JPS59126681A - solar cell device - Google Patents
solar cell deviceInfo
- Publication number
- JPS59126681A JPS59126681A JP58002582A JP258283A JPS59126681A JP S59126681 A JPS59126681 A JP S59126681A JP 58002582 A JP58002582 A JP 58002582A JP 258283 A JP258283 A JP 258283A JP S59126681 A JPS59126681 A JP S59126681A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- light guide
- light
- cell device
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010420 art technique Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/484—Refractive light-concentrating means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/488—Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、太陽電池装置に係り、特に、太陽電池の受光
面積を最も変換効率のよい面積、例えば、数cm2程度
に構成するとともに、該太陽電池に最も変換効率のよい
光量を照射するように光学系を構成したものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell device, and in particular, the light-receiving area of a solar cell is configured to have the highest conversion efficiency, for example, about several cm2, and the solar cell is configured to have the highest conversion efficiency. The optical system is configured to emit a good amount of light.
太陽電池を用いて太陽光エネルギーを電気エネルギーに
変換して利用しようとする技術は周知であり、現に、種
々の太陽電池装置が提案されている。而して、太陽電池
の最も効率のよい受光面積は、現状では、数cm2 (
1〜2cm”)程度であり、現在の大型の太陽電池装置
は、受光面積が数cm”のものを多数個合わせてユニッ
ト構成し、このユニットを多数個並設して構成している
ため、太陽電池間の間隙及びユニット間の間隙等による
配設ロスが大きく、必ずしも効率のよいものではなかっ
た。また、太陽光の最大照度はlO万Lx程度であり、
現状の太陽電池はこの最大照度に合わせて、変換効率が
最大になるようにその寸法(受光面面)が定められてい
る。しかし、太陽電池に対する照射光量を大きくしてや
れば、小形(小面積)の太陽電池を用いてより大きな電
気出力が得られることは明らかであり、その分、太陽電
池の使用量を少なくしてより効率よく太陽光エネルギー
を電気エネルギーに変換することができる。2. Description of the Related Art Techniques for converting sunlight energy into electrical energy using solar cells are well known, and various solar cell devices have been proposed. Therefore, the most efficient light-receiving area of a solar cell is currently several cm2 (
1 to 2 cm"), and current large-scale solar cell devices are constructed by combining a large number of units with a light-receiving area of several cm" and arranging a large number of these units in parallel. Installation losses due to gaps between solar cells, gaps between units, etc. were large, and the efficiency was not necessarily high. In addition, the maximum illuminance of sunlight is about 100,000 Lx,
The dimensions (light-receiving surface) of current solar cells are determined to maximize conversion efficiency in accordance with this maximum illuminance. However, it is clear that if the amount of light irradiated to the solar cells is increased, a larger electrical output can be obtained using a smaller (smaller area) solar cell, which will reduce the amount of solar cells used and increase efficiency. It can often convert solar energy into electrical energy.
本発明は、上述のごとき実情に鑑みてなされたもので、
太陽電池の受光面積を最も効率のよい1〜2cm2程度
にするとともに、該太陽電池に最も効率のよい光量の光
を照射するように光学系を構成したものである。The present invention was made in view of the above-mentioned circumstances, and
The optical system is configured so that the light-receiving area of the solar cell is set to the most efficient 1 to 2 cm2, and the solar cell is irradiated with the most efficient amount of light.
第1図は、本発明による太陽電池装置の一実施例を説明
するための構成図で、図中、1は太陽光を集束するため
のレンズ、2は受光端Aが前記レンズ1の焦点近傍に配
設された例えば石英等から成る光導体ロッド、3は前記
光導体ロッド2の出光端B側に配設された太陽電池、4
は多数個の太陽電池を集積した集積板で、各太陽電池3
には、レンズ1によって集束され、かつ、光導体ロッド
2を通すことによって除熱された高エネルギー密度の太
陽光が照射される。従って、各太陽電池は従来の数倍の
光量で照明され、その出力電圧もそれに従って高くなる
が、熱成分は光導体を通る間に除去されてしまうので、
太陽電池が熱破壊を起こしたり、熱によって効率が低下
されるようなことはない。而して、太陽電池の変換効率
は入力光の波長によっても相違するので、使用太陽電池
の種類に合わせて、光導体ロッド2内に蛍光物質等を混
入し、光導体ロッド2内を伝搬されてくる太陽光を使用
太陽電池の最も変換効率のよい波長に変えるようにすれ
ば、更に、太陽電池の変換効率を高めることができる。FIG. 1 is a configuration diagram for explaining one embodiment of a solar cell device according to the present invention. In the figure, 1 is a lens for concentrating sunlight, and 2 is a light receiving end A near the focal point of the lens 1. 3 is a solar cell disposed on the light output end B side of the light guide rod 2; 4 is a light guide rod made of, for example, quartz;
is an integrated board that integrates a large number of solar cells, and each solar cell has 3
is irradiated with high-energy-density sunlight that is focused by a lens 1 and heat removed by passing through a light guide rod 2 . Each solar cell is therefore illuminated with several times more light than before, and its output voltage is correspondingly higher, but the thermal component is removed during its passage through the light guide.
