JPS59125889A - Device for photosynthesis - Google Patents
Device for photosynthesisInfo
- Publication number
- JPS59125889A JPS59125889A JP23079082A JP23079082A JPS59125889A JP S59125889 A JPS59125889 A JP S59125889A JP 23079082 A JP23079082 A JP 23079082A JP 23079082 A JP23079082 A JP 23079082A JP S59125889 A JPS59125889 A JP S59125889A
- Authority
- JP
- Japan
- Prior art keywords
- air
- photosynthesis
- rotating disk
- reaction tank
- photosynthetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/10—Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/06—Tubular
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/44—Multiple separable units; Modules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
- C12M27/04—Stirrer or mobile mixing elements with introduction of gas through the stirrer or mixing element
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/08—Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
夾亙史1
本発明は、光合成物質、例えば、藻(例えば1、クロレ
ラ、スピルリーナ等)、光合成細菌、及び、その他の人
工的に合成される光合成物質(例えば、カルス等)等を
効果的に光合成するための光合成装置に関する。DETAILED DESCRIPTION OF THE INVENTION History 1 The present invention relates to photosynthetic substances, such as algae (e.g., chlorella, spirulina, etc.), photosynthetic bacteria, and other artificially synthesized photosynthetic substances (e.g., callus). etc.), etc.).
羨釆弦遺
光合成装置の一例として、例えば、クロレラ培養装置が
提案されているが、クロレラ(葉緑素を含む単細胞微生
物)を培養する場合、クロレラにある値以上の光を与え
ると葉緑素が破壊して毒素(フエオホルバイト)を発生
し、ある値以下の光量では光合成が進行しない。そのた
め、光合成を効果的に行なわせるためには、全ての光合
成物質を含む細胞に対して均一のある一定の光を与える
必要がある。このような条件を満たすためには、非常に
狭い間隙の間に光合成物質を通すようにするとともに、
この間隙に対して直角方向に一定量の光を与えするよう
にすればよく、このようにすれば、光の減衰が少なく、
全ての光合成物質を含む細胞に対して光の波長成分を変
えることなく十分な光を均等に与えることができる。ま
た、光合成を効率よく行なうためには、十分なCO2を
全体に亘って隈無く均等に供給することが必要である。For example, a chlorella culture device has been proposed as an example of a photosynthesis device, but when culturing chlorella (single-celled microorganisms containing chlorophyll), if chlorella is exposed to light above a certain value, the chlorophyll will be destroyed. They produce toxins (pheophorbite), and photosynthesis does not proceed when the amount of light is below a certain value. Therefore, in order to carry out photosynthesis effectively, it is necessary to provide a certain level of uniform light to cells containing all photosynthetic substances. In order to meet these conditions, it is necessary to pass photosynthetic substances through very narrow gaps, and
It is sufficient to provide a certain amount of light in the direction perpendicular to this gap, and in this way, the attenuation of the light is small.
It is possible to uniformly provide sufficient light to cells containing all photosynthetic substances without changing the wavelength components of the light. In addition, in order to carry out photosynthesis efficiently, it is necessary to uniformly supply sufficient CO2 throughout the area.
上述のごとき実情に鑑みて、本出願人は、先に、第1図
乃至第3図に示すごとき光合成装置について提案した(
特願昭57−5261号参照)。すなわち、第1図は、
本出願人が先に提案した光合成反応装置の一例を説明す
るための側断面図(第2図のI−I線断面図)、第2図
“は、第1図のII −II線断面図、第3図は、第1
図の■−■線断面図で、図中、lは光合成反応槽、2は
補助槽、3は光導体ケーブル、4はCO2を含む空気を
光合成反応槽l内に供給するためのパイプで、光合成反
応槽l内には多数本の細管状の光ラジェータ10が図示
のように並列に立設されており、その下端部は閉塞され
るとともにそれぞれ単管14に水密に嵌合されている。In view of the above-mentioned circumstances, the applicant previously proposed a photosynthesis device as shown in Figs. 1 to 3 (
(See Japanese Patent Application No. 57-5261). In other words, in Figure 1,
A side cross-sectional view (cross-sectional view taken along the line II in FIG. 2) for explaining an example of the photosynthetic reaction device previously proposed by the present applicant; FIG. 2" is a cross-sectional view taken along the line II-II in FIG. , Figure 3 shows the first
In the figure, l is a photosynthetic reaction tank, 2 is an auxiliary tank, 3 is a photoconductor cable, and 4 is a pipe for supplying air containing CO2 into the photosynthetic reaction tank l. Inside the photosynthesis reaction tank 1, a large number of thin tube-shaped optical radiators 10 are arranged in parallel as shown in the figure, and their lower ends are closed and each is fitted in a single tube 14 in a watertight manner.
