral 1 is a mold made of an insulating material, and electrodes 2, 2 are each provided with metal plates on one opposing inner surface.

この型1に前記の如き組成の成型材料Aを入れ、加圧板
3を加圧装置4により動かして加圧成型し、そのままの
加圧状態で或いは加圧を解いた状態で両電極間に交流電
流を通じ発生するジュール熱により成型材料Aをその内
部から60℃〜90℃に加熱する。
The molding material A having the above-mentioned composition is put into the mold 1, and the pressure plate 3 is moved by the pressure device 4 to perform pressure molding. Molding material A is heated from the inside to 60° C. to 90° C. by Joule heat generated through electric current.

成型物Aは均一に加熱され急速に硬化し遅くとも1時間
以内には型1から木質セメント成型物を取り出し得る。
The molded product A is uniformly heated and hardens rapidly, and the wood cement molded product can be removed from the mold 1 within one hour at the latest.

型1から取り出した木質セメント成型物は必要に応じて
薄板状に切り複数枚の木質セメント板としてもよG)。
The wood cement molded product taken out from mold 1 can be cut into thin plates and made into multiple wood cement boards if necessary.

この実施例では型1が絶縁材料より作られているが、内
面のみ絶縁材料を貼ったものでもよいし、電極板2,2
を上下水平な設けてもよいことは勿論である。
In this embodiment, the mold 1 is made of an insulating material, but the mold 1 may be made of an insulating material only on the inner surface, or the electrode plates 2 and 2 may be made of an insulating material.
Of course, they may be provided vertically and horizontally.

第2図は同時に複数枚の板状木質セメント成型物を製造
する場合の実施例である。
FIG. 2 shows an example in which a plurality of plate-shaped wood cement moldings are manufactured at the same time.

型1の下面に一方の金属板の電極2を設ける。An electrode 2 of one metal plate is provided on the lower surface of the mold 1.

その上に所定厚さに前記混合物A1を入れ、次いで金属
板5を敷く。
The mixture A1 is put thereon to a predetermined thickness, and then the metal plate 5 is laid down.

以下順次この工程を繰り返し金属板5,5・・・・・・
によって仕切られた複数の成型材料層A、、A+・・・
・・・を形成し、最上面に他方の電極板2を設置する。
This process is then repeated one after another for metal plates 5, 5...
A plurality of molding material layers A, , A+...
... is formed, and the other electrode plate 2 is installed on the uppermost surface.

必要に応じて上部電極板2の上に加圧装置4に連結され
た加圧板3を電極板2を加圧可能に設ける。
If necessary, a pressurizing plate 3 connected to a pressurizing device 4 is provided on the upper electrode plate 2 so that the electrode plate 2 can be pressurized.

両電極2,2間に電流を通じ各成型材料層A1.A、・
・・・・・を加熱硬化させ、その後脱型し複数枚の板状
木質セメント成型物を得る。
A current is passed between the electrodes 2, 2, and each molding material layer A1. A...
... is heated and hardened, and then demolded to obtain a plurality of plate-shaped wood cement molded products.

尚、金属板面にレリーフ模様を施しておけば模様付の成
型物が得られる。
Note that if a relief pattern is applied to the surface of the metal plate, a patterned molded product can be obtained.

この実施例の如く、電極板、仕切用金属板を水平にして
成型材料層を水平に形成すると、その長手方向にほぼ一
致するよう木質材料の長手方向が水平になって配列され
強度的に好ましい結果が得られる。
As in this example, when the electrode plate and the partitioning metal plate are held horizontally and the molding material layer is formed horizontally, the longitudinal direction of the wood material is arranged horizontally so that it almost coincides with the longitudinal direction, which is preferable in terms of strength. Get results.

第3図は板状木質セメント成型物を連続的に製造する例
である。
FIG. 3 shows an example of continuous production of plate-shaped wood cement moldings.

6は回動する無端帯であり、その上方に間隔をおいて3
つの無端帯?、8.9が回動可能且つ下方の無端帯6に
供給されて移行する成型材料Aを抑圧可能に設けられて
いる。
6 is a rotating endless band, and 3 are placed at intervals above it.
Two endless belts? , 8.9 are provided so as to be rotatable and capable of suppressing the molding material A that is supplied to and transferred to the endless band 6 below.