Solar cells do not suffer thermal breakdown or have their efficiency reduced by heat. Since the conversion efficiency of a solar cell also differs depending on the wavelength of input light, depending on the type of solar cell used, a fluorescent material or the like may be mixed into the photoconductor rod 2 to prevent the light from propagating within the photoconductor rod 2. The conversion efficiency of the solar cell can be further increased by changing the wavelength of the incoming sunlight to the wavelength at which the solar cell used has the highest conversion efficiency.
ただし、蛍光物質は、長期間使用していると劣化するの
で、長期間使用するような場合には、第2図に示すよう
に、光導体ロッド2と太陽電池3の間に、蛍光物質を含
有す−る透明部材5を配設し、この透明部材5を取り換
えて使用するようにするとよい。なお、上記実施例にお
いて、光導体2の出光端と太陽電池3とは接触させても
よいが、図示のように、間隙をもった配設しておくと、
この間でも熱の放散があり、太陽電池の熱劣化を防止す
ることができる。However, fluorescent substances deteriorate when used for a long period of time, so when using them for a long period of time, as shown in Figure 2, fluorescent substances should be placed between the photoconductor rod 2 and the solar cell 3. It is preferable to arrange a transparent member 5 containing the material, and to use this transparent member 5 by replacing it. In the above embodiment, the light output end of the light guide 2 and the solar cell 3 may be in contact with each other, but if they are arranged with a gap as shown in the figure,
Even during this time, heat is dissipated, and thermal deterioration of the solar cell can be prevented.
以上の説明から明らかなように、本発明によると、太陽
電池に高エネルギー密度のしかも熱をもたないクールな
光を照射するようにしたので、太陽電池の変換効率を格
段に高め、また、太陽電池の使用量も少なくて済むので
、資源の節減、コストの低廉化をも図ることができる利
点がある。As is clear from the above description, according to the present invention, the solar cells are irradiated with cool light that has high energy density and does not generate heat, thereby significantly increasing the conversion efficiency of the solar cells. Since the amount of solar cells used is small, there is an advantage that resources can be saved and costs can be reduced.
第1図及び第2図は、それぞれ本発明の詳細な説明する
ための構成図である。
l・・・レンズ、2・・・光導体、3・・・太陽電池。
特許出願人 森 敬
第 I 図
第2図FIG. 1 and FIG. 2 are configuration diagrams for explaining the present invention in detail, respectively. l...lens, 2...light guide, 3...solar cell. Patent applicant Takashi Mori I Figure 2
Claims (4)
の焦点近傍に受光端面が配設された光導体と。 該光導体の出光端側に配設された太陽電池とから成るこ
とを特徴とすE太陽電池装置。(1) A lens for focusing sunlight, and a light guide having a light-receiving end face disposed near the focal point of the lens. and a solar cell disposed on the light output end side of the light guide.
陽電池の最も効率のよい受光面積に対応して選択されて
いることを特徴とする特許請求の範囲第(1)項に記載
の太陽電池装置。(2) The diameter of the lens and the diameter of the light guide are selected in accordance with the most efficient light-receiving area of the solar cell. Solar cell device.
体ロンド内に蛍光物質を有し、該蛍光物質によって光導
体ロッド内に導入された太陽光を前記太陽電池に最も効
果的に作用する波長に変換するようにしたことを特徴と
する特許請求の範囲第(1)項又は第(2)項に記載の
太陽電池装置。(3) The light guide is composed of a light guide rod, and has a fluorescent material in the guide rod, and the fluorescent material allows sunlight introduced into the light guide rod to be directed to the solar cell most effectively. The solar cell device according to claim 1 or 2, characterized in that the solar cell device is configured to convert the wavelength to a wavelength that acts on the solar cell device.
