JPS59131593A - Apparatus for producing compound semiconductor single crystal - Google Patents
Apparatus for producing compound semiconductor single crystalInfo
- Publication number
- JPS59131593A JPS59131593A JP518283A JP518283A JPS59131593A JP S59131593 A JPS59131593 A JP S59131593A JP 518283 A JP518283 A JP 518283A JP 518283 A JP518283 A JP 518283A JP S59131593 A JPS59131593 A JP S59131593A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- reinforcing member
- single crystal
- magnetic field
- heating furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 45
- 150000001875 compounds Chemical class 0.000 title claims abstract description 9
- 239000004065 semiconductor Substances 0.000 title claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 11
- 239000007788 liquid Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は磁界印加装置を備えた化合物半導体単結晶の
製造装置に関rる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor single crystal manufacturing apparatus equipped with a magnetic field application device.
■−■族化合物半導体、特にガリウム砒素(Gaps
)は電子移動度が大きく、超高速集積回路、光−電子集
積回路の素子用結晶基板として、広く用いられつつある
。このようにGaAsが注目を浴びているのは高品質の
GcLA8の比抵抗が10′7Ω、07+ 以上と高
絶縁性であること、結晶内の欠陥が少く、分布が均一で
あるものが得られること、大型ウェハーの製造が容易で
あること等が挙げられる。このような要求を満すGaA
s単結晶の製造方法としては液体封止引き上げ法(LE
C法)が注目を浴びている。この封止引き上げ法は低圧
封止引き上げ法と高圧封止引き上げ法とが知られている
。低圧封止引き上げ法はボート成長法で作成したGap
s多結晶を原料とするため、原料純度が低く、半絶縁性
とするだめのクロム・p添加を必要として好ましくない
。また直接合感を行う高圧封止引き上ゆ法はクロムの添
加は部製であるが、結晶原料であるGcLとA8及び液
体封止剤である酸化ボロン(Btos )を高圧下で加
熱、合成するため、ルツボ内で溶融している結晶原料融
液は熱対流によシ極めて不安定な状態となシ、そのよう
な状態で結晶成長操作を行っているため固液界面の形状
が激しく変化し、構成する結晶には熱変動による微少な
成長縞が発生し、結晶の転位分布が不均一となシ易い。■-■ group compound semiconductors, especially gallium arsenide (Gaps)
) has high electron mobility and is becoming widely used as a crystal substrate for elements of ultrahigh-speed integrated circuits and opto-electronic integrated circuits. The reason why GaAs is attracting attention is that high-quality GcLA8 has a specific resistance of 10'7Ω, 07+ or more, which is a high insulating property, and it has few defects in the crystal, making it possible to obtain a product with a uniform distribution. In addition, it is easy to manufacture large wafers. GaA that meets these requirements
The liquid encapsulation pulling method (LE) is a method for producing s single crystals.
Method C) is attracting attention. This sealing pulling method is known as a low pressure sealing pulling method and a high pressure sealing pulling method. The low-pressure sealing and pulling method uses a gap created using the boat growth method.
Since the raw material is polycrystalline S, the purity of the raw material is low and it is necessary to add chromium and p to make it semi-insulating, which is not preferable. In addition, in the high-pressure sealed pull-up method that performs direct synthesis, chromium is added by the manufacturer, but the crystal raw materials GcL and A8 and the liquid sealant boron oxide (Btos) are heated under high pressure and synthesized. Therefore, the crystal raw material melt melting in the crucible becomes extremely unstable due to thermal convection, and since the crystal growth operation is performed in such a state, the shape of the solid-liquid interface changes drastically. However, minute growth striations occur in the constituent crystals due to thermal fluctuations, and the dislocation distribution of the crystals tends to be non-uniform.
このような結晶基板を用いて素子を形成すると、結晶基
板に形成している欠陥は制御出来ガいため、電気特性、
素子特性が均一である集積回路を再現性良く製造するこ
とは困難であった。When a device is formed using such a crystal substrate, defects formed in the crystal substrate cannot be controlled, so electrical characteristics,
It has been difficult to manufacture integrated circuits with uniform device characteristics with good reproducibility.
