[go: up one dir, main page]

JPS59126630A - Method and device for correcting photomask - Google Patents

Method and device for correcting photomask

Info

Publication number
JPS59126630A
JPS59126630A JP58001867A JP186783A JPS59126630A JP S59126630 A JPS59126630 A JP S59126630A JP 58001867 A JP58001867 A JP 58001867A JP 186783 A JP186783 A JP 186783A JP S59126630 A JPS59126630 A JP S59126630A
Authority
JP
Japan
Prior art keywords
photomask
organic metal
solution
holder
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58001867A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yokoyama
弘之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58001867A priority Critical patent/JPS59126630A/en
Publication of JPS59126630A publication Critical patent/JPS59126630A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To prevent the contamination of a photomask by a method wherein, before the photomask is taken out into the atmospheric air, the organic metal solution adhered to the photomask is removed using a cleaning solvent. CONSTITUTION:The laser beam sent from a laser oscillator 1 is condensed and irradiated on the perforated defective part of a photomask 4 by a condensing lens 3 through the intermediary of a reflecting mirror 2. The illumination light sent from an illumination light source 5 is overlapped on the laser beam through the intermediary of a beam splitter 6, and an observation is performed by the observing optical system 7 of the photomask 4. An organic metal solution is filed in a holder 8 from a raw solution reservoir 9, a laser beam is made to irradiated in a converged form on the defective part of the photomask, and the organic metal which is dissociated from the solution is deposited on the perforated defective part. After the defective part has been corrected, a cleaning solvent such as toluene and the like flows into the holder 8 from a cleaning solvent reservoir 16, and the organic metal solvent is washed away from the surface of the photomask 4, thereby enabling to prevent the contamination of the photomask due to the oxidation of the organic metal.

Description

【発明の詳細な説明】 この発明は、レーザ光を用いて、フォトマスクの透過欠
陥部に金属を堆積させて修正を行うフォトマスク修正方
法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for repairing a photomask that uses a laser beam to deposit metal on a transparent defective portion of a photomask.

近年の集積回路技術の発達により、超LSIの実現に見
られるように、集積化の密度は益々高くなる一方である
。このように高密度化が進むにつれて、歩留シ向上の点
から集積回路用のフォトマスクの欠陥が大きな問題とな
ってきている。フォトマスクの欠陥には、目づまシ欠陥
(黒色欠陥)と穴あき欠陥(白色欠陥)とがあるが、目
づまシ欠陥についてはレーザを用いた修正装置がすでに
芙用化されている。しかし、穴あき欠陥については、修
正のために、ガラス基板に対して密着性が良くかつ耐酸
性にすぐれたクロム等の金属を微小部分に堆積する必要
があシ、このようなプロセス技術が確立されていなかっ
たことから、実用的な修正装置を実現することができな
かった。これまでの、穴あき欠陥の修正法としては、フ
ォトマスクのパターニングと全く同様のプロセスを繰シ
返すか、一時しのぎとして欠陥部に塗料を付着させる等
の手段が用いられ、全く非能率的であった。
With the recent development of integrated circuit technology, the density of integration is becoming higher and higher, as seen in the realization of very large scale integrated circuits. As the density increases, defects in photomasks for integrated circuits have become a serious problem from the viewpoint of improving yield. Defects in photomasks include blind defects (black defects) and hole defects (white defects), and a laser-based repair device is already in use for blind defects. However, in order to correct hole defects, it is necessary to deposit a metal such as chromium, which has good adhesion to the glass substrate and has excellent acid resistance, on minute parts, and such a process technology has been established. Therefore, it was not possible to realize a practical correction device. Up until now, methods for repairing hole defects have been completely inefficient, such as repeating the exact same process as photomask patterning or applying paint to the defect as a temporary measure. Ta.

最近になって、レーザ利用の金属堆積法が開発され、ト
リメチルアルミニウムやジメチルカドミウム等の有機金
属を原料として、ガラスや半導体上に稚々の金属の微小
パターン形成を行なうことが可能となった。その方法は
、ガラス窓を有するセルの内部をポンプで真空に引いた
後、数Torrの圧力の冷機金属蒸気を適当な圧力のA
r等の不活性ガスとともにセルに封入して、紫外や可視
域のレーザ光をガラス窓の内壁に集光照射し、有機金属
蒸気の光解離や熱解離を利用して金属堆積を行うもので
ある。
Recently, a metal deposition method using a laser has been developed, and it has become possible to form minute metal patterns on glass or semiconductors using organic metals such as trimethylaluminum and dimethylcadmium as raw materials. In this method, the inside of a cell with a glass window is evacuated using a pump, and then cold metal vapor at a pressure of several Torr is heated to an appropriate pressure of A.
This method is sealed in a cell with an inert gas such as R, and focused laser light in the ultraviolet or visible range is irradiated onto the inner wall of the glass window to deposit metal using photodissociation and thermal dissociation of organic metal vapor. be.

