JPS59132572A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPS59132572A JPS59132572A JP58006609A JP660983A JPS59132572A JP S59132572 A JPS59132572 A JP S59132572A JP 58006609 A JP58006609 A JP 58006609A JP 660983 A JP660983 A JP 660983A JP S59132572 A JPS59132572 A JP S59132572A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- electrode
- periphery
- resin
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 7
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 4
- -1 ethylenetetrafluoroethylene Chemical group 0.000 claims description 2
- 239000004809 Teflon Substances 0.000 claims 3
- 229920006362 Teflon® Polymers 0.000 claims 3
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 13
- 239000003792 electrolyte Substances 0.000 abstract description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000012495 reaction gas Substances 0.000 abstract description 3
- 230000002950 deficient Effects 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 abstract description 2
- 230000020169 heat generation Effects 0.000 abstract description 2
- 150000003016 phosphoric acids Chemical class 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 19
- 239000007800 oxidant agent Substances 0.000 description 12
- 238000007789 sealing Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は燃料電池に係り、特にリプ付電極の周従来、燃
料の有しているエネルギーを直接電気的エネルギーに変
換する装置として燃料電池が知られて−いる。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell, and in particular to a lip-equipped electrode. I'm being beaten.
この燃料電池は通常、電解質を挾んで一対の多孔質電極
を配置するとともに、一方の電極の背面に水素等の流体
燃料を接触させ、また他方の電極の背面に酸素等の流体
酸化剤を接触させ、との、とき起る電気化学的反応を利
用して、上記電極間から電気エネルギーを取り出すよう
にしたものであり、前記燃料と酸化剤が供給されている
限り高い変換効率で電気エネルギーを取り出すことがで
き、るものである。This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidizer such as oxygen is brought into contact with the back surface of the other electrode. Electrical energy is extracted from between the electrodes by utilizing the electrochemical reaction that occurs when It is something that can be taken out.
ところで、上記のような原理に基づく、特にリン酸を電
解質とした燃料電池の単位セルは第1図(a)又は(b
)に示すように構成されており、またとの単位セルを複
数個積層することによって第2図に示すような燃料電池
を構成することになる。By the way, a unit cell of a fuel cell based on the above principle, especially using phosphoric acid as an electrolyte, is shown in FIG. 1(a) or (b).
), and by stacking a plurality of unit cells, a fuel cell as shown in FIG. 2 is constructed.
すなわち、第1図(a)において単位セルは、電解質を
含浸したマトリックス1を境にして両側に多孔質体で形
成され触媒が付加されている電極2.3(通常炭素質か
ら成る)を配置し、更に両電極2.3のマ) IJソッ
クスと反対側の背面にそれぞれリプ4.5の付いたプレ
ート6(一般には、グラファイトと熱硬化性樹脂の混合
結着体から構成式れる。以後インクコネクタと称する。That is, in FIG. 1(a), the unit cell has electrodes 2.3 (usually made of carbonaceous material) formed of a porous material and provided with a catalyst on both sides of a matrix 1 impregnated with an electrolyte. In addition, a plate 6 with a lip 4.5 on the back side opposite to the IJ sock (generally composed of a mixed bond of graphite and thermosetting resin. It is called an ink connector.
)を配置している。上記インタコネクタ6の各電極2.
3側に位置する面には、それぞれ、リプ4.5によって
互いに直交するような向きに溝7.8が複数本規則的に
平行に設けてあり、これらの溝7.8はそれぞれ流体燃
料および流体酸化剤の流通路を形成する。またインタコ
キク260反対側の面にも同様にリプ4.5によって互
いに直交するような向きに1@接する単位セルにおける
流体燃料および流体酸化剤の流通路に供でれる溝7.8
が形成されている。このようにマトリックス1、電極2
.3およびインタコネクタ6を積層し、この状態でイン
クコネクタ6の6溝7.8の両端開口だけを残し各積層
端面部を気密にシールして単位セルを構成している。) are placed. Each electrode 2 of the interconnector 6.