ところで、シリコン(Sj)やインジウムアンチモン(
IyzSb)単結晶の製造において磁界を印加しながら
結晶の引き上げ操作を行うことが報告されている。上述
のGaks融液に対しても磁界を印加すると融液中の熱
対流の発生は抑制され、固液界面は安定した状態で結晶
成長が行われるため成長縞の発生も々く高品質なGap
s単結晶を得られることが判明した。By the way, silicon (Sj) and indium antimony (
It has been reported that in the production of IyzSb) single crystals, a crystal pulling operation is performed while applying a magnetic field. When a magnetic field is applied to the above-mentioned Gaks melt, the generation of thermal convection in the melt is suppressed, and crystal growth occurs in a stable state at the solid-liquid interface, so growth stripes are less likely to occur and high-quality gaps are produced.
It was found that s single crystal could be obtained.
しかし単結晶製造装置の抵抗加熱炉は通常交流、脈流の
印加により加熱され、上記の如く磁界を印加すると磁力
によシ加熱炉が破損し易くなるため供給電流を直流に変
換せねばならないが、このような大電力を直流に変換す
ることは容易なことではなく、更に単結晶引き上げ装置
の多くは交流電源を使用するよう設計されているため大
幅な改造を余儀なくさせられることになる。However, resistance heating furnaces for single crystal manufacturing equipment are usually heated by applying alternating current or pulsating current, and as mentioned above, applying a magnetic field tends to damage the heating furnace due to magnetic force, so the supplied current must be converted to direct current. Converting such a large amount of power to direct current is not easy, and since most single crystal pulling equipment is designed to use an alternating current power source, major modifications are required.
この発明の目的は交流を電源として使用し、磁界を印加
しても加熱炉が破損しない化合物半導体単結晶の製造装
置を提供するもので、以下図示の一実施例に基き本発明
を説明する。An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus that uses alternating current as a power source and whose heating furnace is not damaged even when a magnetic field is applied.
第1図はGaks単結晶の直接合成法として知られてい
る高圧液体封止引き上げ法を実施するだめの単結晶製造
装置であって、高圧容器/内には外周を炭素材料等の支
持部材で覆れた石英、窒化ボロン等のルツボλを設け、
と77) ルツボ−は回転支持軸μにょシ回転且つ上下
動できるように支持され、ルツボλの周囲には抵抗加熱
炉3を設けてルツボを所定の温度に加熱、保持する。ル
ッポコの上部には下端に種結晶を取付けた引き上げ軸!
を垂設し、この引き上げ軸は回転すると共に上下動する
ように構成する。高圧容器lの外周には磁界印加装置乙
が設置され、ルツポコ内に溶融している結晶原料融液に
磁界を印加する。Figure 1 shows a single crystal manufacturing apparatus for carrying out the high-pressure liquid sealing pulling method, which is known as the direct synthesis method for Gaks single crystals. A crucible λ of covered quartz, boron nitride, etc. is provided,
(77) The crucible is supported so as to be able to rotate and move up and down on a rotation support shaft μ, and a resistance heating furnace 3 is provided around the crucible λ to heat and maintain the crucible at a predetermined temperature. At the top of Ruppoko is a pulling shaft with a seed crystal attached to the bottom end!
is installed vertically, and the pulling shaft is configured to rotate and move up and down. A magnetic field application device B is installed on the outer periphery of the high-pressure container L, and applies a magnetic field to the crystal raw material melt melted in the melt.
抵抗加熱炉3は第2図に示すように、側面はグラファイ
トヒータ部材7が櫛歯状に配列しておシ、各ヒータ部材
間の間隙には絶縁材とが介在して微少な振動に対して安
全性を高めている。As shown in Fig. 2, the resistance heating furnace 3 has graphite heater members 7 arranged in a comb-teeth pattern on the side surface, and an insulating material is interposed in the gap between each heater member to prevent minute vibrations. This improves safety.
加熱炉3の底面中央にはルツボを支持している回転支持
軸グが貫通する孔りが設けられ、底面よシ下方に向って
ヒータ電極//を突設し、ネジ/θによシヒータ部材と
接続される(第5図)。A hole is provided in the center of the bottom surface of the heating furnace 3 through which a rotary support shaft supporting the crucible passes through, and a heater electrode // is provided protruding downward from the bottom surface, and the heater member is connected by a screw /θ. (Fig. 5).