これらの単管14は、第3図に示すように、その外周部
が密着して一体的に接合され、各単管間の間隙15は、
その一部の領域(第3図において黒く塗りつぶされてい
る部分)が塞がれている。従って、バイブ4より供給さ
れるCO2を含んだ空気は、外周部近傍の間隙15を通
して光ラジェータ10の間を矢印A方向に上昇し、上端
部において中心方向に向い、中心部を矢印B方向に下降
するが、前述のように、中心部近傍の間隙15は塞がれ
ているので、中心部を下降した空気は下端部において外
周部に向い、光合成反応槽1内を還流する。このように
すると、光ラジェータlOの外周壁上を培地が空気と共
に相当の速さで移動するので、光ラジェータの外周壁に
光合成物質が付着するようなことはなく、これらによっ
て光ラジェータから放出された光が遮ぎられるようなこ
とはなくなり、全ての光合成物質に光エネルギー及びC
02を均等に供給することができる。補助槽2は、光合
成反応槽lの上端側において連通口21.22を通して
該光合成反応槽lと連通して取り付けられており、前述
のようにして生成された光合成物質は、該補助槽2の下
端部に設けられた取り出しバルブ23を通して取り出さ
れる。この時、光合成反応槽内の培地も一緒に吐出され
てしまうので、バルブ24を通して不足した分の培地及
びPHコントロール溶液を補給する。また、補助槽2の
上端部には、前述のごとくして光合成反応槽1内に圧入
された空気を排出するためのバルブ25が設けられてお
り、該バルブの開度を調整することによって光合成反応
槽1内の圧力を調整することができる。更に、補助槽2
内には、温度計、圧力計、pH計、濃度計等光合成反応
状態を監視するための計器類26が設けられており、こ
れらによつ−C1光合成が最も効果的に行なわれるよう
に光合成反応装置1内の状態を制御し、例えば、補助槽
2内に発熱、吸熱装置27を設け、該発熱、吸熱装置2
7を制御して光合成反応槽内の温度を制御し、また、光
合成物質を取り出すべき時期が報知される。光ラジェー
タ10は透明体の外管11、該外管ll内に挿通される
光導体ロッド12、及び下端部内側に設けられた反射鏡
13等よりなり、該外管11の上部外壁にはねじlla
が切られおり、該ねじllaが上蓋30に切られたねじ
30aに螺着されており、従って、上蓋30を光合成反
応槽1から取り外すと、光ラジェータlOも該上蓋30
と一緒に取り出される。また、光ラジェータ10の前記
上端部外壁11に切られたねじ11aには、光導体ケー
ブル3の出光端側が螺着できるようになっており、これ
らを螺着した時に、光導体ケーブル3の光ファイバー3
aの端部と光ラジェータ内の光導体ロッド12の端部と
が一致し、光導体ケーブル3の光ファイバー3aを通し
て伝送されてきた光が光導体ロッド12内に効果的に伝
達されるようになっている。なお、光導体ロッド12は
、石英成いはプラスチック等で構成され、図示例の場合
、その表面に所望の間隔をもって光拡散物質すなわちこ
れら石英又はプラスチックの光屈折率よりも大きい屈折
率の物質12aが取り付けられており、光導体ロッド内
を伝搬されてきた光がこれらの物質LZa部より放射さ
れるようになっている。As shown in FIG. 3, these single tubes 14 are integrally joined with their outer peripheries in close contact, and the gaps 15 between each single tube are as follows.
A part of the area (blacked out area in FIG. 3) is blocked. Therefore, the air containing CO2 supplied from the vibrator 4 rises between the optical radiators 10 in the direction of arrow A through the gap 15 near the outer periphery, points toward the center at the upper end, and moves from the center in the direction of arrow B. However, as described above, since the gap 15 near the center is closed, the air that has descended from the center is directed toward the outer periphery at the lower end and circulates inside the photosynthesis reaction tank 1. In this way, the medium moves along with the air at a considerable speed on the outer peripheral wall of the optical radiator 10, so photosynthetic substances do not adhere to the outer peripheral wall of the optical radiator, and are released from the optical radiator. light is no longer blocked, and all photosynthetic substances receive light energy and C.