下方の無端帯6と上方の第3の無端帯9とはその走行表
面部が金属製とされて電極としても利用されその間に移
行する成型材料Aは両電極間を流れる電流により加熱硬
化して板状の木質セメント成型物を得る。
The running surfaces of the lower endless band 6 and the upper third endless band 9 are made of metal and are also used as electrodes, and the molding material A transferred between them is heated and hardened by the current flowing between both electrodes. Obtain a plate-shaped wood cement molding.

尚、上方の第1及び第2の無端帯7,8により下方無端
帯6に供給された成型材料Aは順次加圧されて所定厚さ
の板状に成型されるものであり、10は成型物の切断装
置である。
The molding material A supplied to the lower endless belt 6 by the upper first and second endless belts 7 and 8 is sequentially pressurized and molded into a plate shape of a predetermined thickness; It is a device for cutting things.

この発明方法では加熱硬化型セメント、細片化された木
質材料を含む成型材料を電極間に通ずる電流によって加
熱するから、内部から均一に効率良く加熱され木質材料
の硬化阻害成分の溶出前に実質的に硬化が進行して成型
物が得られることになり、木質材料の樹種が制限される
ことなくその使用範囲が広まり経済的となるとともに、
強度の優れた木質セメント成型物が得られるのである。
In the method of this invention, the molding material containing heat-curing cement and shredded wood material is heated by an electric current passed between the electrodes, so it is heated uniformly and efficiently from the inside, and the hardening-inhibiting components of the wood material are substantially heated before they are eluted. Curing progresses over time and a molded product is obtained, and the range of use of the wood material is expanded without restrictions on the species of wood, making it more economical.
A wood cement molded product with excellent strength can be obtained.

また、前記加熱方法によれば加熱条件制御も容易である
ばかりでなく型の外部からの加熱方式では熱伝導率の低
い木質材料混入の成型材料に対しては熱効率が悪いとい
った点も改善され、設備的にも有利なものとなる。
Furthermore, according to the heating method, it is not only easy to control the heating conditions, but also improves the problem that heating methods from outside the mold have poor thermal efficiency for molding materials containing wood materials with low thermal conductivity. It is also advantageous in terms of equipment.

次に、実施例を説明する。Next, an example will be described.

これらの実施例では重量部を単に部という。In these examples, parts by weight are simply referred to as parts.

実施例 1 超早強ポルトランドセメント50部、アルミナセメント
25部、半水石膏15部、消石灰10部、クエン酸ソー
ダ1部からなる加熱硬化型セメント100部とカラマツ
材チップ40部と水60部とを混合し、この成型材料を
第1図の如き装置の型に入れ、23ky/iで圧締めし
た状態で25Aの電流が流れるよう外部抵抗を調節して
両電極間に100■の交流電圧を加えた。
Example 1 100 parts of heat-curing cement consisting of 50 parts of ultra-early strength Portland cement, 25 parts of alumina cement, 15 parts of gypsum hemihydrate, 10 parts of slaked lime, and 1 part of sodium citrate, 40 parts of larch wood chips, and 60 parts of water. This molding material was put into the mold of the apparatus shown in Fig. 1, and the external resistance was adjusted so that a current of 25 A would flow while the molding material was pressed at 23 ky/i, and an AC voltage of 100 μ was applied between both electrodes. added.

5分後に通電を停止しく成型材料温度77°C)、5分
経過後に脱型したところ、比重1、■、曲げ強度75k
g/cmt(脱型直後)の木質セメント成型物が得られ
た。
After 5 minutes, the current was stopped and the molding material temperature was 77°C), and when the mold was removed after 5 minutes, the specific gravity was 1, ■, and the bending strength was 75k.
g/cmt (immediately after demolding) was obtained.

実施例 2 超早強ポルトランドセメント96部、アルミナセメント
2.2部、半水石膏1.5部、消石灰0.3部、クエン
酸ソーダ0.8部からなる加熱硬化型セメント100部
に水50部、杉チップ40部を加えて混合した成型材料
を第2図に示す装置により成型した。
Example 2 50 parts of water was added to 100 parts of heat-curing cement consisting of 96 parts of ultra-early strength Portland cement, 2.2 parts of alumina cement, 1.5 parts of gypsum hemihydrate, 0.3 parts of slaked lime, and 0.8 parts of sodium citrate. The molding material, which was mixed with 40 parts of cedar chips, was molded using the apparatus shown in FIG.

即ち、仕切用鉄板には厚さ3.2mmのものを使用し、
10層の成型材料層を形成しこれを圧力10kg/iで
圧締めつつ両電極間に100■の交流電圧を加え2OA
の電流を通じた。
In other words, a 3.2 mm thick iron plate was used for the partition,
10 layers of molding material were formed, and while compressed with a pressure of 10 kg/i, an AC voltage of 100 μ was applied between both electrodes to 2 OA.
passed the electric current.