A plurality of grooves 7.8 are regularly provided in parallel in the directions perpendicular to each other by means of lips 4.5 on the surface located on the 3 side, and these grooves 7.8 are respectively provided with fluid fuel and Forms a flow path for fluid oxidizer. Also, on the opposite side of the intercopter 260, grooves 7.8 are provided to flow paths for fluid fuel and fluid oxidizer in the unit cells that are in contact with each other in directions perpendicular to each other by grooves 4.5.
is formed. In this way, matrix 1, electrode 2
.. 3 and the interconnector 6 are stacked, and in this state, only the openings at both ends of the six grooves 7 and 8 of the ink connector 6 are left open, and the end faces of each stack are hermetically sealed to form a unit cell.
第1図(a)のように構成された単位セルは複数個積層
てれ第2図に示すように2の積層体の1つの対向する端
面の一方に燃料供給口9を有したマニホルド10と、他
に燃料排出口11を有したマニホルド12とが当てがわ
れ、まだ他の対向する端面の一方に酸化剤供給口13を
有したマニホルド14と、他方に酸化剤排出口15を有
したマニホルド16とが当てがわれ、これら−マニホル
ド10.12.14.16がボルト等で締付けられて気
密保持され、これによって燃料電池17が構成されてい
る。A plurality of unit cells configured as shown in FIG. 1(a) are stacked together, and as shown in FIG. , a manifold 12 having a fuel outlet 11 on the other hand, and a manifold 14 having an oxidizer supply port 13 on one of the opposite end faces and a manifold with an oxidizer outlet 15 on the other side. 16 are applied, and these manifolds 10, 12, 14, 16 are tightened with bolts or the like to maintain airtightness, thereby constructing a fuel cell 17.
したがってこの燃料電池17によると、燃料供給口9か
ら流体燃料を供給すると、この燃料は各単位セルの流路
である複数の溝を分流して多孔性の電、極2の背面に接
しながら流れ、その後燃料排出口11から排出される。Therefore, according to this fuel cell 17, when fluid fuel is supplied from the fuel supply port 9, this fuel flows through the plurality of grooves that are the flow paths of each unit cell and flows while being in contact with the back surface of the porous electrode 2. Then, the fuel is discharged from the fuel discharge port 11.
また酸化剤供給口13がら流体酸化剤を供給すると、こ
の酸化剤は各単位セルの流通路である複数の溝8を分流
して多孔性の電極3の背面に接しながら流れ、この後酸
化剤排出口15がら排出でれることになり、そのとき流
体燃料と流体酸化剤とはそれぞれ拡散によって多孔性の
電極2.3内に供給され燃料電池としての電気エネルギ
ーを発生する。Further, when a fluid oxidant is supplied through the oxidizer supply port 13, this oxidant flows through the plurality of grooves 8, which are the flow paths of each unit cell, and flows while contacting the back surface of the porous electrode 3. The fluid fuel and the fluid oxidant are then discharged through the outlet 15, and the fluid fuel and the fluid oxidant are then supplied by diffusion into the porous electrode 2.3 to generate electrical energy as a fuel cell.
なお図では出力端子を省略している。Note that the output terminal is omitted in the figure.
しかしながら、従来の上記のように構成きれた燃料筒、
池においては次のような問題があった。However, the conventional fuel cylinder configured as above,
There were the following problems with the pond.
(1) インタコネクタの肉厚が大きいため算′気抵
抗が大きくなすrr、圧降下外が大きく出力電気エネル
ギーの+0失が大きくなる。(1) Since the thickness of the interconnector is large, the calculation resistance is large, the pressure drop outside is large, and the +0 loss of output electrical energy is large.
(2) インクコネクタの厚てが大きく、かつ密度が
大きい(1,8g/crit程度)ので燃料電池の重量
が太きい。(2) Since the ink connector is thick and has a high density (about 1.8 g/crit), the fuel cell is heavy.
(3) フェノール系樹脂結着剤から構成でれるイン
タコネクタを用いるために寿命が短い。(3) The lifespan is short due to the use of interconnectors made of phenolic resin binder.
(4) 自重が太きいため、その自重により劣化が促
進式れる。(4) Since it has a large own weight, its own weight accelerates deterioration.
以上の問題点に対する改良型として第2図(b)に示す
様に構成された燃料電池単位セルが考えられている。A fuel cell unit cell configured as shown in FIG. 2(b) has been considered as an improved type to solve the above problems.
すなわち、第1図(b)において、18はセパレータ、
19はリプ付電極である。第1図(a)と同じ作用を示
するものは同じ番号で示しである。すなわち第1図(a
)に示すインクコネクタ6がセパレータ18とリプ4.