このレーザ利用の金属堆積が試みられた初期の頃よ勺1
.フォトマスク修正への応用が提案されたが、実用化に
はいくつかの難点があった。それらを以下に挙げると、
1つはこれまで実験的に行われたものが、空気と爆発的
に反応するような樵類の有機金属を蒸気状態で用いてお
シ、作業や保守の安全性を考えると、小形で実用的な装
置システムを実現できないことである。また、これらの
有機金属の解離エネルギーが太きいために、金属堆積を
実現するためには、波長が200+−付近の紫外レーザ
や可視レーザの高調波によって有機金属の光解離を行う
方法が多用されるが、この場合にはレーザ装置の部分が
非常に複雑で大きくなってしまう。一方、熱解離を利用
する場合にも、数Wオーダーのかなシ高出力の可視や赤
外レーザ光の照射によ)金属を堆積させる部分を数百度
の高温にする必要があシ、基板に損傷を与えてしまうこ
とや、損傷がない場合でも熱の拡散のために金属堆積の
範囲が所望するよ)もはるかに拡がってしまうという問
題がある。
This was in the early days when metal deposition using lasers was attempted.
.. Application to photomask repair was proposed, but there were several difficulties in putting it into practical use. They are listed below:
One is the one that has been experimentally carried out so far, but it uses a lumber organic metal in a vapor state that reacts explosively with the air. The problem is that it is not possible to realize a typical equipment system. In addition, since the dissociation energy of these organic metals is large, in order to realize metal deposition, methods of photodissociation of organic metals using harmonics of ultraviolet lasers or visible lasers with wavelengths around 200+- are often used. However, in this case, the laser device becomes very complicated and large. On the other hand, even when thermal dissociation is used, it is necessary to heat the area where the metal is deposited to a high temperature of several hundred degrees (by irradiation with high-power visible or infrared laser light) on the order of several watts, and the substrate The problem is that even if there is no damage, the area of metal deposition is much wider than the desired area due to heat diffusion.

以上に述べた従来の方法の欠点をなくすものとして、ご
く最近ビスベンゼンクロムやビスベンゼンモリブデン等
の錯体形の有機金属をベンゼン溶液のように液体の形で
使用する方法が注目されてきている。これらの有機金属
は、可視光に対して強い吸収を示し、かつ100℃〜2
50℃程度の比較的低い温度で解離してクロムやモリブ
テン等の金属を析出する性質を有している。また、大気
中においても爆発的な反応はせずおだやかに酸化して黒
化するだけであシ、竜性もほとんど問題にならないこと
から、安全性の点からも利用価値が高い。
In order to eliminate the drawbacks of the conventional methods described above, a method using a complex organic metal such as bisbenzene chromium or bisbenzene molybdenum in a liquid form such as a benzene solution has recently attracted attention. These organic metals exhibit strong absorption of visible light, and
It has the property of dissociating at a relatively low temperature of about 50°C to precipitate metals such as chromium and molybdenum. In addition, it does not undergo an explosive reaction in the atmosphere, but only mildly oxidizes and turns black, and its oxidation is hardly a problem, so it has high utility value from the point of view of safety.

しかし、これらの有機金属は常温で固体であυ、解離温
度近くまで温度を上げても、蒸気圧はl Torrにも
満たないので、金属堆積の目的からは、10−2〜10
−1 モル/!の高濃度にすることが可能なベンゼンや
トルエン等の溶液として使用する方法が慶れている。実
際にそれらの溶液を封入したガラス容器の内壁に可視の
レーザ光を集光照射することにより、照射スポット状に
金属堆積を行う実験がなされている。
However, these organic metals are solid at room temperature, and even if the temperature is raised to near the dissociation temperature, the vapor pressure is less than 1 Torr.
-1 mole/! The preferred method is to use a solution of benzene, toluene, etc., which can be used at a high concentration. Experiments have actually been conducted in which the inner wall of a glass container containing such a solution is irradiated with focused visible laser light to deposit metal in the form of an irradiation spot.