15分後通電停止しく成型材料温度70℃)、通電停止
後5分経過して脱型したところ、比重0.98、曲げ強
度20 kg /cr7t (脱型直後)の10枚の木
質セメント板を得た。
After 15 minutes, the power supply was stopped and the molding material temperature was 70°C). When the mold was removed 5 minutes after the power supply was stopped, 10 wood cement boards with a specific gravity of 0.98 and a bending strength of 20 kg/cr7t (immediately after removal from the mold) were formed. Obtained.

実施例 3 超早強ポルトランドセメント82部、アルミナセメント
9部、半水石膏5.4部、消石灰3,6部、クエン酸ソ
ーダ016部からなる加熱硬化型セメント100部に水
50部、カラマツ材チップ40部を加えて混合した成型
材料を第3図に示す装置により成型した。
Example 3 100 parts of heat-curing cement consisting of 82 parts of ultra-early strength Portland cement, 9 parts of alumina cement, 5.4 parts of gypsum hemihydrate, 3.6 parts of slaked lime, and 0.16 parts of sodium citrate, 50 parts of water, and larch wood. The molding material mixed with 40 parts of chips was molded using the apparatus shown in FIG.

このとき無端帯0.5m/分の速さで回動させ、第3の
無端帯9による加圧力は15kg/i、電極内に3OA
の電流を通じた(40■の交流電圧)ところ成型材料は
80℃に昇温し更に3m走行したところで切断可能であ
った。
At this time, the endless band was rotated at a speed of 0.5 m/min, the pressing force by the third endless band 9 was 15 kg/i, and the electrode had a pressure of 3 OA.
When a current of 40 μm was applied (ac voltage of 40 μm), the temperature of the molded material was raised to 80° C., and it was possible to cut the molded material after traveling an additional 3 m.

10は切断装置である。10 is a cutting device.

このようにして得た成型物は比重1.03、曲げ強度4
2 kg/cyit (切断直後)であった。
The molded product thus obtained had a specific gravity of 1.03 and a bending strength of 4.
2 kg/cyit (immediately after amputation).

比較例 超早強ポルトランドセメント100部に水50部、杉チ
ップ40部を加えて混合した成型材料を、第2図に示す
装置により、実施例2と同様に10層にして、圧力10
kg/ffl圧締めつつ、通電加熱することなく、20
°C265%RHの室内に3日間放置した後、脱型した
ところ、成型された木質セメント板の曲げ強度は2/i
であった。
Comparative Example A molding material prepared by adding 100 parts of ultra early strength Portland cement, 50 parts of water, and 40 parts of cedar chips was formed into 10 layers using the apparatus shown in FIG.
kg/ffl while tightening and without heating with electricity, 20
After leaving the mold in a room at 265% RH for 3 days, the molded wood cement board had a bending strength of 2/i.
Met.

上記実施例から、本発明方法によれば、木質材料の樹種
に関係なく、強度の優れた成型物が得られることがわか
る。
From the above examples, it can be seen that according to the method of the present invention, molded products with excellent strength can be obtained regardless of the species of the wood material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれこの発明方法を実施する装置
例の縦断面正面図である。 1・・・・・・型、2・・・・・・電極、6,7,8,
9・・・・・・無端帯、A、A1・・・・・・成型材料
1 to 3 are vertical cross-sectional front views of examples of apparatus for carrying out the method of the present invention, respectively. 1...type, 2...electrode, 6,7,8,
9... Endless band, A, A1... Molding material.

Claims (1)