02 can be evenly supplied. The auxiliary tank 2 is attached to the upper end side of the photosynthesis reaction tank 1 so as to communicate with the photosynthesis reaction tank 1 through the communication port 21.22, and the photosynthetic substances produced as described above are transferred to the auxiliary tank 2. It is taken out through a take-out valve 23 provided at the lower end. At this time, since the medium in the photosynthesis reaction tank is also discharged, the insufficient medium and PH control solution are supplied through the valve 24. Further, at the upper end of the auxiliary tank 2, there is provided a valve 25 for discharging the air pressurized into the photosynthesis reaction tank 1 as described above, and by adjusting the opening degree of the valve, photosynthesis The pressure inside the reaction tank 1 can be adjusted. Furthermore, auxiliary tank 2
Inside, there are instruments 26 such as a thermometer, pressure gauge, pH meter, concentration meter, etc. for monitoring the state of photosynthesis reaction, and these are used to control photosynthesis so that -C1 photosynthesis is carried out most effectively. The state inside the reaction apparatus 1 is controlled, for example, a heat generating/endothermic device 27 is provided in the auxiliary tank 2, and the heat generating/endothermic device 2 is
7 to control the temperature inside the photosynthetic reaction tank, and also notify the time when photosynthetic substances should be taken out. The optical radiator 10 consists of a transparent outer tube 11, a light guide rod 12 inserted into the outer tube 11, a reflecting mirror 13 provided inside the lower end, and the like, and a screw is attached to the upper outer wall of the outer tube 11. lla
is cut, and the screw lla is screwed onto a screw 30a cut in the upper lid 30. Therefore, when the upper lid 30 is removed from the photosynthesis reaction tank 1, the optical radiator lO is also attached to the upper lid 30.
It is taken out together with. Further, the light output end side of the light guide cable 3 can be screwed into the screw 11a cut in the upper end outer wall 11 of the optical radiator 10, and when these are screwed, the optical fiber of the light guide cable 3 can be screwed into the screw 11a. 3
The end of a matches the end of the light guide rod 12 in the optical radiator, and the light transmitted through the optical fiber 3a of the light guide cable 3 is effectively transmitted into the light guide rod 12. ing. The light guide rod 12 is made of quartz, plastic, or the like, and in the case of the illustrated example, a light diffusing material 12a, that is, a material 12a having a refractive index higher than that of quartz or plastic, is placed on its surface at a desired interval. are attached so that the light propagated within the light guide rod is radiated from these material LZa parts.
第4図は、本出願人が先に提案した光合成反応装置の一
例を示す要部側断面図、第5図は、第4図のv−v線断
面図で、図中、40はパイプ4から供給されるC02を
含む空気によって回転される羽根車で、該羽根車40は
空気流通路41及び空気噴射口42を有し、該パイプ4
から供給される空気をエアーベアリング、エアークッシ
ョンとして、また、空気噴射口42から噴射される空気
を主たる回転力として回転される。すなわち1図示例に
おいては、パイプ4の周壁には斜めに穿設された穴4a
を有し、該穴4aから放出される空気はまず羽根車40
に設けられた空気流通路41の側壁部41a部に当−っ
て該羽根車40に矢印R方向の回転力を与え、次いで、
該空気流通路41を通して空気噴射口42から噴射され
て該羽根車を矢印R方向に回転する。その際、パイプ4
の上端より放出される空気圧によって羽根車40が浮揚
されて該パイプ4の上端と羽根車40との間に間隙d、
が生じ、該間隙d1を通して矢印方向に空気が流れ、一
方、該間隙dlを通して空気及びパイプ4の側壁に穿設
された穴4aを通して放出される空気の一部が該パイプ
4の外壁と羽根車4Oの内壁との間の間隙d2を通して
該羽根車40の底部と基板との間の間隙d3に流れるの
で、羽根車40は間隙d、及びd3に流れる空気流によ
ってエアークッション支持され、かつ、[I W d
2に流れる空気流によってエアーベアリング支持される
。なお、その際、羽根車40の上部に空気流通路43を
設けておくと、光合成反応槽の下面と羽根車の上面との
間の間隙d4に空気流が発生し、該羽根車40をより効
果的にエアークッション支持することができる。而して
、この実施例によると、羽根車40が回転され、光合成
反応槽底部の空気圧力分布が該羽根車40の回転に従っ
て変化するので、光合成反応槽内の空気還流ルートが時
々刻々変化し、時間的に平均すれば、全空気流通路に略
均等にCo2を含む空気が供給されることになり、光合
成反応をより効果的に行なわせることができる。また、
空気噴射口42から噴射される噴射気流によって光合成
反応槽の下部に落下する培地、光合成物質等は上方に吸
引されてしまうので、該光合成反応槽の下部に光合成物
質の死骸等が溜まるようなことがない。更に、その際、
前記空気噴出口42を多少下方向に向けておくと、たと
え該下部に光合成物質の死骸等が溜まったとしても、こ
れら死骸は空気噴射口42から噴射される空気流によっ
て上方に飛び散−らされるので、より効果的に光合成反
応槽の底部を清潔に保つことができる。また、図には、
光合成反応槽lが六角形状をしている場合の例を示した
が、このように光合成反応槽が多角形状をしている場合
(換言すれば円形でない場合)、羽根車4oの空気流通
路41を延長して該羽根車の周面41bから該羽根車の
半径方向に空気流を放出するようにすると、該光合成反
応槽の周辺部の空気流通路15にも効果的に空気を流す
ことができ、該羽根車の先端部の回転軌跡を第3図に示
す円。とすれば、空気噴射口41bが光合成反応槽の壁
面に近いa位置にある時は該空気噴射口41bの空気抵
抗が大きくなり、遠いb位置にある時は空気抵抗が小さ
くなるので、a部の空気流路にもb部の空気流路にも略
均等に空気を送ることができる。また、羽根車に上方つ
まり光合成反応槽に向けて開口する空気噴射口を設けて
おくことも可能で、このようにすれば、羽根車の回転に
応じて強制的に順次間隙15に空気を流すことができ、
先行技術において必要としていた閉塞部(第3図におい
て黒く塗りつぶした部分)が不要となり、該閉塞部がな
くても前記従来技術と同様の環流ルートを光合成反応槽