しかしながら、フォトマスクの修正においては、ン等の
有機金属の溶液を使用する上で大きな問題が生じる。そ
れは、フォトマスクと接触している有機金属浴iを酸化
させてはならないということである。もし、フォトマス
クと接触している有機金J/14溶液が大気中の酸素な
どによって酸化されると、有機金属の酸化・吻の付着に
よシフオドマスクが汚染されてしまう。そして、この酸
化物は有機溶剤や敵によっても容易に取シ除くことがで
きない。一方、修正装置へのフォトマスクの取付けや、
取シはすしは大気中で行うことが実用的であシ、従って
これらの作業の際にはフォトマスクに有機金属溶液が付
着しない状態にすることが必要となる。もちろん、フォ
トマスクの修正作業中においても、有機金属溶液の酸化
を防止しなければならないのは言うまでもない。
However, in photomask modification, major problems arise when using organometallic solutions such as N. That is, the organometallic bath i in contact with the photomask must not be oxidized. If the organic gold J/14 solution in contact with the photomask is oxidized by oxygen in the atmosphere, the shift mask will be contaminated by the oxidation of the organic metal and adhesion of the proboscis. This oxide cannot be easily removed even by organic solvents or enemies. On the other hand, attaching a photomask to the correction equipment,
It is practical to prepare and prepare sushi in the atmosphere, and therefore, during these operations, it is necessary to ensure that the organic metal solution does not adhere to the photomask. Of course, it goes without saying that oxidation of the organometallic solution must be prevented even during photomask repair work.

従来においては、上述の有機金属の酸化物によるフォト
マスクの汚染に対する防止策を講じていなかったために
、未だ実用的なフォトマスク修正法が実現されていない
Conventionally, no measures have been taken to prevent the photomask from being contaminated by the above-mentioned organometallic oxides, so a practical photomask repair method has not yet been realized.

本発明の目的は、上述したようなフォトマスクへの有機
金属の酸化物の付着の問題を解決した。
An object of the present invention is to solve the problem of organic metal oxide adhesion to a photomask as described above.

信頼性の高いフォトマスク修正方法と装置を提供するこ
とにある。
An object of the present invention is to provide a highly reliable photomask repair method and apparatus.

本発明によれば、大気から遮断された状態の有機金属溶
液と接触せるフォトマスクの穴あき欠陥部に、レーザ光
を集光照射することにより金属堆積を行って該穴あき欠
陥部を修正する方法において、前記フォトマスクを大気
中に取シ出す前に、ず 該フォトマスクに付着ぜる有機金属溶液を洗浄用溶剤を
用いて除去することを%徴とし、有機金属の酸化物によ
るフォトマスクの汚染を防止することができる。
According to the present invention, metal is deposited on the holed defect portion of a photomask that is brought into contact with an organometallic solution that is shielded from the atmosphere by condensed laser beam irradiation to repair the holed defect portion. In the method, the organic metal solution adhering to the photomask is first removed using a cleaning solvent before the photomask is taken out into the atmosphere, and the photomask made of an organic metal oxide is removed. can prevent contamination.

さらに、本発明は、レーザ発壺器と、該レーザ発振器よ
り発射されたレーザ光をフォトマスクの穴あき欠陥部に
集光照射するための集束光学系と、該フォトマスクのホ
ルダーと、該レーザ光の照射によシ該フォトマスクの穴
あき欠陥部に金属を堆積するための原料となる有機金属
溶液を前記ホルダー内部に流入させる原料供給系とを有
するフォトマスク修正装置において、該フォトマスクお
よび該ホルダーから該有機金属溶液を除去するための洗
浄用溶液を、該ホルダー内に流入させるだめの洗浄液供
給系を設けたことを特徴としている。
Furthermore, the present invention provides a laser oscillator, a focusing optical system for condensing and irradiating a laser beam emitted from the laser oscillator onto a perforated defect in a photomask, a holder for the photomask, and a laser beam emitted from the laser oscillator. A photomask repair apparatus comprising a raw material supply system that flows into the holder an organic metal solution, which is a raw material for depositing metal on the perforated defect portion of the photomask, by irradiation with light, the photomask and The present invention is characterized in that a cleaning liquid supply system is provided for flowing a cleaning solution into the holder to remove the organometallic solution from the holder.

