JPS5913476A - Image pickup mechanism - Google Patents
Image pickup mechanismInfo
- Publication number
- JPS5913476A JPS5913476A JP57122392A JP12239282A JPS5913476A JP S5913476 A JPS5913476 A JP S5913476A JP 57122392 A JP57122392 A JP 57122392A JP 12239282 A JP12239282 A JP 12239282A JP S5913476 A JPS5913476 A JP S5913476A
- Authority
- JP
- Japan
- Prior art keywords
- image pickup
- imaging
- photoelectric conversion
- reflection mirror
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/58—Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は固体撮像素子の光電変換画素を高密度で形成す
ることなく、その水平解像度乞同上せしめる撮像機構(
二関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an imaging mechanism (
Two matters.
撮像手段C二は、撮像管と固体解像素子があるが、後者
は前者ζ二比しコンパクトであり焼付に伴う残像もない
等の利点がある。しかし、この固体撮像素子は、撮像面
を光電変換画素にて形成しており。The imaging means C2 includes an image pickup tube and a solid-state resolution element, and the latter has advantages over the former ζ2, such as being more compact and free of afterimages due to image burning. However, in this solid-state imaging device, the imaging surface is formed of photoelectric conversion pixels.
解像度は光電変換画素の形成密度C二よって制限される
。尚、解像度(:付いては、垂直解像度と水子解像度と
があるが、垂直解像度(二付いては水平走査線数に制限
され、比較的問題となるのは水平解像度である。そこで
、水平解像度を改善するため′yt、電変換画素を水平
方向(二高密度1ヒするため種々の研究が為されている
が、高密度化には製造上の困#4Iを伴うばかりか、コ
ストが嵩む結果となった。The resolution is limited by the formation density C2 of photoelectric conversion pixels. Note that there are two types of resolution: vertical resolution and water resolution, but vertical resolution (2) is limited by the number of horizontal scanning lines, and it is the horizontal resolution that is relatively problematic. In order to improve the resolution, various studies have been conducted to increase the density of the electrical conversion pixels in the horizontal direction (higher density), but increasing the density not only involves manufacturing difficulties but also increases costs. The result was an increase in volume.
そこで、光電変換画素の形成密度乞そのまま(二撮像度
のみ同上せしめる撮像機構が望まれる。その一方法とし
て撮像面(二対する光電変換画素の受光位置を2位置C
:変位せしめて変位前後の撮像出力!合成することζ二
より得られる撮像出力の情報密度を倍にすることが考え
られる。具体的1:は、光学的(二結像面ン変位させる
方法と、各々の光電変換画素乞2分割遮光するマスクを
変位させる方法と、撮像素子自体を変位させる方法の3
種類が考えられる。尚変位させる方間は水平方向であれ
ば水平方向解像度が同上し、垂直方向であれば垂直解像
I’Zが同上し、画素列又は画素行以上の解像度を得る
ことができる。Therefore, it is desirable to have an imaging mechanism that allows the formation density of photoelectric conversion pixels to remain the same (only the same imaging degree as above).One method is to change the light receiving position of the photoelectric conversion pixels to two positions
: Displacement and image output before and after displacement! It is conceivable to double the information density of the imaging output obtained by combining ζ2. Specific 1: Optical method (method of displacing two imaging planes, method of displacing a mask that blocks light by dividing each photoelectric conversion pixel into two, and method of displacing the image sensor itself)
There are many possible types. If the displacement direction is horizontal, the horizontal resolution will be the same as above, and if it is the vertical direction, the vertical resolution I'Z will be the same as above, and a resolution higher than the pixel column or pixel row can be obtained.
本発明は、上述する点に鑑み為されたものであり、光学
的に結像面を光電変換画素の半ピップ分だけ変位せしめ
、変位前後の被写体像を合成して高解像度の静止画像2
得る新規且つ有効な撮像機構を提案するものである。The present invention has been made in view of the above-mentioned points, and it optically displaces the imaging plane by half a pip of the photoelectric conversion pixel, and synthesizes the subject images before and after the displacement to create a high-resolution still image 2.