に形成することができる。FIG. 4 is a side sectional view of essential parts showing an example of a photosynthetic reaction device previously proposed by the applicant, and FIG. 5 is a sectional view taken along the line v-v in FIG. The impeller 40 has an air flow passage 41 and an air injection port 42, and the impeller 40 is rotated by air containing C02 supplied from the pipe 4.
It is rotated using the air supplied from the air bearing and air cushion as an air bearing and the air jetted from the air injection port 42 as the main rotational force. In other words, in the illustrated example, the peripheral wall of the pipe 4 has a hole 4a formed diagonally.
The air released from the hole 4a first passes through the impeller 40.
A rotational force in the direction of arrow R is applied to the impeller 40 by hitting the side wall 41a of the air flow passage 41 provided in the
Air is injected from the air injection port 42 through the air flow path 41 to rotate the impeller in the direction of arrow R. At that time, pipe 4
The impeller 40 is levitated by the air pressure released from the upper end, and there is a gap d between the upper end of the pipe 4 and the impeller 40,
occurs, and air flows in the direction of the arrow through the gap d1. On the other hand, air flows through the gap dl and a part of the air released through the hole 4a bored in the side wall of the pipe 4 flows between the outer wall of the pipe 4 and the impeller. 4O through the gap d2 between the inner wall of the impeller 40 and the gap d3 between the bottom of the impeller 40 and the substrate, the impeller 40 is supported by an air cushion by the airflow flowing through the gaps d and d3, and [ I W d
It is supported by an air bearing by the airflow flowing through 2. In this case, if an air flow passage 43 is provided above the impeller 40, an air flow will be generated in the gap d4 between the bottom surface of the photosynthesis reaction tank and the top surface of the impeller, and the impeller 40 will be Can be effectively supported by air cushion. According to this embodiment, the impeller 40 is rotated and the air pressure distribution at the bottom of the photosynthetic reaction tank changes according to the rotation of the impeller 40, so the air circulation route inside the photosynthetic reaction tank changes from time to time. If averaged over time, air containing Co2 will be supplied substantially evenly to all the airflow passages, and the photosynthesis reaction can be carried out more effectively. Also,
Since the medium, photosynthetic substances, etc. that fall to the bottom of the photosynthetic reaction tank are sucked upward by the jet air stream injected from the air injection port 42, there is no possibility that dead bodies of photosynthetic substances, etc. will accumulate at the bottom of the photosynthetic reaction tank. There is no. Furthermore, at that time,
If the air outlet 42 is directed slightly downward, even if dead bodies of photosynthetic substances accumulate in the lower part, the dead bodies will not be scattered upward by the air flow injected from the air outlet 42. Therefore, the bottom of the photosynthesis reactor can be kept clean more effectively. Also, in the figure,
An example has been shown in which the photosynthesis reaction tank l has a hexagonal shape, but when the photosynthesis reaction tank has a polygonal shape (in other words, it is not circular), the air flow passage 41 of the impeller 4o By extending the airflow to emit airflow from the circumferential surface 41b of the impeller in the radial direction of the impeller, air can also be effectively flowed to the airflow passage 15 in the periphery of the photosynthesis reaction tank. The rotation locus of the tip of the impeller is shown in a circle as shown in FIG. Then, when the air injection port 41b is at position a near the wall of the photosynthetic reaction tank, the air resistance of the air injection port 41b is large, and when it is far away from the wall at position b, the air resistance is small. Air can be sent almost equally to both the air flow path in section b and the air flow path in section b. It is also possible to provide the impeller with an air injection port that opens upward, that is, toward the photosynthetic reaction tank, and in this way, air is forced to flow sequentially into the gaps 15 in accordance with the rotation of the impeller. It is possible,
The blockage part (blacked out part in FIG. 3) required in the prior art is no longer necessary, and the same reflux route as in the prior art can be formed in the photosynthesis reaction tank even without the blockage part.