次に、図面を参照して本発明について詳細に説明を行う
Next, the present invention will be explained in detail with reference to the drawings.

図は、この発明の一実施例の模式的構成を示すものであ
る。レーザ発振器1.1:p発射されたレーザ光は反射
鏡2を介して、集光レンズ3によってフォトマスク4の
穴あき欠陥部に集光照射される。
The figure shows a schematic configuration of an embodiment of the present invention. Laser oscillator 1.1:pThe emitted laser light is condensed and irradiated onto the perforated defect portion of photomask 4 by condensing lens 3 via reflecting mirror 2.

この際に、照明用光源5よシ発射された白色の照明光も
、該レーザ光に対しては反射が極めて少ない特性を持つ
ビームスプリッタ6を介して該レーザ光に重ね合わせら
れる。反射鏡2は、レーザ光とレーザ光に近い数107
IJの範囲の波長の光はほぼ完全に反射するが、その他
の波長の光に対しては大きな透過特性を有しておシ、フ
ォトマスク4の様子を、観測光学系7によって観測する
ことができる。フォトマスク4は、マスク面が下になる
ようにホルダー8の上に置かれ、その上からキャップ1
9をホルダー8に押しこんで固定する。ここでは、ホル
ダー8とキャップ19には耐薬品性の優れたテフロン樹
脂を用いておシ、ホルダー8の底部にはめこまれたフィ
ルター12と、固定′されたフォトマスク4とホルダー
8とによって気密性の良い散体セルが構成されるように
なっている。
At this time, the white illumination light emitted from the illumination light source 5 is also superimposed on the laser light via the beam splitter 6, which has a characteristic of extremely little reflection of the laser light. Reflector 2 has a laser beam and a number 107 close to the laser beam.
Although light with a wavelength within the IJ range is almost completely reflected, light with other wavelengths has a large transmission characteristic, and the state of the photomask 4 can be observed by the observation optical system 7. can. The photomask 4 is placed on the holder 8 with the mask side facing down, and the cap 1 is placed on top of it.
9 into the holder 8 and fix it. Here, the holder 8 and the cap 19 are made of Teflon resin with excellent chemical resistance, and the filter 12 fitted into the bottom of the holder 8 and the fixed photomask 4 and the holder 8 provide an airtight seal. It is designed to consist of scattered cells with good properties.

次に、有機金属溶液を入れた原料液リザーバ9内に、原
料液送シ出し用ガス封入口10よシ有機金属と反応しな
い窒素ガスや不活性ガスの封入を行って、ホルダー8円
に有機金属溶液を満たすことにより有機金属浴f夜を満
たすことにより有機金属溶液とフォトマスク4のマスク
面が接触する。
Next, nitrogen gas or an inert gas that does not react with the organic metal is filled into the raw material liquid reservoir 9 containing the organic metal solution through the gas filling port 10 for feeding the raw material liquid, and the organic metal is placed in the holder 8. By filling the organometallic bath with a metal solution, the organometallic solution and the mask surface of the photomask 4 come into contact.

この後は、観測光学系7によって該マスク面のパターン
を観測しながら、駆動装置fllを用いてホルダー8を
微動A整することによって、レーザビームを集光照射す
べき穴あき欠陥部の位置決めを行う。次に、穴あき欠陥
部にレーザ発振器1から発射されたレーザビームを集光
照射することにより、該穴あき欠陥部付近の有機金属溶
液が熱せられて、有機金属が解離し、該穴あき欠陥部に
金属が堆積する。金属堆積中においては、有機金属の解
離の際に発生する気泡を取シ除くため、有機金属溶液を
ある程度流すようにしている。また、フィルター12は
、レーザ光付近の波長の光に対してのみ良い透過特性を
持つので、光検出器13によって透過してきたレーザ光
の強度をモニターすることによシ、穴あき欠陥部への金
属の堆積の度合を検知することができる。フィルター1
2を透過してくるレーザ光の強度が非常に弱くなシ、光
検出器13で検知されなくなると穴あき欠陥部への十分
な金属堆積によシ修正ができたとして、コントローラ1
4によシレーザ発振器1からのレーザ光の発振を停止さ
せるようになっている。
After this, while observing the pattern on the mask surface using the observation optical system 7, the holder 8 is slightly moved A using the drive device fll to position the holed defect portion to be focused and irradiated with the laser beam. . Next, by irradiating the holed defect with a focused laser beam emitted from the laser oscillator 1, the organic metal solution near the holed defect is heated, the organic metal dissociates, and the holed defect is heated. Metal is deposited on the parts. During metal deposition, a certain amount of the organometallic solution is allowed to flow in order to remove air bubbles generated when the organometallic dissociates. In addition, since the filter 12 has good transmission characteristics only for light having a wavelength near the laser beam, by monitoring the intensity of the laser beam that has passed through the photodetector 13, it is possible to detect the perforation defect. The degree of metal deposition can be detected. filter 1
When the intensity of the laser beam transmitted through the hole defect is very weak, and it is no longer detected by the photodetector 13, it is assumed that the hole has been repaired by depositing sufficient metal on the hole defect.
4, the oscillation of the laser beam from the laser oscillator 1 is stopped.

