[go: up one dir, main page]

JPS59128513A - Light signal generating device - Google Patents

Light signal generating device

Info

Publication number
JPS59128513A
JPS59128513A JP58004588A JP458883A JPS59128513A JP S59128513 A JPS59128513 A JP S59128513A JP 58004588 A JP58004588 A JP 58004588A JP 458883 A JP458883 A JP 458883A JP S59128513 A JPS59128513 A JP S59128513A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
temperature
sensor
inlet side
wind inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004588A
Other languages
Japanese (ja)
Inventor
Masatoshi Yonekubo
政敏 米窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58004588A priority Critical patent/JPS59128513A/en
Publication of JPS59128513A publication Critical patent/JPS59128513A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prolong the life of whole device by providing a temperature sensor a little to the wind inlet side from the center of a fluorescent lamp. CONSTITUTION:A micro-light shutter array 1 consisting of a liquid crystal device etc. is illuminated by a fluorescent lamp 2. A luminance sensor 3 feeds back brightness of the fluorescent lamp to a luminance controller 4. A blasting fan 5 can make hot air by a heater 6. A sealing section 9 restricts the extent of air flow and serves as heat insulator. A temperature sensor 7 is placed a little to the wind inlet side from the center of the fluorescent lamp. Accordingly, the wind inlet side can be kept at initially set temperature even when aging of the fluorescent lamp 2 advances and self-heat generation of the lamp 2 increases. The wind outlet side becomes high temperature due to addition of self generated heat. However, the drop of light emitting efficiency of the fluorescent lamp is slower when the temperature is above optimum tube wall temperature than the case when it is below the said temperature.

Description

【発明の詳細な説明】 不発明は、マイク口元シャッターアレーを用いる光プリ
ンター用元侶号発生装置iltに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical printer ID generator ilt using a microphone mouth shutter array.

本発明に特に、できるだけ艮期間にわたり、安定した光
信号を得るためのエージング性能の改善に関する。
In particular, the present invention relates to improving aging performance in order to obtain a stable optical signal over as long as possible.

従来のマイクロ光シャッターアレー葡用いた光信号発生
装置としては、高速液晶音用いたマイク口元シャッター
アレーによって形成された光信号を果束性元ファイバー
アレーにより結像する型式のものが知られている。−例
才挙げれば特開昭56−176719号公報がある。
As a conventional optical signal generating device using a micro-optical shutter array, one is known that uses a high-speed liquid crystal display to image an optical signal formed by a microphone mouth shutter array using a focusing fiber array. . - An example is Japanese Patent Application Laid-open No. 176719/1983.

光プリンターとして要求される性能としては、尚速印字
性能、両肩像度があり、さらに艮期信頼性が要求される
。し刀するVこ、筒速印字才笑現しようとすれば、必然
的にマイクロジャツタ−1個に対する割り当て時間が短
くなるため、111iiI累当たりの光エネルギーが低
下する。また、尚解像度を央現するためにマイクロシャ
ッターの面積r小さくして画累蜜裳を上げよつとした場
せも、呆束注光フアイバーアレーのMTF%注が十分で
ないため、単位面積当たりの光エネルギーが低下する。
The performance required for an optical printer includes high-speed printing performance, double-sided image quality, and long-term reliability. However, if we try to achieve cylinder-speed printing, the time allocated to one microjitter will inevitably become shorter, and the light energy per 111iii will decrease. In addition, even if the area r of the microshutter is reduced to improve the resolution, the MTF% of the optical fiber array is not sufficient, so the amount of light per unit area increases. Energy decreases.