5に分割構成され、草のリプ4.5が電極2.3と夫々
一体化されて、リプ付電極19トシテ構成されている。That is, in FIG. 1(b), 18 is a separator;
19 is an electrode with a lip. Components having the same effect as in FIG. 1(a) are designated by the same numbers. In other words, Figure 1 (a
) shows an ink connector 6 with a separator 18 and a lip 4.
The grass lips 4.5 are each integrated with the electrodes 2.3 to form an electrode with lips 19.
この改良型の特徴はセパレータ18が流体燃料と流体酸
化剤との混合を防止し、かつ単位セル積層化の集電体と
の役目を果している。この改良型燃料電池では第゛1図
(a)に示すインタコネクタを用いた燃料電池に比較す
ると半分に軽量化される。A feature of this improved type is that the separator 18 prevents mixing of the fluid fuel and fluid oxidizer, and serves as a current collector for unit cell stacking. The weight of this improved fuel cell is reduced by half compared to the fuel cell using the interconnector shown in FIG. 1(a).
ところで、リプ付電極19は、流体燃料および流体酸化
剤の反応流体がそれぞれ触媒層へ到達するために十分な
反応流体透過性をもたなければならず、導電性が窩く、
かつ厚みは少なくまた積層による加重に耐える強度が必
要であるに
のために、リプ付電極19は、通常はカーボンフアイバ
ーやグラファイト粒子等の材料から作られ、空隙率は7
0〜80%になるように作られている。By the way, the lip-equipped electrode 19 must have sufficient reaction fluid permeability for the reaction fluids of fluid fuel and fluid oxidizer to reach the catalyst layer, and the electrode 19 must have sufficient conductivity.
In addition, the electrode 19 with lips is usually made of a material such as carbon fiber or graphite particles, and has a porosity of 7.
It is designed to be between 0 and 80%.
このリプ付電極19の従来の製造法は、カーボンファイ
バー又はグラファイト粒子等の材料を用い、これに結合
剤として熱硬化性樹脂たとえばフェノール系樹脂、又は
タールピッチのようなものを加え、熱間圧縮成型を行な
いシート化し、更にこのシートを黒鉛化炉中で燃成する
ことにより結合剤の炭素成分をグラファイト化し空隙率
を上げ、次にこのシートを機械加工により反応流体流路
の溝付けを行なうことにより製造てれている。The conventional manufacturing method for the lipped electrode 19 is to use materials such as carbon fiber or graphite particles, add a thermosetting resin such as phenolic resin, or tar pitch as a binder to the material, and then hot-press the material. The sheet is formed into a sheet, and this sheet is then burned in a graphitization furnace to convert the carbon component of the binder into graphite and increase the porosity.The sheet is then machined to create grooves for the reaction fluid flow path. It is manufactured by.
ところで、とのリブ付1b: 極は数10ミクロンの平
均細孔径をもつ多孔質体であるために、流路と直角方向
の端部からのガス拡散漏洩を防止するためにガスシール
が施されている。このシールは、反応ガスの漏洩による
実反応ガス量の低下の防止、更には、漏洩したガスの混
合による触媒面での燃焼反応による電池本体の過熱によ
る電池性能の劣化を防止する機能を有する。このシール
方法として、ウェットシール法、含浸シール法、フィル
ムによる方法が一般に用いられている。By the way, since the ribbed electrode 1b is a porous material with an average pore diameter of several tens of microns, a gas seal is applied to prevent gas diffusion and leakage from the end perpendicular to the flow path. ing. This seal has the function of preventing a decrease in the actual amount of reactant gas due to leakage of reactant gas, and also prevents deterioration of battery performance due to overheating of the battery body due to combustion reaction on the catalyst surface caused by mixing of leaked gas. As this sealing method, a wet sealing method, an impregnation sealing method, and a method using a film are generally used.