This paper proposes a new and effective imaging mechanism.
以下、本発明の動作原理に付いて第1図と第2る様に水
平・垂直方向C″−格子状の間隙7形成しており、この
間隙(二光電変換出力伝送路乞形成している。水平方向
(二関し光電変換画素と間隙の占有比は大体7:6であ
る。従って$1図図1二図示する状態から、(B)(−
図示する様(二画素ピッチ(Plの半分だけ水平方向に
撮像素子が変位すると、画素列の中心は変位前の隣接垂
直間隙の中心に一致するため、第2図(二図示する様に
、一部受光域は重複するものの被写体の異なる位置を受
光することになる。上述する説明は便宜上固体撮像素子
乞変位せしめた例であるが、結像面と固体I最伸素子の
関係は相体的なものであり、撮像画をP/’> 変位
させても同様の結果となることは容易(二11解される
。Hereinafter, regarding the operating principle of the present invention, as shown in Figs. .The occupation ratio of the photoelectric conversion pixel and the gap in the horizontal direction (2) is approximately 7:6. Therefore, from the state shown in Figure 1, (B) (-
As shown in FIG. Although the partial light-receiving areas overlap, light is received from different positions of the subject.The above explanation is an example in which the solid-state image sensor is displaced for convenience, but the relationship between the imaging plane and the solid-state I-most extended element is relative. Therefore, it is easy to see that the same result will be obtained even if the captured image is displaced by P/'> (211).
そこで、本実施例では、第6図(二図示する様に結像面
全元号的(二変位せしむべぐ、ビデオカメラのレンズ(
Llを通過した入射光の光路を直角C二変更和
する反射ミラー(1乞その反へと直焚する方向(二画素
ピッチの<zJ”E)−’だけ進退せしめ、反射光が形
成する撮像素子tDl上の撮像画(Dl)をその画素列
(=直交する水平方間C:li!1i素列%ビツヂ分だ
け変位せしめて変位の前後(=於ける撮像出力を合成し
て1フィルド分の静止画像χ磁気記録するものである。Therefore, in this embodiment, as shown in FIG.
A reflecting mirror that sums the optical path of the incident light that has passed through Ll at a right angle C2 (a reflection mirror that moves forward and backward in the direct firing direction (2 pixel pitch <zJ"E)-' in the opposite direction, and the reflected light forms an image The captured image (Dl) on the element tDl is displaced by its pixel row (=orthogonal horizontal direction C:li!1i pixel row %bit), and the image pickup outputs before and after the displacement (=1 field are synthesized) Still images of χ are recorded magnetically.
上述する反射ミラー((4)ン変位せしめる手段は第4
図に図示する様にスピーカの振動県構(二類似する構成
であって、磁石fi+の磁極(二当接するセンターポー
ル(2)とヨーク(3)の対同間隙に筒体(4)7巻回
したボイスコイル(5)を配し、筒体(4)ン支持する
振動板(6)と反射ミラー(MJv支持する支持板(7
)の間(−ダンパー(8)ン介している。よって反射ミ
ラー((4)はボイスコイル(5)に流れる′雀流レベ
ルに応じて」二下動する。The means for displacing the above-mentioned reflecting mirror ((4) is the fourth
As shown in the figure, the vibration structure of the speaker (two similar configurations), the magnetic poles of the magnet fi+ (two abutting center poles (2) and yokes (3), with seven turns of a cylinder (4) placed between the same gap). A rotated voice coil (5) is arranged, a diaphragm (6) supporting the cylinder (4) and a support plate (7) supporting the reflecting mirror (MJv) are arranged.
Therefore, the reflecting mirror (4) moves downward depending on the level of the stream flowing to the voice coil (5).
第5図は、本実施例の撮像出力合成回路を示゛[。FIG. 5 shows the imaging output synthesis circuit of this embodiment.
本実施例は、ミラーの2位置に対応する撮像出力を合成
して1フイールドの映像信号を合成するものであって、
採用する撮像素子は、撮像画(DI)の光電変換出力を
フィールド単位で手直帰線期間に記憶部(D2)へ転送
し、この記憶部より順次撮像出力を導出する周知のOO
D撮像坂である。In this embodiment, one field of video signal is synthesized by combining image pickup outputs corresponding to two positions of a mirror.