以上の穴あき欠陥部の修正の過程を繰り返して、1枚の
フォトマスクにおけるすべての穴あき欠陥の修正が終了
すると、原料液送シ出し用ガス封入口10へのガスの封
入を停止し、代わシに洗浄液送シ出し用ガス封入口15
へ窒素ガスや不活性ガスの封入を行う。すると洗浄液リ
ザーバ1617′3よシ高純度のトルエン等の洗浄用溶
剤がホルダー8の中に流入され、有機金属溶液は廃液リ
ザーバ17に送シ出される。続けて、ホルダ−8内部と
フォトマスク4のマスク面から十分に有機金属溶液を洗
い流すまで、洗浄用溶剤の流入が行われる。
By repeating the process of repairing the hole defects described above, when all the hole defects in one photomask have been repaired, the filling of gas into the gas filling port 10 for feeding the raw material liquid is stopped, Instead, there is a gas filling inlet 15 for supplying cleaning liquid.
Fill with nitrogen gas or inert gas. Then, a cleaning solvent such as high-purity toluene flows into the holder 8 from the cleaning liquid reservoir 1617'3, and the organometallic solution is delivered to the waste liquid reservoir 17. Subsequently, the cleaning solvent continues to flow until the organic metal solution is sufficiently washed away from the inside of the holder 8 and the mask surface of the photomask 4.

このようにして洗浄が終了すると、有機金属の酸化物に
よる汚染を心配することなくフォトマスク4をホルダー
8から取シはずすことができる。また、ホルダ−8内部
にも有機金属や有機金属の酸化物は存在しないので、汚
染の恐れなく修正すべき別のフォトマスクを取シ付ける
ことができる。
When the cleaning is completed in this way, the photomask 4 can be removed from the holder 8 without worrying about contamination by organic metal oxides. Further, since no organic metal or organic metal oxide exists inside the holder 8, another photomask to be corrected can be attached without fear of contamination.

なお、次のフォトマスクの修正にあたっては、フォトマ
スクの交換の際に取りこまれた空気をホルダ−8内部か
ら除去するため、有機金属溶液を流入する前に、少量の
洗浄用溶剤を流せば良い。りお、有機金属溶液や洗浄用
溶剤の逆流を避けるため、液体の6tfi路には逆流防
止弁18を入れている。
In addition, when repairing the photomask next time, in order to remove the air taken in when replacing the photomask from inside the holder 8, it is necessary to pour a small amount of cleaning solvent before introducing the organometallic solution. good. In order to avoid backflow of the organometallic solution and cleaning solvent, a backflow prevention valve 18 is installed in the 6TFI liquid path.