このような構造の加熱炉に対して第3図に示すように横
方向から磁界を印加すると(矢印%B#)、磁力の方向
に対して90°ずれた方向にヒータ部材を引っ張る力が
加わり(矢印気Fl)、特に、加熱炉を交流或は脈擁で
稼動させると、ヒータ部材に加わる力の方向が常に変化
するため、疲労が早く起りヒータ部材は破損し易くなる
。従って、これまで、磁場を印加する場合は加熱炉を改
良し″(圓υ+1.L%製」なよンV(シ1いた。When a magnetic field is applied from the lateral direction (arrow %B#) to a heating furnace with such a structure as shown in Figure 3, a force is applied that pulls the heater member in a direction 90 degrees off from the direction of the magnetic force. (arrow mark Fl) In particular, when the heating furnace is operated under alternating current or pulsed conditions, the direction of the force applied to the heater member constantly changes, which causes fatigue to occur quickly and the heater member to be easily damaged. Therefore, until now, when applying a magnetic field, the heating furnace had to be improved and the heating furnace made by ``(Yen + 1.L%)'' was used.
しかるにこの発明においては絶縁性の補強部材を用いて
ヒータ部材を直接補強する。先ずヒータ部材7の上縁部
には断面がコの字形の補強部材/2αを被せて補強する
。ヒータ部材の下部外周にはL字形の環状補強部材/コ
bを外面よυ)床部にかけて嵌合させて補強する。更に
ヒータ“平材の内面下部には環状の補強部材/2cを嵌
合すせて補強する。このような補強部材にてヒータ部材
を補強すると、磁場を印加してもヒータ部材の各先端は
それぞれの補強部材によって動かないように固定されて
いるため交流や脈流で稼動させても疲労が起シにくくヒ
ータ部材の破損は防止される。However, in the present invention, the heater member is directly reinforced using an insulating reinforcing member. First, the upper edge of the heater member 7 is reinforced by covering it with a reinforcing member /2α having a U-shaped cross section. An L-shaped annular reinforcing member/cob is fitted to the outer periphery of the lower part of the heater member so as to extend from the outer surface to the floor part υ) for reinforcement. Furthermore, an annular reinforcing member/2c is fitted to the lower part of the inner surface of the heater flat material to reinforce it.If the heater member is reinforced with such a reinforcing member, each tip of the heater member will remain stable even when a magnetic field is applied. Since they are fixed so as not to move by their respective reinforcing members, fatigue is less likely to occur even when operating with alternating current or pulsating current, and damage to the heater members is prevented.
このような補強部材を構成する材料としては絶縁性の耐
熱部材であってアルミナ、パイロリティック窒化ボロン
が用い得る。補強部材の形状、寸法は加熱炉の熱効率に
影響の与えない範囲で適宜決定すべきであって、特にヒ
ータ部材は先端部分より振動等によシ破損が起シ易いの
で、その部分を動かないような構成とすることが必要で
ある。As a material constituting such a reinforcing member, an insulating heat-resistant member such as alumina or pyrolytic boron nitride can be used. The shape and dimensions of the reinforcing member should be determined appropriately within a range that does not affect the thermal efficiency of the heating furnace. In particular, the tip of the heater member is more susceptible to damage due to vibrations, etc., so do not move that part. It is necessary to have such a configuration.
上述の如く加熱炉のヒータ部材を補強すると、交流電源
で稼動する抵抗加熱炉に対して5000ガウスの磁場を
印加して結晶成長を行ったが、ヒータ部材の振動は全く
見られず、安定して単結晶が生成した。When the heater member of the heating furnace was reinforced as described above, crystal growth was performed by applying a magnetic field of 5000 Gauss to the resistance heating furnace operated by AC power, but no vibration was observed in the heater member, and the result was stable. A single crystal was formed.
本発明の装置により効果的に製造される単結晶としては
SZ + Gaks’ + IiP + 171.Sb
r Garb等が挙げられる。Examples of single crystals that can be effectively produced by the apparatus of the present invention include SZ + Gaks' + IiP + 171. Sb
r Garb and the like.