このため、光源であるけい光ラングに、高輝度点燈を強
いられ、大電力が投入される噴量があジ、エージング性
能が劣化する袂因となっている。かかる欠点の対策とし
て、従来より、温風によりけい光ランプの管壁温度ケ最
適温度にコントロールする方法がとられてあり、温度セ
ンサーに風の出口近傍に設置されていた。碧1図に従来
の光信号発生装置の構成音概念的に示す。1はマイクロ
光シヤツターアレーであって2のけい光ラングにより照
明される。3は輝度センサーであり、4の坤度コントロ
ーラーへけい光ランプの明るさ紮フィードバックしてい
る。、5は送j虱用のファンであシロのヒーターにより
温風全作ることができる1、7は風出口近傍に設(度さ
れた温度センサーであって風出口附近の風の温伎全8の
温度コントローラーへフィードバックしている。9はシ
ール部でありj虱の流れる範囲kl辰゛逆し、萌熱の役
目でもつ、このよりな構成の光信号発生装置r1艮期間
便用した場合、下記に示すごとき不都合があることが明
ら刀1となった。
For this reason, the fluorescent lamp, which is the light source, is forced to turn on at high brightness, and the amount of injection that requires a large amount of power is reduced, causing deterioration in aging performance. As a countermeasure for this drawback, conventional methods have been used to control the tube wall temperature of the fluorescent lamp to an optimum temperature using warm air, and a temperature sensor has been installed near the air outlet. Figure 1 Aoi conceptually shows the constituent sounds of a conventional optical signal generator. 1 is a micro light shutter array which is illuminated by 2 fluorescent rungs. 3 is a brightness sensor, which feeds back the brightness of the fluorescent lamp to the brightness controller 4. , 5 is a blower fan that can generate warm air using a white heater. Feedback is sent to the controller. 9 is a sealing part, which has the role of reversing the flow range of lice and moe heat. Sword 1 was chosen because it clearly had the disadvantages shown below.

まず、安定した光信号を得るために、輝度コントローラ
ー8はけい光ランプ2の輝1虻?一定に保つべく使用し
、−万、けい光ラング2は、それ自体のエージングによ
り、発光効率が1史−用時間とともに低下するため、結
果として、投入電力は、しだいに増加する、また出口附
近の風の温度は主にヒーター6の発熱量及びけい光ラン
プ2の自己発熱量により定まる。該自己発熱量は、けい
光ランプ2への投入電力が増加するにつれて増えるため
、温度コントローラーに、当初設定した温度?保とうと
して、ヒーター6への投入型カケしだいに減少させる、
したがって風入口附近の温度にしだいに低くな91発光
効率が低下する。
First, in order to obtain a stable optical signal, the brightness controller 8 controls the brightness of the fluorescent lamp 2. The luminous efficiency of fluorescent rung 2 decreases over time due to its own aging, and as a result, the input power gradually increases. The temperature of the air is determined mainly by the amount of heat generated by the heater 6 and the amount of self-heat generated by the fluorescent lamp 2. The amount of self-heating increases as the power input to the fluorescent lamp 2 increases, so the temperature controller is set to the initially set temperature. In an attempt to maintain the temperature, the chipping of the heater 6 is gradually reduced.
Therefore, as the temperature near the air inlet gradually decreases, the luminous efficiency 91 decreases.

第5図に、けい光ランプの管壁温度髪質化させたとき、
一定#1度ケ保つのに必−24!な尾カ勿示す。
Figure 5 shows that when the tube wall temperature of the fluorescent lamp is varied,
Necessary -24 to maintain constant #1 degree! I'll show you my tail.

発光効率が低下するとさらにけい光ランプに投入される
電力が瑠すため、悪循環となジ、元信号発生装置として
のエージングffl:龍に者しく悪化させる。その−例
全第4図に示す。この例では、500時間はど経過した
時点より悪循環が初まり600時間で使用不可能となっ
た。
As the luminous efficiency decreases, the power input to the fluorescent lamp further decreases, resulting in a vicious cycle, which significantly worsens the aging of the signal generator. An example thereof is shown in FIG. In this example, a vicious cycle began after 500 hours had passed, and the device became unusable after 600 hours.