則−−1
本発明は、上述のごとき光合成装置を更に改良して、具
体的には、前記羽根車に代って回転円板を使用し、もっ
て前記光合成反応槽内へのCO2含有空気の供給を確実
かつ安定して行い得るようにしたものである。Rule--1 The present invention further improves the photosynthesis device as described above, and specifically uses a rotating disk instead of the impeller, thereby increasing the flow of CO2-containing air into the photosynthesis reaction tank. This ensures reliable and stable supply.
1−−1
第6図は、本発明の一実施例を説明するため要部断面図
(第7図のVl−VI線断面図)、第7図は第6の■−
■線方向から見た平面図で、図中、50は本発明による
回転円板を示し、該回転円板50は、水平方向空気噴射
口51a、51b及び垂直方向空気噴射口52a、52
bを有し、前記羽根車と同様、パイプ4から供給される
CO2含有空気によってエアーベアリング、エアークッ
ション支持され、かつ、水平方向空気噴射口5’la。1--1 FIG. 6 is a cross-sectional view of a main part (a cross-sectional view taken along the line Vl-VI in FIG. 7) for explaining one embodiment of the present invention, and FIG.
(2) A plan view seen from the line direction. In the figure, 50 indicates a rotating disk according to the present invention, and the rotating disk 50 has horizontal air injection ports 51a, 51b and vertical air injection ports 52a, 52.
b, and like the impeller, is supported by an air bearing and an air cushion by CO2-containing air supplied from the pipe 4, and has a horizontal air injection port 5'la.
51bより噴射される空気によって矢印R方向に回転さ
れ、同時に、垂直方向噴射口52a 、52bから噴射
される空気が細管状光ラジェータ10間の間隙15を通
して光合成反応槽内に供給される。而して、本発明のよ
うに、従来の羽根車に代って回転円板を使用すると、全
体のバランスを良好に保つことができ、光合成反応槽内
へのCO2含有空気の供給を確実にかつ安定して行うこ
とができる。また、下部に溜まっている培地を反応槽内
へ効果的に追い出すことができる。なお、反応槽部と回
転円板部を図示のように分離可能にしておけば、製作性
及び保守を容易にすることができる。It is rotated in the direction of arrow R by the air injected from 51b, and at the same time, the air injected from vertical injection ports 52a and 52b is supplied into the photosynthesis reaction tank through the gap 15 between the capillary optical radiators 10. Therefore, by using a rotating disk instead of a conventional impeller as in the present invention, it is possible to maintain a good overall balance and ensure the supply of CO2-containing air into the photosynthesis reaction tank. And it can be done stably. Moreover, the culture medium accumulated in the lower part can be effectively expelled into the reaction tank. Note that if the reaction tank section and the rotating disk section are made separable as shown in the figure, manufacturability and maintenance can be facilitated.
第8図は、本発明の他の実施例を示す要部断面図で、こ
の実施例は、図示のように、前述のごとき回転円板50
をエアータイトのベアリ、ング60にてC02含有空気
供給パイプ4に回転支持するようにしたもので、このよ
うにすると、更に安定して回転円板を回転支持すること
ができる。FIG. 8 is a sectional view of a main part showing another embodiment of the present invention, and this embodiment has a rotating disk 50 as described above as shown in the figure.
is rotatably supported on the CO2-containing air supply pipe 4 using an airtight bearing ring 60. In this way, the rotary disk can be rotationally supported more stably.
第9図は、本発明の他の実施例を説明するための要部断
面図で、図中、70は多孔板、80はチューブで、該多
孔板70の番孔71は前記チューブ80を介して前記細
管状光ラジェータ間の間隙15と連結されており、また
、該多孔板70の下側には前述のごとき回転円板50が
近接して配設されている。FIG. 9 is a sectional view of a main part for explaining another embodiment of the present invention. In the figure, 70 is a perforated plate, 80 is a tube, and the hole 71 of the perforated plate 70 is inserted through the tube 80. The perforated plate 70 is connected to the gap 15 between the thin tube-shaped optical radiators, and the rotary disk 50 as described above is disposed adjacent to the lower side of the perforated plate 70.