ウェットシール法は、炭化ケイ素等の高温、高濃度リン
酸に対し耐久性を有する微細粒子をリブ付へ極の端部の
シール面に埋設し、これに電解液を湿潤嘔せ、粒子間の
電解液の表面張力によりガス拡散を防止する方法である
。また含浸シール法は、高温、高濃度リン酸に耐久性の
あるフッ素ゴム塗料等の液をリプ付電極のシール部分に
含浸固化させることによりガス拡散を防止する方法であ
る。In the wet seal method, microparticles such as silicon carbide that are resistant to high temperatures and high concentration phosphoric acid are buried in the sealing surface of the end of the ribbed electrode, and an electrolyte is applied to the electrode to seal the gaps between the particles. This method uses the surface tension of the electrolyte to prevent gas diffusion. The impregnating sealing method is a method for preventing gas diffusion by impregnating and solidifying the sealing portion of the lipped electrode with a liquid such as fluororubber paint that is resistant to high temperatures and high concentration phosphoric acid.
しかしながら、一般にリプ付電極は、2m程度の厚さを
有し、また10ミクロンの小さな孔を有する多孔質体で
あるために、ウェットシール法ついては、粒子をシール
部全体に均一に充填することが困難であり、表面層のみ
に充填されるだけで、内部まで完全に充填式れない。However, since lipped electrodes are generally porous with a thickness of about 2 m and small pores of 10 microns, it is difficult to uniformly fill the entire sealing area with particles using the wet seal method. It is difficult to fill only the surface layer and cannot completely fill the inside.
また含浸シールに9いても同様に表面層のみに含浸し、
内部までは含浸されない。Also, even if the impregnated seal is impregnated, only the surface layer is impregnated in the same way,
The inside is not impregnated.
このように、従来のシール構造においては、実質に有効
なシール部は小さく、長期間安定し7てシール機能を維
持することに問題があり、より信頼性の高いシール構造
が望まれていた。As described above, in the conventional seal structure, the effective seal portion is small and there is a problem in maintaining a stable sealing function for a long period of time.Therefore, a more reliable seal structure has been desired.
本発明は以上の様な問題点に鑑みなされたもので、リプ
付電極の周端部シール構造を改良したりん酸型燃料電池
を提供することを目的とする。The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a phosphoric acid fuel cell in which the peripheral end sealing structure of the electrode with a lip is improved.
かかる目的を達成するために本発明は電解質を含浸して
マトリックスを介して相対向して配置でれた一対のリプ
付電極を有する単位セルを複数個積層した燃料電池にお
いて、前記リプ付電極の周端部に樹脂から成るフィルム
が加熱圧着されていることを特徴とする。To achieve this object, the present invention provides a fuel cell in which a plurality of unit cells are stacked, each having a pair of lipped electrodes impregnated with an electrolyte and arranged opposite to each other with a matrix interposed therebetween. It is characterized in that a film made of resin is heat-pressed to the peripheral edge.
本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.
第3図は本発明の一実施例に係るリプ付電極の要部斜視
図である。このリプ付電極は以下の様に構成する。FIG. 3 is a perspective view of a main part of an electrode with a lip according to an embodiment of the present invention. This lipped electrode is constructed as follows.
カーボン繊維をフェノール系樹脂で結着固化したのち、
樹脂分を炭化処理して得られた厚12mのカーボン繊維
多孔質板(密度0.5gk、平均細孔径20〜50μ)
にリプ4によってガス流通路を形成する溝7を複数本平
行して設ける。リプ付電極19の周端部20に繊維化し
やすい樹脂から成るフィルムを加熱圧着する。繊維化し
やすい樹脂材料としてエチレンテトラフロロエチレン(
E T F E )フィルム21を用い、リブ付′!*
19の周端部加に2000c 、 31cq/crA
の温度圧力で加熱加圧することにより第3図(′b)の
如(ETFEは軟化し、ETFEフィルムの一面はリプ
+1電柘の周端部20の空隙に押込址れ固定層nを形成
する。この厚芒は約0.2++mである。残留層乙の厚
嘔は005咽以下である。加熱温朋は固定層及び残留層
の厚埒に彫物を与えるため1708C〜200℃が望ま
しい。After binding and solidifying carbon fiber with phenolic resin,
A 12m thick carbon fiber porous plate obtained by carbonizing the resin (density 0.5gk, average pore diameter 20-50μ)
A plurality of grooves 7 forming gas flow passages are provided in parallel with each other by means of lips 4. A film made of a resin that easily turns into fibers is heat-pressed onto the peripheral end 20 of the lipped electrode 19. Ethylenetetrafluoroethylene (
E T F E ) Using film 21, with ribs'! *
19 peripheral end plus 2000c, 31cq/crA
By heating and pressurizing at a temperature and pressure of This thickness is about 0.2++ m.The thickness of the residual layer is 0.05 mm or less.The heating temperature is preferably 1708C to 200C in order to give a carved shape to the thickness of the fixed layer and the residual layer.