本発明でに、以上のごとき欠点?廃し、装置全体として
の寿命が従来の2倍程度得られる光信号発生装a’i提
供するものである。
What are the above drawbacks of this invention? The present invention provides an optical signal generating device a'i that can be used without any problems, and the lifetime of the device as a whole can be approximately doubled compared to the conventional one.

第2図に本発明における元信号発生装置の構成全概念的
に示す。従来例との相違点に、温度センサー7をぐい光
ランプ2の中央から風入口寄りに設置した点である。こ
のように温度センサーケ設置すると、けい光ランプ2の
エージングが進んでいない初期においては、従来例とほ
ぼ等しい温度分布となり、エージングが進みけい元ラン
プ2の自己発熱が多くなると、風入口側に当初設定した
温度を保ち、風出口側は自己発熱量が〃口わって両温に
なる。ここで第3図のけい光ランプの管壁温度と必要電
力とのグラフより明ら〃Aなどとく、最適管壁温朋刀)
ら、冷やされるよりも、温められる万が、発光効率のお
ち万が少ない。このために、従来例で見られ/ζごとき
悪循環が発生しにくく、装置全体としての寿命を伸ばす
ことができた。
FIG. 2 conceptually shows the entire configuration of the original signal generator according to the present invention. The difference from the conventional example is that the temperature sensor 7 is placed closer to the air inlet than the center of the fluorescent lamp 2. When the temperature sensor is installed in this way, at the beginning when the fluorescent lamp 2 is not aging, the temperature distribution will be almost the same as that of the conventional example. The set temperature is maintained, and the self-heating amount on the air outlet side changes to reach both temperatures. Here, it is clear from the graph of tube wall temperature and required power of the fluorescent lamp in Figure 3 (A, etc., optimum tube wall temperature)
However, the luminous efficiency decreases less when it is heated than when it is cooled. For this reason, a vicious cycle such as /ζ seen in the conventional example is less likely to occur, and the life of the device as a whole can be extended.

以下実施例について述べる。Examples will be described below.

けい光ランプ2に主波長5 A 5 n rnのアパー
チャ型けい光ランプ(MAXt4+i20万Cd / 
n? 。
The fluorescent lamp 2 is an aperture type fluorescent lamp with a main wavelength of 5 A 5 n rn (MAXt4+i200,000 Cd/
n? .

管長37cm、前極16■φ)勿用い、マイクロ光シヤ
ツターアレー1には少なくとも1不の共通電惨を備える
ガラス基板と′g数個の偲号電極ケ備えるガラス基板を
対向させその間に液晶組成物全封入して成る液晶パネル
の両$1!Iに2枚の偏光板全備え、かつ上記液晶組成
物は誘電異方性がゼロになる交−差周波数(以下fQと
略す)が常温で100KHz以下であるネマチック液晶
に光学活性物質を添加してなる液晶組成物であり、さら
に上記共通電極と上記信号電極の間に、fcよジ商い周
波数(以下f1′1と略す)の信号とfcより低い周波
数(以下f1と略す)の信号を印〃口する如く構成され
ており、従来のT N型(ツイストネマチック)液晶装
置と比較して、el、10倍早い、500Hzの繰り返
し周波数で安定したシャッター動作紮災現しているもの
t用い、輝舵センサー3には、常温付近で温度特性がほ
ぼゼロになるよりに負荷抵抗?つけたフォトダイオード
を1史用し、センサー自材の温度%性會改善している、
ヒーター6への最大投入電力は約7[]Wであり、fs
風!115は、加圧押し込み型の7アシ構造tMしてお
り、風量は、10j毎分である、温裳センサーにサーミ
スタであって、けい光ランプ2の端部より約2cm内側
の風入口寄りに設置し、設定温度は約40℃である。シ
ールf!A9ば、板金加工の鉄製外国ケ1■厚発泡スチ
ロールによって断熱したものである。
(tube length: 37 cm, front electrode: 16 mm) Of course, the micro optical shutter array 1 has a glass substrate with at least one common electrode and a glass substrate with several electrodes facing each other, and a liquid crystal display between them. Both $1 for a liquid crystal panel made by completely encapsulating the composition! The liquid crystal composition is made by adding an optically active substance to a nematic liquid crystal whose crossover frequency (hereinafter abbreviated as fQ) at which the dielectric anisotropy becomes zero is 100 KHz or less at room temperature. Further, a signal having a frequency lower than fc (hereinafter abbreviated as f1'1) and a signal having a frequency lower than fc (hereinafter abbreviated as f1) are printed between the common electrode and the signal electrode. 〃The structure is as described above, and compared to the conventional TN type (twisted nematic) liquid crystal device, the shutter operation is 10 times faster and stable at a repetition frequency of 500 Hz. Does the rudder sensor 3 have a load resistance rather than a temperature characteristic that becomes almost zero near room temperature? The attached photodiode has been used for a long time, and the temperature characteristics of the sensor itself have been improved.
The maximum power input to the heater 6 is approximately 7[]W, and fs
Wind! 115 has a pressurized push-in type 7-reed structure tM, and the air volume is 10j/min.It has a temperature sensor and a thermistor, and is located near the air inlet about 2 cm inside from the end of the fluorescent lamp 2. installed, and the set temperature is approximately 40°C. Seal f! A9: It is made of sheet metal and is insulated with 1cm thick styrofoam.