【特許請求の範囲】 1 加熱硬化型セメント、細片化された木質材料、水を
混合してなる成型材料を二つの電極間に介在させ、該電
極間に電流を通ずることにより前記成型材料を加熱して
硬化させることを特徴とする木質セメント成型物の製造
方法。 2 成型材料が少なくとも内面が絶縁材料からなり内部
に電極を対峙させた型内に入れられて加熱硬化されるも
のであることを特徴とする特許請求の範囲第1項記載の
木質セメント成型物の製造方法。 3 成型材料が電極とされた二つの金属製無端帯に挾ま
れて加熱硬化されるものであることを特徴とする特許請
求の範囲第1項記載の木製セメント成型物の製造方法。 4 型内に入れられた成型材料が金属を介在させること
によって複数層に分けられたものであることを特徴とす
る特許請求の範囲第2項記載の木製セメント成型物の製
造方法。 5 加熱硬化型セ7メントが、有機カルボン酸のアルカ
リ金属塩又はりん酸のアルカリ金属塩を含むものである
ことを特徴とする特許請求の範囲第1項、第2項、第3
項又は第4項記載の木質セメント成型物の製造方法。
[Claims] 1. A molding material made by mixing heat-curing cement, shredded wood material, and water is interposed between two electrodes, and the molding material is formed by passing an electric current between the electrodes. A method for producing a wood cement molded product, characterized by curing it by heating. 2. A wood cement molded product according to claim 1, characterized in that the molding material is placed in a mold having at least an inner surface made of an insulating material and having electrodes facing each other and hardened by heating. Production method. 3. The method of manufacturing a wooden cement molded article according to claim 1, wherein the molding material is sandwiched between two metal endless bands serving as electrodes and hardened by heating. 4. The method for manufacturing a wooden cement molded article according to claim 2, wherein the molding material placed in the mold is divided into a plurality of layers by interposing metal. 5. Claims 1, 2, and 3, characterized in that the heat-curable cement contains an alkali metal salt of an organic carboxylic acid or an alkali metal salt of phosphoric acid.
4. A method for producing a wood cement molded product according to item 4.
JP55043298A 1980-04-02 1980-04-02 Manufacturing method for wood cement moldings Expired JPS5913476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55043298A JPS5913476B2 (en) 1980-04-02 1980-04-02 Manufacturing method for wood cement moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55043298A JPS5913476B2 (en) 1980-04-02 1980-04-02 Manufacturing method for wood cement moldings

Publications (2)

Publication Number Publication Date
JPS56140058A JPS56140058A (en) 1981-11-02
JPS5913476B2 true JPS5913476B2 (en) 1984-03-29

Family

ID=12659878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55043298A Expired JPS5913476B2 (en) 1980-04-02 1980-04-02 Manufacturing method for wood cement moldings

Country Status (1)

Country Link
JP (1) JPS5913476B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500930A (en) * 1984-09-21 1987-04-16 フォルス コンスルト コンマンディ−ッティ イフティオ、カ−ベ− Fire-resistant wood composite materials, especially wallboards, and methods of manufacturing the same
JPS62159365U (en) * 1986-03-25 1987-10-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204855A (en) * 1982-05-24 1983-11-29 住友セメント株式会社 Manufacture of excelsior cement board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500930A (en) * 1984-09-21 1987-04-16 フォルス コンスルト コンマンディ−ッティ イフティオ、カ−ベ− Fire-resistant wood composite materials, especially wallboards, and methods of manufacturing the same
JPS62159365U (en) * 1986-03-25 1987-10-09

Also Published As

Publication number Publication date
JPS56140058A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
JPH10231161A (en) Heat-curing type cement composition and production of wood-based cement board using the same composition
JPS5913476B2 (en) Manufacturing method for wood cement moldings
JPH07291763A (en) Production of inorganic plate
JPS6168358A (en) Manufacture of excelsior cement molded product
JPH02141446A (en) Production of woody-inorganic board
US1972527A (en) Production of preformed plaster slabs, sheets, and other articles
JP2001130940A (en) Production of wood cement board
JP3980183B2 (en) Manufacturing method of inorganic board
JPH1112018A (en) Wood cement composition and production of wood cement board by using the composition
EP0729926A1 (en) Process for producing gypsum building elements and gypsum building elements produced by said process
JPH0687637A (en) Production of woody cement molded goods
JPH04325202A (en) Manufacture of hard cement chip board
JPS60141685A (en) Raw material composition for lightweight foamed concrete
US1063899A (en) Process of forming cement blocks.
SU1726258A1 (en) Method for production of laminated decorative facing panels
JPH11116314A (en) Heat-setting cement composition and production of cemented excelsior board by using the composition
JP2619932B2 (en) Manufacturing method of inorganic products
KR930009890B1 (en) Process for the production of bodies particularly building elements
FR2317249A1 (en) PROCESS FOR THE MANUFACTURE OF CEMENT-BASED AGGLOMERS AND PREFABRICATED PRODUCTS THUS OBTAINED
CN110861171A (en) Microwave modified inorganic gel wood-based board and preparation method thereof
JPS58161984A (en) Manufacture of inorganic hardened body
JPH106317A (en) Production of cement panel
US1620091A (en) Insulation composition
SU1599193A1 (en) Method of producing laminated asbestos-cement articles
JPS5946905B2 (en) Method of manufacturing architectural boards