このように、周端部に樹脂から成るフィルム21が加熱
圧着これたリブ伺電極19を用いて、第1図(b)、第
2図示すように、燃料電池を組立てる。In this way, a fuel cell is assembled as shown in FIGS. 1(b) and 2 using the rib-covered electrode 19 with the resin film 21 heat-pressed onto the peripheral edge thereof.
即ち、電解質を含浸したマトリックス1を介して相対向
して一対のリプ付電極19を配置して単位セルを形成す
る。この単位セルをセパレータ18ヲ介して複数個S層
して燃料電池積層体を構成し、この積層体の側面に互い
対向してマニホールドを取り付けて燃料電池を構成する
。That is, a unit cell is formed by arranging a pair of lipped electrodes 19 facing each other with the matrix 1 impregnated with an electrolyte interposed therebetween. A fuel cell stack is constructed by layering a plurality of these unit cells via separators 18, and manifolds are attached to opposite sides of the stack to construct a fuel cell.
ところで、前述したETFEフィルムは190℃、10
5%リン酸中でも安定であり、かつ気密性もよいだめ高
温、高濃度のりん酸に接しても長寿命なるリブ付電極の
周端部のシール構造が達成される。By the way, the ETFE film mentioned above was heated at 190°C for 10
A sealing structure for the peripheral edge of the ribbed electrode is achieved which is stable even in 5% phosphoric acid and has good airtightness and has a long life even when exposed to high temperature and high concentration phosphoric acid.
贅だ、残留層22の厚ても0.05mm以下とすること
ができるため、積層時における締付圧力の不均一化は殆
んどなく、セパレータとリブ付電極の接触に関しても全
面接触が損なわれることはない。Moreover, since the thickness of the residual layer 22 can be set to 0.05 mm or less, there is almost no unevenness in the tightening pressure during lamination, and the entire surface contact between the separator and the ribbed electrode is impaired. It won't happen.
前記ETFEフィルムの代すにFEPフィルムを用いて
も同じ結集が得られる。The same concentration can be obtained by using an FEP film instead of the ETFE film.
尚、厚を2朔の前記多孔質カーボン板に箭切加工する前
に前記フィルムの加熱圧着を行ってもよいeことはいう
1でもない。Incidentally, it is also possible to heat and press the film before cutting into the porous carbon plate having a thickness of 2 mm.
本発明によれば、リブ付電極の周端部シール構造の不良
に起因する反応ガスの燃焼のだめの内部発熱を防止でき
、従って反応ガスの有効利用を計ることができ、更に電
極周端部で起りやすい電気的短絡による電流効率の低下
をも防止することが可能である。このように、極めて信
頼性を向上はせた燃料電池を提供することができる。According to the present invention, it is possible to prevent internal heat generation in the combustion chamber of the reaction gas due to a defective sealing structure at the peripheral end of the ribbed electrode, thereby making it possible to effectively utilize the reaction gas. It is also possible to prevent a decrease in current efficiency due to electrical short circuits that are likely to occur. In this way, a fuel cell with significantly improved reliability can be provided.
第1図(at、(b)は従来の燃料電池の単位セルを示
す分解斜視図、紀2図は同セルを組込んだ燃料電池の斜
視図、第3図(a)は本発明に係るリブ付電極の要部斜
視図、第3図(b)はリブ付電極の周端部の断面図であ
る。
1・・・マトリックス 2.3・・・電極19・・
・リブ付電極 」・・・周端部21・・・フィル
ム
代理人弁理士 則 近 廚 佑 (ほか1名)第
いり
1図
丁Fig. 1 (at, (b) is an exploded perspective view showing a unit cell of a conventional fuel cell, Fig. 2 is a perspective view of a fuel cell incorporating the same cell, and Fig. 3 (a) is an exploded perspective view showing a unit cell of a conventional fuel cell. A perspective view of the main part of the ribbed electrode, and FIG. 3(b) is a sectional view of the peripheral end of the ribbed electrode. 1... Matrix 2.3... Electrode 19...