第1O図は、前記細管状光ラジェータ間の間隙と、多孔
板の孔と、回転円板の垂直方向空気噴射口との関係を示
す分解図で、図示のように、多孔板70は多数個の孔7
1が同心円状にかつ放射線。FIG. 1O is an exploded view showing the relationship between the gaps between the capillary optical radiators, the holes in the perforated plate, and the vertical air injection ports of the rotating disk. hole 7
1 is concentric and radial.
状に多数条設けられており、番孔がチューブ80によっ
て前記細管状光ラジェータ間の間隙15と連通されてい
る。また、この多孔板70に設けられた1条の孔は前記
回転円板50に設けられた1条の空気孔52a又は52
bと対向するように配設されており、従って、回転円板
50が前述のごとくして回転されると、該回転円板50
の垂直方向空気噴射口52a又は52bから噴射される
空気は該回転円板の回転にともなって多孔板70の1条
の孔1例えば71a、71b、71c・・・・・・と順
次整合し、これら1条の孔71a、71b・・・・・・
に対応した間隙15すなわち細管状光ラジェータ間の間
隙に同時にCO2含有空気を供給し、かつ、供給される
位置が回転円板50の回転にともなって順次変化する。A large number of stripes are provided in the shape of a tube, and the holes are communicated with the gaps 15 between the thin tube-shaped optical radiators through a tube 80. Further, the single hole provided in this perforated plate 70 corresponds to the single air hole 52a or 52 provided in the rotating disk 50.
b, and therefore, when the rotating disk 50 is rotated as described above, the rotating disk 50
The air injected from the vertical air injection ports 52a or 52b is sequentially aligned with the single hole 1, for example, 71a, 71b, 71c, etc. of the perforated plate 70 as the rotating disk rotates, These single holes 71a, 71b...
CO2-containing air is simultaneously supplied to the gaps 15 corresponding to the above, that is, the gaps between the thin tube-shaped optical radiators, and the position where the CO2-containing air is supplied changes sequentially as the rotating disk 50 rotates.
従って、例えば、光合成反応槽内を第11図に示すよう
に仕切板90によって複数個の部屋に仕切り、各部屋毎
に順次CO2含有空気を供給するようにすることが可能
となる。例えば、部屋Aの全ての間隙に同時に002含
有空気を供給し、次いで、回転円板50の回転にともな
って、部屋Bの全ての間隙に同時に002含有空気を供
給し、以下同様にして、回転円板50の回転にともなっ
てCの部屋、Dの部屋と順次C02含有空気を供給する
ことができ、このようにすれば、空気抵抗が小さくなり
、CO2含有空気の供給をよりスムーズに行うことがで
きる。Therefore, for example, it is possible to partition the inside of the photosynthesis reaction tank into a plurality of rooms using a partition plate 90 as shown in FIG. 11, and to supply CO2-containing air to each room in turn. For example, 002-containing air is simultaneously supplied to all the gaps in room A, then, as the rotating disk 50 rotates, 002-containing air is simultaneously supplied to all the gaps in room B, and so on. As the disc 50 rotates, CO2-containing air can be supplied sequentially to room C and then to room D. In this way, air resistance is reduced and CO2-containing air can be supplied more smoothly. I can do it.
効−一−−果
以上の説明から明らかなように、本発明によると、光合
成反応槽内により確実かつ安定してCO2含有空気光を
供給することができる。Effect - 1 - As is clear from the above explanation, according to the present invention, CO2-containing air light can be more reliably and stably supplied into the photosynthesis reaction tank.
第1図乃至第3図は1本出願人が先に提案した光合成装
置の一例を説明するための図で、第1図は側断面図、第
2図は第1図のII −II線断面図、第3図は第1図
の■−■線断面図、第4図は、本出願人が先に提案した
光合成装置の他の例を示す要部側断面図、第5図は第4
図のV−V線断面図、第6図は、本発明による光合成装
置の一実施例を説明するための要部側断面図、第7図は
、第6図の■−■線方向から見た平面図、第8図及び第
9図は、それぞれ本発明の他の実施例を説明するための
要部断面図、第1O図は、第9図に示した実施例の各部
の関係を説明するための分解図、第11図は、第9図に
示した実施例を適用するのに好適な光合成反応槽の一例
を示す平断面図である。
1・・・光合成反応槽、10・・・細管状光ラグ。11
−夕、40・・・羽根車、50・・・回転円板、60・
・・ベアリング、70・・・多孔板、80・・・チュー
ブ、90・・・仕切板。
第 1 図
第 2171
第 31・・
1)ljt)
第 4 図
・、r 5 図
第6図
O
第7図
1n
1b
第8図
IO
!2N
第91.:I
Q
第10図
第11図1 to 3 are diagrams for explaining an example of a photosynthesis device previously proposed by the applicant, in which FIG. 1 is a side sectional view, and FIG. 3 is a sectional view taken along the line ■-■ in FIG.