って配設され、該間隔間に前記光導体を通して伝送され
てきた太陽光を前記太陽電池に最も効果的に作用する波
長に変換する蛍光物質を含有する透明部材が配設されて
いることを特徴とする特許請求の範囲第(1)項又は第
(2)項に記載の太陽電池装置。(4) The light guide and the solar cell are arranged at a predetermined interval, and the sunlight transmitted through the light guide during the interval is converted into a wavelength that most effectively affects the solar cell. The solar cell device according to claim 1 or claim 2, further comprising a transparent member containing a fluorescent substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58002582A JPS59126681A (en) | 1983-01-11 | 1983-01-11 | solar cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58002582A JPS59126681A (en) | 1983-01-11 | 1983-01-11 | solar cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59126681A true JPS59126681A (en) | 1984-07-21 |
Family
ID=11533364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58002582A Pending JPS59126681A (en) | 1983-01-11 | 1983-01-11 | solar cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59126681A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976789A (en) * | 1989-12-26 | 1990-12-11 | The United States Of America As Represented By The Secretary Of The Army | Power transmission device |
CN102800732A (en) * | 2012-08-21 | 2012-11-28 | 江苏盎华光伏工程技术研究中心有限公司 | Cabin-type photovoltaic power generation device |
CN115027632A (en) * | 2022-06-22 | 2022-09-09 | 中国华能集团有限公司南方分公司 | Floating type photovoltaic power generation device and photovoltaic power generation system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5793583A (en) * | 1980-12-02 | 1982-06-10 | Nec Corp | Power source for spacecraft |
JPS5795675A (en) * | 1980-12-04 | 1982-06-14 | Seiko Epson Corp | Solar cell |
-
1983
- 1983-01-11 JP JP58002582A patent/JPS59126681A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5793583A (en) * | 1980-12-02 | 1982-06-10 | Nec Corp | Power source for spacecraft |
JPS5795675A (en) * | 1980-12-04 | 1982-06-14 | Seiko Epson Corp | Solar cell |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976789A (en) * | 1989-12-26 | 1990-12-11 | The United States Of America As Represented By The Secretary Of The Army | Power transmission device |
CN102800732A (en) * | 2012-08-21 | 2012-11-28 | 江苏盎华光伏工程技术研究中心有限公司 | Cabin-type photovoltaic power generation device |
CN115027632A (en) * | 2022-06-22 | 2022-09-09 | 中国华能集团有限公司南方分公司 | Floating type photovoltaic power generation device and photovoltaic power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5409550A (en) | Solar cell module | |
EP2136409A1 (en) | Concentration photovoltaic cell system with light guide | |
KR840005196A (en) | Solar collector | |
US4193819A (en) | Luminescent photovoltaic solar collector | |
BR9205169A (en) | PROCESS FOR MANUFACTURING A SOLAR CELL, PROCESS FOR STRUCTURING MATERIAL AND SOLAR CELL | |
JPS5737321A (en) | Solar light collector | |
ATE19445T1 (en) | SEMICONDUCTOR COMPONENT FOR THE CONVERSION OF LIGHT INTO ELECTRICAL ENERGY. | |
TW200921920A (en) | Solar cell module | |
JP2009545184A (en) | High-efficiency solar cell with surrounding silicon scavenger cell | |
JPS61241982A (en) | Optical power-generating element | |
JPS59126681A (en) | solar cell device | |
US20090320901A1 (en) | Concentration photovoltaic cell system with light guide | |
JPH1127968A (en) | Power generation system | |
JPS5834803B2 (en) | Concentrating solar cell device | |
GB1529409A (en) | Semiconductor photoelectric generators | |
DE59209991D1 (en) | Method for switching optical message cells | |
JPS61226972A (en) | Photoelectric conversion device | |
JPS62101085A (en) | Concentrating solar cell module | |
RU2411422C1 (en) | Solar photo electric module | |
JPS62126835A (en) | Electric source apparatus | |
JPS584983A (en) | Light condensing and power generation device | |
JPS57150284A (en) | Solid image pickup device | |
JPS6159884A (en) | solar cell module | |
US4329534A (en) | Uniform incident light high voltage solar cell array | |
CA2241422A1 (en) | Compact high efficiency electrical power source |