以上の実施りuについて、エージング試験7行なった結
果ケ第5図に示す。1000時間後においても、前記悪
循環ぼ発生しておらず、十分使用可能な状態であった。
Seven aging tests were conducted for the above implementation u, and the results are shown in FIG. Even after 1000 hours, the above-mentioned vicious cycle did not occur and the product was in a usable state.

このようにして構成した不発明による光1百号発生装置
會、Sθ−Te系感光ドラム會音響る。ppc複写慎に
搭載し、プロでス速度5cm/m、2成分反転現像を行
なったところ、鮮明で、長期間安ポした印字を行なうこ
とができた。
The optical generator No. 100 according to the invention constructed as described above, and the Sθ-Te based photosensitive drum system. When installed in a ppc copying machine and subjected to two-component reversal development at a speed of 5 cm/m using a professional printer, it was possible to produce clear and durable prints over a long period of time.

以上述べた如く、不発明によれば、非常に最期間、けい
光ランプ會父換することなく、不装置MF、七便用する
ことができ、メインテナンスの回!ff1k減らすこと
が可能となった。
As mentioned above, according to the invention, the fluorescent lamp can be used seven times without having to replace the fluorescent lamp, and it can be used for seven times without maintenance! It became possible to reduce ff1k.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の光信号発生装置の略全構成全示す。 第2図に、本発明による光信号発生装置の略全+!4成
荀示す。 第3図ば、けい元ランプの管壁温健と、一定輝!に保つ
ために必要な電力との関係の−i+IIに示すつ第4図
は、従来の光信号発生装置のエージング性能全示す。 第5図に、不発明による光信号発生装置のエージング性
能r示す。 1・・・マイクロ光シヤツターアレイ 2・・・けい光ラング 5・・・t41jtセンサー 4…輝度コントローラー 5・・・送風装置 6・・・ヒーター 7・・・温駁センサー 8・・・温度コントローラー 9・・・シール部 以   上 出願人 株式会社諏訪梢工合 代理人 弁理士最上  務
FIG. 1 shows substantially the entire configuration of a conventional optical signal generator. FIG. 2 shows almost the entire optical signal generating device according to the present invention! 4 results are shown. Figure 3 shows the temperature of the tube wall of the source lamp and the constant brightness! FIG. 4 shows the aging performance of the conventional optical signal generator, as shown in -i+II of the relationship with the power required to maintain the signal. FIG. 5 shows the aging performance r of the optical signal generator according to the invention. 1... Micro light shutter array 2... Fluorescent light rung 5... T41JT sensor 4... Brightness controller 5... Air blower 6... Heater 7... Temperature sensor 8... Temperature controller 9... Seal part and above Applicant: Suwa Kozuko Co., Ltd. Joint Agent Patent Attorney Mogami