6 is a side sectional view of essential parts for explaining an embodiment of the photosynthesis device according to the present invention, and FIG. 7 is a sectional view taken along the line ■-■ in FIG. 6. 8 and 9 are cross-sectional views of essential parts for explaining other embodiments of the present invention, respectively, and FIG. FIG. 11 is a plan sectional view showing an example of a photosynthesis reaction tank suitable for applying the embodiment shown in FIG. 9. 1... Photosynthetic reaction tank, 10... Tubular light lag. 11
- Evening, 40... Impeller, 50... Rotating disk, 60.
...bearing, 70...perforated plate, 80...tube, 90...partition plate. Figure 1 Figure 2171 31... 1) ljt) Figure 4, r 5 Figure 6 O Figure 7 1n 1b Figure 8 IO! 2N No. 91. :I Q Figure 10 Figure 11
Claims (1)
設された多数本の細管状光ラジェータ群と、該光ラジェ
ータ群の下側に設けられかつ空気噴射口を有する回転円
板とから成り、前記空気噴射口を通してC02を含む空
気を噴射して前記回転円板を回転させ、かつ、前記CO
2を含む空気を前記光合成反応槽内に供給するようにし
たことを特徴とする光合成装置。 (2)、前記回転円板は、該回転円板に回転モーメント
を与える方向に前記空気を噴射させる水平方向噴射口と
、前記細管状光ラジェータ間の間隙に前記空気を噴射さ
せる箪直方向噴射口とを有することを特徴とする特許請
求の範囲第(1)項に記載の光合成装置。 (3)、前記回転円板が前記C02を含む空気にてエア
ーベアリング支持されていることを特徴とする特許請求
の範囲第(1)項又は第(2)項に記載の光合成装置。 (4)、前記回転円板がエアータイトベアリングにて支
持されていることを特徴とする特許請求の範囲第(1)
項又は第(2)項に記載の光合成装置。 (5)、光合成反応槽と、該光合成反応槽内に並列に立
設された多数本の細管状光ラジェータ群と、該細管状光
ラジェータ群の下側に設けられた多孔板と、前記細管状
光ラジェータ間の間隙と前記多孔板の孔とを連結するチ
ューブと、前記多孔板の下側に設けられかつ空気噴射口
を有する回転円板とから成り、前記空気噴射口を通して
CO2を含む空気を噴射して前記回転円板を回転させ、
かつ、前記CO2を含む空気を前記チューブを通し
“て前記光合成反応槽内に供給するようにしたことを特
徴とする光合成装置。 (8)、前記回転円板は、該回転円板に回転モーメント
を与える方向に前記空気を噴射させる水平方向噴射口と
、前記多孔板の孔に向けて前記空気を噴射させるための
垂直方向噴射口とを有することを特徴とする特許請求の
範囲第(5)項に記載の光合成装置。 (7)、前記回転円板が回転する時、、該回転円板の前
記垂直方向噴射口が前記多孔板の孔と順次対向するよう
設けられていることを特徴とする特許請求の範囲第(6
)項に記載の光合成装置。 (8)、前記多孔板の孔は放射方向にかつ同心円状に多
数条設けられ、前記回転円板の垂直方向噴射口は該回転
円板が回転する時、前記多孔板の孔の1条又は複数条の
孔と同時に順次対向するよう設けられていることを特徴
とする特許請求の範囲第(7)項に記載の光合成装置。 (9)、前記光合成反応槽が前記条数に対応する部屋に
仕切られており、各部屋の前記細管状光ラジェータ間の
間隙が前記1条の孔に対応していることを特徴とする特
許請求の範囲第(8)項に記載の光合成装置。[Scope of Claims] (1) A photosynthetic reaction tank, a group of multiple tubular optical radiators installed in parallel in the photosynthetic reaction tank, and an air injection unit installed below the optical radiator group. a rotating disk having an opening; the rotating disk is rotated by injecting air containing CO2 through the air injection port;
1. A photosynthesis apparatus, characterized in that air containing 2 is supplied into the photosynthesis reaction tank. (2) The rotating disk has a horizontal injection port that injects the air in a direction that imparts a rotational moment to the rotating disk, and a vertical injection port that injects the air into the gap between the capillary optical radiator. The photosynthetic device according to claim 1, further comprising a mouth. (3) The photosynthesis device according to claim (1) or (2), wherein the rotating disk is supported by an air bearing using air containing the C02. (4) Claim (1) characterized in that the rotating disk is supported by an airtight bearing.