この発明は上記の説明で明らかなように、加熱炉のヒー
タ部材を補強部材によシ補強するようにしたのでちって
、既に使用されている交流−電流用の単結晶引き上げ装
置にそのまま適用することができ、磁場を印加しガから
結晶成長を行うことによシ成長縞の発生が抑制され、高
品質の単結晶が形成されることになる。なお、この発明
は交流電源を使用する結晶引き上げ装置ばかりでなく直
流電源を使用する結晶引き上げ装置に適用しても効果が
あることは言うまでもない。As is clear from the above description, this invention is such that the heater member of the heating furnace is reinforced with a reinforcing member, and therefore it can be applied as is to the already used AC-current single crystal pulling apparatus. By applying a magnetic field and growing crystals from the crystal, the generation of growth stripes can be suppressed and a high-quality single crystal can be formed. It goes without saying that the present invention is effective when applied not only to a crystal pulling apparatus using an AC power source but also to a crystal pulling apparatus using a DC power source.
第1図は磁場印加装置を備えた単結晶製造装置の一例を
示す概略断面図、第2図は本発明による単結晶製造装置
の加熱炉を示す一部断面とした側面図、第5図は第2図
の加熱炉の■−■線に沿って切断した断面千面薗。
図中、/は高圧容器、コはルツボ、3は加熱炉、tは磁
気印加装置、7はヒータ部材、rは絶縁材、/、2α、
/1b、/、2Qは補強材を示す。
特許出願人 工 業 技 術 院 長石板誠−
手続補正書 C方式)
昭和58年6り/J日
特許庁長官 若 杉 和 夫 殿
/、事件の表示
昭和58年特許願第5182 号
1、発明の名称
化合物半導体単結晶の製造装置
3、補正する者
昭和58年4月26日 (発送日)
改 補正の対象 図 面
乙 補正の内容
第3図
F
手続補正書(自発)
昭和58年6月7.3日
特許庁長官 若 杉 和 夫 殿
/、事件の表示
昭和58年特許願第5182号
!1発明の名称
化合物半導体単結晶の製造装置
3、補正する者
放 補正の内容
別紙の通シFIG. 1 is a schematic cross-sectional view showing an example of a single crystal manufacturing apparatus equipped with a magnetic field application device, FIG. 2 is a partially sectional side view showing a heating furnace of the single crystal manufacturing apparatus according to the present invention, and FIG. A cross section of the heating furnace cut along the line ■-■ in Fig. 2. In the figure, / is a high-pressure container, C is a crucible, 3 is a heating furnace, t is a magnetic application device, 7 is a heater member, r is an insulating material, /, 2α,
/1b, /, 2Q indicate reinforcing materials. Patent Applicant: Institute of Industrial Science and Technology, Makoto Nagaishiita, Procedure Amendment Form C) June 1980/J, Commissioner of the Japan Patent Office, Kazuo Wakasugi/, Indication of Case: 1982 Patent Application No. 5182 1, Invention Name of Compound Semiconductor Single Crystal Manufacturing Apparatus 3, Person making the amendment April 26, 1981 (Delivery date) Amendment Target of amendment Drawing B Contents of amendment Figure 3 F Procedural amendment (voluntary) June 1988 7.3rd Japan Patent Office Commissioner Kazuo Wakasugi/Display of the case Patent Application No. 5182 of 1982! 1. Name of the invention Compound semiconductor single crystal production device 3. Amendment to the amendment Contents of the amendment Attached document
Claims (3)
原料融液に磁界を印加しながら、種結晶の引き上げによ
り結晶の成長を行う単結晶の製造装置において、上記抵
抗加熱炉のヒータ部材を補強部材で補強することを特徴
とする化合物半導体単結晶の製造装置。(1) In a single-crystal manufacturing apparatus that heats a silt crucible in a resistance heating furnace and grows a crystal by pulling a seed crystal while applying a magnetic field to the crystal raw material melt in the crucible, the heater member of the resistance heating furnace is used. A compound semiconductor single crystal manufacturing device characterized in that the compound semiconductor single crystal is reinforced with a reinforcing member.