Claims (1)

【特許請求の範囲】[Claims] マイクロ光シヤツターアレーと、該マイクロ光シヤツタ
ーアレーに光エネルギーを供絽する光源音響する光信号
発生装置において、該光源は、けい光ランプであり、さ
らには4屯センサー、該輝度センサーの出力によってけ
い光ランプに投入する電力上変化せしめる#度コントロ
ーラーより構成され、上記の他、該けい元ランプに送風
するための装置と、該送風するための装置近傍に配置さ
れたヒーターと、温度センサーと、該温健センサーの出
力によって該ヒーターに投入する電力を変化せしめる温
度コントローラーと、風の流れる範囲を限定するための
7−ル都とにより構成され、該温度センサー會、該けい
光ランプの中央〃)ら、風の入口寄!Jに設置したこと
を特徴とする光信号発生装置。
In the micro light shutter array and the light source acoustic light signal generating device that supplies light energy to the micro light shutter array, the light source is a fluorescent lamp, and further includes a four-ton sensor, the output of the brightness sensor. In addition to the above, it also includes a device for blowing air to the fluorescent lamp, a heater placed near the device for blowing air, and a temperature sensor. , a temperature controller that changes the electric power input to the heater according to the output of the temperature sensor, and a 7-hole limiter that limits the range of air flow. In the center, near the entrance of the wind! An optical signal generator characterized in that it is installed in J.
JP58004588A 1983-01-14 1983-01-14 Light signal generating device Pending JPS59128513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004588A JPS59128513A (en) 1983-01-14 1983-01-14 Light signal generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004588A JPS59128513A (en) 1983-01-14 1983-01-14 Light signal generating device

Publications (1)

Publication Number Publication Date
JPS59128513A true JPS59128513A (en) 1984-07-24

Family

ID=11588193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004588A Pending JPS59128513A (en) 1983-01-14 1983-01-14 Light signal generating device

Country Status (1)

Country Link
JP (1) JPS59128513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772885A (en) * 1984-11-22 1988-09-20 Ricoh Company, Ltd. Liquid crystal color display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772885A (en) * 1984-11-22 1988-09-20 Ricoh Company, Ltd. Liquid crystal color display device

Similar Documents

Publication Publication Date Title
CN103140000A (en) Light source device and projector
JPS59128513A (en) Light signal generating device
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPH0968463A (en) Infrared light source
CN107817630A (en) A kind of liquid crystal display device
JPS5878121A (en) Optical signal generator
US20130027674A1 (en) Light source apparatus, discharge lamp driving method, and projector
US20090015176A1 (en) Laser assisted fluorescent lamp
CN210759618U (en) A dimmable energy-saving fireproof glass
US1518141A (en) Heat-absorbing device
JPS5878176A (en) Imaging device
JPH05210077A (en) Illuminating device
JPH10161083A (en) Back light driving device for liquid crystal display panel
JP2009212069A (en) Lighting method of discharge lamp, lighting control device,and projector
JPS6026317A (en) printing device
CN106200205A (en) Fluorescent switch response speed adjustable system and modulator approach
JPH07120799A (en) Wavelength converter
FI72226B (en) GLOEDLAMPA
JPH11204084A (en) Discharge device
JPS60198878A (en) Gas laser oscillator
JPS6368839A (en) Fixing device
JP2915125B2 (en) Light source for photo printing equipment
JPS61126538A (en) printing device
CN119376138A (en) Display device
RU2202845C2 (en) Laser