この実施例では、有機金属としてビスベンゼンクロムを
選び、 1o−2モル/ノ程度の濃度のベンゼン溶液と
して使用し、レーザ発振器1としては、この溶液に強い
吸収がある488nmの波長のアルゴンレーザを用いた
。また、コントローラ14は、光検出器13からの信号
強度があらかじめ設定した比較器の基準レベルよシ小さ
くなると、レーザ放電管を流れる電流をレーザ発振の閾
値よシ小さくする電流制御方式とした。アルゴンレーザ
の出力を50mWとして、約5pm径の穴あき欠陥の修
正を行ったところ、レーザ光の照射時間が約5秒で修正
が終了した。すべての穴あき欠陥の修正を終了したフォ
トマスクを前述の手続きに従って取りはずし、約1μm
の分解能を有する検査装置によってマスク面を観測した
ところ、分解能以上の大きさを持ち実用上問題になるよ
うな、汚染による欠陥は全く存在しなかった。
In this example, bisbenzene chromium is selected as the organic metal and used as a benzene solution with a concentration of about 10-2 mol/no, and as the laser oscillator 1, an argon laser with a wavelength of 488 nm, which has strong absorption in this solution, is used. Using. Further, the controller 14 employs a current control method in which when the signal intensity from the photodetector 13 becomes smaller than a preset reference level of the comparator, the current flowing through the laser discharge tube is made smaller than the laser oscillation threshold. When a hole defect with a diameter of about 5 pm was repaired using an argon laser output of 50 mW, the repair was completed in about 5 seconds of laser light irradiation time. After all hole defects have been corrected, remove the photomask according to the procedure described above, and
When the mask surface was observed using an inspection device with a resolution of , there were no defects due to contamination that were larger than the resolution and would pose a practical problem.

以上のように、本発明によれば、天川的で極めて信頼性
の高いフォトマスク修正方法とこれを利用したフォトマ
スク修正装置を実現できる。
As described above, according to the present invention, it is possible to realize an Tenkawa-like and extremely reliable photomask repair method and a photomask repair apparatus using the same.

また、上述の実施例においては、有機金属としてビスベ
ンゼンクロムを用いたが、他にビスベンゼンモリブデン
やフタロシアニン系の錯体形の有機金属、またカルボニ
ル系有機金属等を用いる場合も全く同様の構成が適用で
きる。その場合には、用いる有機金属に適した溶剤を用
いて溶液とし、これと対応して洗浄用の溶剤も適当なも
のを選べば良い。この際、金属堆積のためには、有機金
属溶液が強い吸収を持つ波長のレーザ光を発生し得るレ
ーザ発振器を使用し、光学部品も適当なものに代えるこ
とは言うまでもない。
In addition, in the above example, bisbenzene chromium was used as the organometallic, but the same structure can be used when using other complex organometallics such as bisbenzenemolybdenum or phthalocyanine, or carbonyl organometallics. Applicable. In that case, a solution may be prepared using a solvent suitable for the organic metal used, and a suitable cleaning solvent may be selected correspondingly. At this time, it goes without saying that for metal deposition, a laser oscillator capable of generating laser light at a wavelength that is strongly absorbed by the organometallic solution is used, and optical components are also replaced with appropriate ones.

なお、ここでの実施例では、金属堆積を確認してレーザ
発振を停止する方式として電流制御方式を用いたが、レ
ーザ発振器の共振器内に損失変調器などを配置する方式
としても良いのはもちろんである。
In this example, a current control method was used to check for metal deposition and stop laser oscillation, but it is also possible to use a method in which a loss modulator or the like is placed inside the resonator of the laser oscillator. Of course.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例の模式的構成を示すものである
。図において、 1・・・レーザ発振器   2・・・反射鏡3・・・集
光レンズ    4・・・フォトマスク5・・・照明用
光源    6・・・ビームスプリッタ7・・・観測光
学系    8−・・ホルダー9・−・原料液リザーバ 10・・・原料液送シ出し用ガス封入口11・・・駆動
装置     12・・・フィルター13・・・光検出
器     14・・・コントローラ15・・・洗浄液
送り出し用ガス封入口16・・・洗浄液リザーバ 17・・・廃液リザーバ   18・・・逆流防止弁1
9・・・キャップ である。
The figure shows a schematic configuration of an embodiment of the present invention. In the figure, 1...Laser oscillator 2...Reflector 3...Condenser lens 4...Photomask 5...Illumination light source 6...Beam splitter 7...Observation optical system 8- ...Holder 9...Raw material liquid reservoir 10...Gas filling port for feeding raw material liquid 11...Drive device 12...Filter 13...Photodetector 14...Controller 15... Gas filling inlet for cleaning liquid delivery 16...Cleaning liquid reservoir 17...Waste liquid reservoir 18...Backflow prevention valve 1
9... It is a cap.