・Ribbed electrode”...Peripheral end 21...Film agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1
Claims (1)
て配置された一対のリプ付電極を有する単位セルを複数
個積層した燃料電池において、前記リプ付電極の周端部
に樹脂から成るフィルムが加熱圧着されていることを特
徴とする燃料電池。 2、樹脂はテフロン系樹脂である特許請求の範囲第1項
記載の燃料電池。 3、加熱圧着は1706C〜200℃で行なわれる特許
請求の範囲第1項記載の燃料電池。 4、 テフロン系樹脂はエチレンテトラフロロエチレン
(ETFZ )である特許請求の範囲第2項記載の燃料
電池。 5、 テフロン系樹脂はテトラフロロエチレン、ヘキサ
フロロプロピレン(FEP )である特許請求の範囲第
2項記載の燃料電池。[Claims] 1. In a fuel cell in which a plurality of unit cells each having a pair of lipped electrodes are stacked, each having a pair of lipped electrodes facing each other with an electrolyte-impregnated matrix interposed therebetween, a peripheral edge of the lipped electrode is provided. A fuel cell characterized in that a film made of resin is bonded under heat and pressure. 2. The fuel cell according to claim 1, wherein the resin is a Teflon resin. 3. The fuel cell according to claim 1, wherein the thermocompression bonding is carried out at 1706C to 200C. 4. The fuel cell according to claim 2, wherein the Teflon resin is ethylenetetrafluoroethylene (ETFZ). 5. The fuel cell according to claim 2, wherein the Teflon resin is tetrafluoroethylene or hexafluoropropylene (FEP).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58006609A JPS59132572A (en) | 1983-01-20 | 1983-01-20 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58006609A JPS59132572A (en) | 1983-01-20 | 1983-01-20 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59132572A true JPS59132572A (en) | 1984-07-30 |
Family
ID=11643090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58006609A Pending JPS59132572A (en) | 1983-01-20 | 1983-01-20 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59132572A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6175065U (en) * | 1984-10-24 | 1986-05-21 | ||
JPS61216251A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS61216254A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS61216250A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS6348767A (en) * | 1986-08-14 | 1988-03-01 | Kureha Chem Ind Co Ltd | Composite electrode substrate having teflon-sealed end and its manufacture |
-
1983
- 1983-01-20 JP JP58006609A patent/JPS59132572A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6175065U (en) * | 1984-10-24 | 1986-05-21 | ||
JPS61216251A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS61216254A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS61216250A (en) * | 1985-03-22 | 1986-09-25 | Hitachi Ltd | Fuel cell |
JPS6348767A (en) * | 1986-08-14 | 1988-03-01 | Kureha Chem Ind Co Ltd | Composite electrode substrate having teflon-sealed end and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3489181B2 (en) | Unit cell of fuel cell and method of manufacturing the same | |
US5858569A (en) | Low cost fuel cell stack design | |
JP4719771B2 (en) | Electrode-membrane-frame assembly for fuel cell and manufacturing method thereof, and polymer electrolyte fuel cell and manufacturing method thereof | |
JPH0552037B2 (en) | ||
US4245009A (en) | Porous coolant tube holder for fuel cell stack | |
JPS6161372A (en) | Gas impermeable edge seal for bipolar gas distribution assembly for use in fuel battery | |
JPH0349184B2 (en) | ||
JPS59132572A (en) | Fuel cell | |
JPS59154772A (en) | Fuel cell | |
JPH0159704B2 (en) | ||
JP3838403B2 (en) | Phosphoric acid fuel cell | |
JPH06101341B2 (en) | Manufacturing method of ribbed separator for fuel cell | |
JPS63205060A (en) | Fuel cell | |
JPS5927466A (en) | Fuel cell | |
US20230147601A1 (en) | Gas diffusion member, gas diffusion unit, and fuel cell | |
JPS63128562A (en) | Fuel cell | |
JPS6398965A (en) | Fuel cell | |
JPS6139458A (en) | Fuel cell and manufacture thereof | |
JPS6398964A (en) | Fuel cell | |
JPS6255874A (en) | Fuel cell | |
JPS59154770A (en) | Fuel cell | |
JPS58161261A (en) | Fuel cell | |
JPH071697B2 (en) | Fuel cell | |
JPS61292859A (en) | Manufacture of fuel cell | |
JPS61173465A (en) | Fuel cell |