とする特許請求の範囲第1項記載の単結晶の製造装置。(2) The single crystal manufacturing apparatus according to claim 1, wherein the reinforcing member is made of alumina.
れていることを特徴とする特許請求の範囲第1項記載の
単結晶の製造装置。(3) The single crystal manufacturing apparatus according to claim 1, wherein the reinforcing member is made of pyrolytic boron nitride.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518283A JPS59131593A (en) | 1983-01-18 | 1983-01-18 | Apparatus for producing compound semiconductor single crystal |
US06/571,194 US4606037A (en) | 1983-01-18 | 1984-01-16 | Apparatus for manufacturing semiconductor single crystal |
GB08401195A GB2136310B (en) | 1983-01-18 | 1984-01-17 | Apparatus for manufacturing semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518283A JPS59131593A (en) | 1983-01-18 | 1983-01-18 | Apparatus for producing compound semiconductor single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59131593A true JPS59131593A (en) | 1984-07-28 |
JPH0360798B2 JPH0360798B2 (en) | 1991-09-17 |
Family
ID=11604088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP518283A Granted JPS59131593A (en) | 1983-01-18 | 1983-01-18 | Apparatus for producing compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59131593A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479099A (en) * | 1987-09-21 | 1989-03-24 | Semiconductor Energy Lab | Production of superconductive material |
US5186784A (en) * | 1989-06-20 | 1993-02-16 | Texas Instruments Incorporated | Process for improved doping of semiconductor crystals |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4668100B2 (en) * | 2006-03-17 | 2011-04-13 | コバレントマテリアル株式会社 | Recharge tube for solid material and recharge method using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104791A (en) * | 1980-01-28 | 1981-08-20 | Sony Corp | Growth of crystal |
-
1983
- 1983-01-18 JP JP518283A patent/JPS59131593A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104791A (en) * | 1980-01-28 | 1981-08-20 | Sony Corp | Growth of crystal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479099A (en) * | 1987-09-21 | 1989-03-24 | Semiconductor Energy Lab | Production of superconductive material |
US5186784A (en) * | 1989-06-20 | 1993-02-16 | Texas Instruments Incorporated | Process for improved doping of semiconductor crystals |
Also Published As
Publication number | Publication date |
---|---|
JPH0360798B2 (en) | 1991-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207376141U (en) | A kind of silicon carbide monocrystal growth device of the axial temperature ladder of accurate control | |
JP7025395B2 (en) | Reflective screen of single crystal growth furnace and single crystal growth furnace | |
CN113322510B (en) | SiC single crystal growth device and liquid phase epitaxy SiC single crystal growth method | |
EP0139157A1 (en) | Apparatus for growing single crystals of dissociative compounds | |
JPS59131593A (en) | Apparatus for producing compound semiconductor single crystal | |
JP2005532697A (en) | Large-diameter SiC wafer and manufacturing method thereof | |
JPS6027684A (en) | Single crystal manufacturing equipment | |
JPS60264391A (en) | Crystallizer | |
JP7483240B2 (en) | Single crystal growth apparatus and method for producing III-V group semiconductor single crystal | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
CN105970286A (en) | Method for multi-crucible LPE (liquid phase epitaxy) of SiC crystals | |
KR102609885B1 (en) | Manufacturing apparatus for siliconcarbide single crystal | |
JP2000247780A (en) | Single crystal puller | |
JP4155085B2 (en) | Method for producing compound semiconductor single crystal | |
JPH10297997A (en) | Formation of silicon carbide singe crystal | |
JP2611336B2 (en) | High dissociation pressure compound semiconductor processing equipment | |
JPH0742194B2 (en) | Single crystal manufacturing equipment | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
JPH0297482A (en) | Apparatus for producing semiconductor single crystal | |
JPS62171984A (en) | Apparatus for production of crystal | |
JPS6163594A (en) | Pruduction unit for single crystal | |
JPS63295494A (en) | Device for gro-wing single crystal | |
JPH03103386A (en) | Semiconductor single crystal production unit | |
JP2004083301A (en) | Single crystal manufacturing equipment | |
JPS62167286A (en) | Heating device |