The adopted image sensor is a well-known OO that transfers the photoelectric conversion output of the imaged image (DI) to the storage section (D2) in the hand retrace period in units of fields, and sequentially derives the imaging output from this storage section.
D is the imaging slope.
まず、録画指令が為されると、その時点で撮像中の第1
フイールド(Fl)に続く第2フイールド(F2)撮像
期間中(二反夛↑ミラー(問が第1位置より第2位置に
変位せしめられる。よって@1フィールド(Fl)の撮
像出力は、ミラー(Mlの第1位置(二於ける1最像出
力であり、・′育2フィールド(F2)の撮像出力は、
移動中の撮像出力であり、第3フイTルド(F3)の撮
像出力が、第2位置(二於ける撮像出力である。従って
181切換スイツチ(EIWI)は弔1フィールド(F
l)と第3フイールド(F!! )の撮像出力Y選択し
、・贋2フィルド(F2)を含むその他の41像出力を
無効(アース)している。選択された第1フイールド(
Fl)の撮像出力は、第2切換スイツチ(SW2 )(
二で遅延回路(9)(二人力される。この遅延回路(9
)はCODのアナログ遅延線で構成され、その遅延量を
2フイールド(二股定しており、遅延出力タ第5フィー
ルドのj1^像出力(:同門せしめている。よって、第
6フイールド(F3)の4]“ゆ像出力は、第2(9ン
切換スイッチ(SW2 N二よって前記遅延回路、とは
別の線路(:供給される。第6フイールド(F5)の撮
像出力が導出されると第3切喚スイツチ(sws)は、
第1フイールド(Fl)の(岐像出力である>F14
廷出力と、第6フイールド(F5)の撮像出力である非
遅延出力と!交互(−高速で切り換え、次段の信号処理
回路(+0)に情報密度を2倍(=シた合成比イ懐出力
?入力しており、導出される輝度信号γ)や色差信号(
R−Y)CB−Y)も情報密度を2倍にして導出される
。尚第6図は各切換スイッチ(SWI )(SW2)(
SWg)のスイッチング制御入力波形!示す。この波形
は説明の都台上、1 u:lti…Jを録画する場合を
例C二説明しているが、反射ミラーの変位を含めて上述
する動作を連続させれば、静止画を6フイ一ルドg二1
回づつ形成することもできる。First, when a recording command is issued, the first
During the second field (F2) imaging period following the field (Fl), the mirror is displaced from the first position to the second position.Therefore, the imaging output of @1 field (Fl) is mirror ( The first image output at the first position (2) of Ml, and the imaging output of the second field (F2) is
This is the imaging output while moving, and the imaging output of the third field (F3) is the imaging output at the second position (2). Therefore, the 181 changeover switch (EIWI)
1) and the third field (F!!) are selected, and the other 41 image outputs including the false 2nd field (F2) are disabled (grounded). Selected first field (
The imaging output of Fl) is controlled by the second changeover switch (SW2) (
Two delay circuits (9) (two people are powered. This delay circuit (9)
) is composed of a COD analog delay line, and its delay amount is determined in two fields (two branches), and the delay output is the same as the fifth field j1^ image output (:). Therefore, the sixth field (F3) 4] "The image output is supplied to a line different from the delay circuit by a second (9) changeover switch (SW2). When the imaging output of the 6th field (F5) is derived, The third switch (sws) is
The first field (Fl) (which is the branched image output >F14
and the non-delayed output which is the imaging output of the 6th field (F5)! Alternately (-switches at high speed, doubles the information density (=synthesis ratio) to the next stage signal processing circuit (+0), inputs the derived luminance signal γ) and color difference signal (
RY)CB-Y) is also derived by doubling the information density. Figure 6 shows each changeover switch (SWI) (SW2) (
SWg) switching control input waveform! show. This waveform is used for explanation purposes only.Example C2 explains the case of recording 1 u: lti...J, but if the above-mentioned operation including the displacement of the reflection mirror is continued, a still image can be recorded in 6 frames. 1rd g21
It is also possible to form it one time at a time.