Claims (2)

【特許請求の範囲】[Claims] (1)  大気から遮断された状態の有機金属溶液とず 接触jるフォトマスクの穴あき欠陥部に、レーザ光を集
光照射することによ多金属堆積を行って該穴あき欠陥部
を修正する方法において、前記フォトマスクを大気中に
取シ出す前に、該フォトマスク クに付着ぜる有機金属溶液を洗浄用溶剤を用いて除去す
ることを特徴とするフォトマスク修正方法。
(1) Polymetal deposition is performed on the hole-defected portion of the photomask that is in contact with the organometallic solution that is shielded from the atmosphere by condensed laser beam irradiation to repair the hole-defected portion. A method for repairing a photomask, characterized in that, before the photomask is taken out into the atmosphere, an organic metal solution adhering to the photomask is removed using a cleaning solvent.
(2)  レーザ発振器と、該レーザ発振器よシ発射さ
れたレーザ光をフォトマスクの穴あき欠陥部に集光照射
するための集束光学系と、該フォトマスクのホルダーと
、該レーザ光の照射によシ該フォトマスクの穴あき欠陥
部に金属を堆積するだめの原料となる有機金属m液を前
記ホルダー内部に流入させる原料供給系とを有するフォ
トマスク修正装置において、該フォトマスクおよび該ホ
ルダーから該有機金属溶液を除去するための洗浄用溶剤
を、該ホルダー円に流入させるだめの洗浄液供給系を設
けたことを特徴とするフォトマスク修正装置。
(2) A laser oscillator, a focusing optical system for condensing and irradiating the laser beam emitted from the laser oscillator onto the perforated defect portion of the photomask, a holder for the photomask, and a focusing optical system for irradiating the laser beam emitted from the laser oscillator. In a photomask repairing apparatus having a raw material supply system for flowing into the holder an organometallic m solution, which is a raw material for depositing metal on the perforated defects of the photomask, from the photomask and the holder. A photomask repairing apparatus comprising a cleaning liquid supply system for flowing a cleaning solvent into the holder circle to remove the organic metal solution.
JP58001867A 1983-01-10 1983-01-10 Method and device for correcting photomask Pending JPS59126630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001867A JPS59126630A (en) 1983-01-10 1983-01-10 Method and device for correcting photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001867A JPS59126630A (en) 1983-01-10 1983-01-10 Method and device for correcting photomask

Publications (1)

Publication Number Publication Date
JPS59126630A true JPS59126630A (en) 1984-07-21

Family

ID=11513493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001867A Pending JPS59126630A (en) 1983-01-10 1983-01-10 Method and device for correcting photomask

Country Status (1)

Country Link
JP (1) JPS59126630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127125A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Photomask defect repair method
EP0193673A2 (en) * 1985-03-01 1986-09-10 Gould Inc. Apparatus for photomask repair

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127125A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Photomask defect repair method
JPH0558187B2 (en) * 1984-11-26 1993-08-25 Hitachi Ltd
EP0193673A2 (en) * 1985-03-01 1986-09-10 Gould Inc. Apparatus for photomask repair

Similar Documents

Publication Publication Date Title
US4778693A (en) Photolithographic mask repair system
US5099557A (en) Removal of surface contaminants by irradiation from a high-energy source
JP2634245B2 (en) Method and apparatus for removing surface contaminants by irradiation from a high energy source
KR0158780B1 (en) Method and apparatus for film formation by chemical vapor deposition
US8343429B2 (en) Target supply unit of extreme ultraviolet light source apparatus and method of manufacturing the same
KR100273878B1 (en) Method and apparatus for correcting defects in photomask
US9073098B2 (en) Light collector mirror cleaning
JPS60196942A (en) Photomask defect correcting process
JP2000133736A (en) Method and apparatus for airtight sealing of semiconductor laser device
US4976930A (en) Method and apparatus for inducing photochemical reaction
JPS59126630A (en) Method and device for correcting photomask
JPS595621A (en) Forming method for thin-film
JP6763959B2 (en) Chamber equipment, target generation method and extreme ultraviolet light generation equipment
JP2000328252A (en) Formation of metallic pattern
JPS59208065A (en) Depositing method of metal by laser
JPS59197560A (en) Metal deposition utilizing laser
JPS6053015A (en) Thin film formation by laser irradiation
JPH0458624B2 (en)
JPS642935B2 (en)
JPH0375358A (en) Formation of thin film of fluoride or its mixture by using plasma electron beam
JPH05249033A (en) Optical system for measuring ultraviolet rays and improvement of stability thereof
JPH11168273A (en) Wiring formation
JPH07308567A (en) Washing method and washing device for vessel
JPH0342825A (en) Ashing method
JPH0558187B2 (en)