The photosynthetic device according to item (2) or item (2). (5) a photosynthetic reaction tank, a group of multiple thin tube-shaped light radiators arranged in parallel in the photosynthesis reaction tank, a perforated plate provided below the group of thin tube-shaped light radiators, and the thin tubes. It consists of a tube that connects the gap between the shaped light radiators and the hole of the perforated plate, and a rotating disk provided below the perforated plate and having an air injection port, through which air containing CO2 is supplied. to rotate the rotating disk by injecting
and passing the air containing CO2 through the tube.
"The photosynthesis device is characterized in that: The photosynthesis device according to claim (5), characterized in that it has a port and a vertical injection port for injecting the air toward the holes of the perforated plate. Claim No. 6, characterized in that, when the rotating disk rotates, the vertical injection ports of the rotating disk are provided so as to sequentially face the holes of the perforated plate.
). (8) The perforated plate has a plurality of holes concentrically arranged in the radial direction, and when the rotating disk rotates, the vertical injection port of the rotary disk rotates. The photosynthesis device according to claim (7), wherein the photosynthesis device is provided so as to face the plurality of holes simultaneously and sequentially. (9), a patent characterized in that the photosynthetic reaction tank is partitioned into rooms corresponding to the number of rows, and the gap between the tubular light radiators in each room corresponds to the hole of the one row. A photosynthesis device according to claim (8).
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23079082A JPS59125889A (en) | 1982-12-31 | 1982-12-31 | Device for photosynthesis |
US06/563,909 US4676956A (en) | 1982-12-24 | 1983-12-21 | Apparatus for photosynthesis |
DE8383112929T DE3376220D1 (en) | 1982-12-24 | 1983-12-21 | Apparatus for photosynthesis |
EP83112929A EP0112556B1 (en) | 1982-12-24 | 1983-12-21 | Apparatus for photosynthesis |
AU22850/83A AU551270B2 (en) | 1982-12-24 | 1983-12-23 | Apparatus for photosynthesis |
CA000444269A CA1228559A (en) | 1982-12-24 | 1983-12-23 | Apparatus for photosynthesis |
KR1019830006168A KR870001671B1 (en) | 1982-12-24 | 1983-12-24 | Photosynthetic rxn. apparatus |
HK949/88A HK94988A (en) | 1982-12-24 | 1988-11-24 | Apparatus for photosynthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23079082A JPS59125889A (en) | 1982-12-31 | 1982-12-31 | Device for photosynthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59125889A true JPS59125889A (en) | 1984-07-20 |
JPS6219152B2 JPS6219152B2 (en) | 1987-04-27 |
Family
ID=16913300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23079082A Granted JPS59125889A (en) | 1982-12-24 | 1982-12-31 | Device for photosynthesis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59125889A (en) |
-
1982
- 1982-12-31 JP JP23079082A patent/JPS59125889A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6219152B2 (en) | 1987-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR860000395B1 (en) | Photosynthesis device | |
CA1228559A (en) | Apparatus for photosynthesis | |
CN102203233B (en) | Algae growth system | |
US4900678A (en) | Apparatus for photosynthesis | |
TWI553119B (en) | Photobioreactor in a closed environment for the culture of photosynthetic microorganisms | |
US10457906B2 (en) | Method for the effective delivery of photonic energy to cultures in a fluid medium | |
CA2712862C (en) | Photobioreactor and method for processing polluted air | |
US7846717B2 (en) | Cell-cultivation microchamber | |
JP2019141056A (en) | Large scale mixotrophic production systems | |
US9175252B2 (en) | Photobioreactor and method for processing polluted air | |
CN111621420B (en) | A cell co-culture microfluidic chip for enhancing neuronal function | |
JPS59125889A (en) | Device for photosynthesis | |
CN101353619B (en) | algae microbe photosynthetic reaction system | |
CN117965272B (en) | Microfluidic chip, bacterial culture system and bacterial culture method for bacterial culture | |
JPH04190782A (en) | Bioreactor | |
JP3049183B2 (en) | Culture device for photosynthetic organisms | |
JPS59125890A (en) | Photosynthesis reactor | |
KR20090055170A (en) | Cylindrical photobioreactor | |
JPS5911174A (en) | Photosynthesis apparatus | |
WO2022184791A1 (en) | Internally illuminated photo bioreactor with light pipe for photo-reactive microorganism culture | |
JPS6260060B2 (en) | ||
JPS626784B2 (en) | ||
JP2009106169A (en) | CELL CULTURE METHOD USING MICROCHAMBER ARRAY AND CELL CULTURE DEVICE USED FOR THE METHOD | |
JPH0494678A (en) | Photosynthetic culture device | |
JP3151531B2 (en) | Fluid supply device |