上述する本実施例によれば、得られる画像の水平解像度
を2倍(二することができる。尚、結像面を垂直方間(
:変位せしめれば1フイールド1半分の画素行を配する
だけで1フイ一ルド分の画素行が存在するのと同等の解
像度が得られる。また本実施例では1反射ミラー(財)
の変位によって結像面が撮像面より画素%ピッチ分だけ
外れ、合焦点状態ン脱することになるが画素%ピッチ分
の焦点脚整は小さ過ぎて調整困難であり、使用上も全く
問題ない
よって、本発明によれば、反射ミラーの変位(−よって
結像面を変位させるだけで変位の方向に関する解像度を
同上せしめることができ、その効果は大である。According to this embodiment described above, the horizontal resolution of the obtained image can be doubled.
: By displacing the pixels, just by arranging one and a half pixel rows for one field, a resolution equivalent to the presence of pixel rows for one field can be obtained. In addition, in this example, one reflective mirror
Due to the displacement of , the imaging plane moves away from the imaging plane by the amount of pixel % pitch, causing the focus to go out of focus, but the focal length adjustment by the pixel % pitch is too small and difficult to adjust, so there is no problem in use. Therefore, according to the present invention, the resolution in the direction of displacement can be increased simply by displacing the reflecting mirror (-therefore, displacing the imaging plane), and the effect is great.
第11図及び第2囚は本発明の解像度同上原理説明図、
弔6図は本発明の購成の模式的説明図、第4図は本発明
の一実施例(−係る反射ミラーの振動機構にj3明凶、
第5図は撮像出力合成のための回路ブロック図を示j0
主な図番の説明
(縛・・・反1jJ ミラー、[DJ・・・固体撮像素
子、(D1〕・・・撮像面。
第1図
第2図
箪3図
第4図
1
手 続 補 正 書FIG. 11 and the second prisoner are resolution diagrams illustrating the same principle as above of the present invention,
Figure 6 is a schematic explanatory diagram of the purchase of the present invention, and Figure 4 is an embodiment of the present invention.
Fig. 5 shows a circuit block diagram for image pickup output synthesis. Figure 1 Figure 2 Figure 3 Figure 4 Figure 1 Procedure Amendment
昭和57年11月72日
特許庁長官殿
1、事件の表示
昭和57年特許願第122592号
2、発明の名称
撮 像 機 構
6、補正をする者
特許出願人
住所 守口市京阪本通2丁目18番地
名称(188)三洋電機株式会社
代表者 井 植 薫
4、代理人
住所 守口市京阪本通2丁目18番地
6、補正の対象
明細書の[図面の簡単な説明丁の欄
7、補正の内容
明細書第8日第4行目をF記の通り補正する。
記
[ブロック図、第6図は第5図のスイッチング動作を説
明するにめのスイッチング波形図をそれぞれ示す。」
以 上November 72, 1980, Commissioner of the Japan Patent Office 1, Indication of the case, Patent Application No. 122592, 1982, 2, Title of the invention: Imaging mechanism 6, Person making the amendment Patent applicant Address: 2-chome, Keihan Hondori, Moriguchi City 18 Name (188) Sanyo Electric Co., Ltd. Representative Kaoru Iue 4, Agent address 2-18-6 Keihan Hondori, Moriguchi City Amend the 4th line of the 8th day of the statement of contents as shown in F. The block diagram and FIG. 6 each show a switching waveform diagram for explaining the switching operation of FIG. 5. "that's all
Claims (1)
素子と、ビデオカメラのレンズと前記固体撮像素子との
間の光路を変更する反射ミラーと、該反射ミラーをその
面(二対して垂直方向2位置C二移動せしめ前記撮像面
C於る被写体の結像面?前記光電変換画素の形成ピッチ
の半分だけ変位せしめる手段と、変位の前後(二於ける
撮像出力を合成する手段とをそれぞれ配し、明記結像面
の変位方向(−関し解像度を同上せしめる撮像機構。(1) A solid-state image sensor that forms an image sensor with a photoelectric conversion pixel; a reflecting mirror that changes the optical path between the video camera lens and the solid-state image sensor; means for displacing the imaging plane of the object on the imaging plane C by half the formation pitch of the photoelectric conversion pixels; and means for synthesizing the imaging output before and after the displacement (in the two positions), respectively The displacement direction of the imaging plane (-) is an imaging mechanism that increases the resolution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57122392A JPS5913476A (en) | 1982-07-14 | 1982-07-14 | Image pickup mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57122392A JPS5913476A (en) | 1982-07-14 | 1982-07-14 | Image pickup mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5913476A true JPS5913476A (en) | 1984-01-24 |
Family
ID=14834656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57122392A Pending JPS5913476A (en) | 1982-07-14 | 1982-07-14 | Image pickup mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913476A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0579622B2 (en) * | 1984-09-21 | 1993-11-04 | Fuorusu Konsuruto Konmandeiits | |
US5363136A (en) * | 1992-10-07 | 1994-11-08 | Eastman Kodak Company | Cam actuated optical offset image sampling system |
US5400070A (en) * | 1992-10-07 | 1995-03-21 | Eastman Kodak Company | Lever actuated optical offset image sampling system |
JP2001215406A (en) * | 2000-02-02 | 2001-08-10 | Olympus Optical Co Ltd | Imaging device and automatic focusing device |
EP1571482A1 (en) * | 2004-03-03 | 2005-09-07 | LG Electronics, Inc. | Device for reducing speckles in laser projection displays |
-
1982
- 1982-07-14 JP JP57122392A patent/JPS5913476A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0579622B2 (en) * | 1984-09-21 | 1993-11-04 | Fuorusu Konsuruto Konmandeiits | |
US5363136A (en) * | 1992-10-07 | 1994-11-08 | Eastman Kodak Company | Cam actuated optical offset image sampling system |
US5400070A (en) * | 1992-10-07 | 1995-03-21 | Eastman Kodak Company | Lever actuated optical offset image sampling system |
JP2001215406A (en) * | 2000-02-02 | 2001-08-10 | Olympus Optical Co Ltd | Imaging device and automatic focusing device |
EP1571482A1 (en) * | 2004-03-03 | 2005-09-07 | LG Electronics, Inc. | Device for reducing speckles in laser projection displays |
US7116017B2 (en) | 2004-03-03 | 2006-10-03 | Lg Electronics Inc. | Device for reducing deterioration of image quality in display using laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4485406A (en) | Film video player with zoom and scan | |
JP3429755B2 (en) | Depth of field control device for imaging device | |
JPS5913476A (en) | Image pickup mechanism | |
JPH1198532A (en) | Stereoscopic imaging device and stereoscopic display device | |
JPS6091774A (en) | Zoom lens for solid-state image pickup camera | |
JPS5915377A (en) | Image pickup mechanism | |
JPS5523568A (en) | Film reader | |
JPS5915376A (en) | Image pickup mechanism | |
JP2984281B2 (en) | Electronic camera | |
JP2000188714A (en) | Picture signal image pickup device and method | |
JPH07154703A (en) | Image pickup device | |
JPH0965194A (en) | Image pickup device | |
JPS61251380A (en) | Image input device | |
CA1278719C (en) | Camera for recording television, photographic or cinematographic images, including an automatic focus- setting device | |
JP3364951B2 (en) | Solid-state imaging device | |
JPS62291288A (en) | Stereoscopic picture device | |
JPH08251477A (en) | Image forming device | |
JP3024492B2 (en) | Imaging device and image signal processing device | |
JPH04365273A (en) | Image information recording/reproducing device | |
JPH04235455A (en) | Camera type image scanner | |
JPS60109974A (en) | Television camera device | |
JPH02272413A (en) | Microscope device | |
EP0840428A2 (en) | Electromagnetic actuator and image pickup apparatus | |
JPH02250468A (en) | Image pickup device | |
JPH0496493A (en) | Stereoscopic video image pickup device |