[go: up one dir, main page]

JPS59125669A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS59125669A
JPS59125669A JP58000443A JP44383A JPS59125669A JP S59125669 A JPS59125669 A JP S59125669A JP 58000443 A JP58000443 A JP 58000443A JP 44383 A JP44383 A JP 44383A JP S59125669 A JPS59125669 A JP S59125669A
Authority
JP
Japan
Prior art keywords
layer
refractive index
semiconductor layer
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58000443A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Uchida
内田喜之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58000443A priority Critical patent/JPS59125669A/en
Publication of JPS59125669A publication Critical patent/JPS59125669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/17Photovoltaic cells having only PIN junction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the same effect as a reflection preventive film coated in double without increasing the number of manufacturing steps by satisfying a special inequality among the refractive index n1 of a transparent conductive film, the refractive index n2 of the first conductor layer and the refractive index n3 of the second semiconductor layer. CONSTITUTION:Inequalities of n1<n2<n3 and n3-n2>0.3 are satisfied among the refractive index n1 of a transparent conductive film of, the refractive index n2 of the first semiconductor layer of and the refractive index n3 of the second semiconductor layer of a junction type solar battery in which the first semiconductor layer is formed in contact with the transparent conductive film, the same or different conductive type semiconductor layer as or from the first conductor layer is formed in contact with the first semiconductor layer, and the second semiconductor layer becomes main photocurrent generating region by the junction produced between the first layer and the second layer. For example, an amorphous silicon is formed by a blow discharge decomposition method in the sequence of a P type layer 2, an I type layer 3 and an n type layer 14 on a stainless substrate 1, and an ITO layer 5 is further formed thereon so as to satisfy the above inequalities.

Description

【発明の詳細な説明】 本発明は太陽電池の特性改良に関するものである。[Detailed description of the invention] The present invention relates to improving the characteristics of solar cells.

従来、太陽電池の変換効率を向上させるために、種々の
工夫がなされている。その中で光電流発生領域への入射
光量を増すために、表面を粗面化あるいは空気から半導
体層の興に次第に屈折率を高くする反射防止膜の二重コ
ーティング等の方法にそれだけ製造コストが高く付く。
Conventionally, various efforts have been made to improve the conversion efficiency of solar cells. In order to increase the amount of light incident on the photocurrent generation area, methods such as roughening the surface or double coating with an anti-reflection film that gradually increases the refractive index from the air to the semiconductor layer reduce manufacturing costs. It's expensive.

本発明では、製造工程数を増加させることなく光の入射
側の層の屈折率が光電流発生領域の屈折率より光の入射
面に向けて次第に小さくなるように形成して二重にコー
ティングされた反射防止膜と同じ効果を目的としたもの
である。
In the present invention, the layer on the light incident side is formed so that its refractive index becomes gradually smaller toward the light incident surface than the refractive index of the photocurrent generation region, and the layer is double coated without increasing the number of manufacturing steps. It aims to achieve the same effect as the anti-reflection coating.

この目的は、透明4電膜に淡して第一の半導体層を、第
一の半導体層に接して第一の半導体層と同一あるいは異
なる導電型の第二半導体層を設け、第一の半導体層と第
二の半導体層の間に生ずる接合により第二の半導体層が
主たる光電流発生領域となるようにした接合型太陽電池
の、透明導電膜の屈折率n1と、第一の半導体層の屈折
率n2と第二の半導体層の屈折率n、との間に、nl 
<r+2<n3およびn3−n2 > 0.3の不等式
が満足されることによつtある。ステンレス基板1上に
グロー放電分解法1より、非晶質シリコンを9層2.1
層3.1層4の順に形成する。さらにその上に透明導電
膜としてITO(インジウム・すず酸化物)層5を形成
する。後述するように非晶質シリコンの屈折率とITO
の屈折率の差が太きいため、光6が入射する際両者の界
面での反射が大きく、主たる光電流発生領域である1層
3へ到達する光量が減少し、太陽電池の特性を低下させ
ている。
The purpose of this is to provide a first semiconductor layer on a transparent four-electrode film, and a second semiconductor layer of the same or different conductivity type as the first semiconductor layer in contact with the first semiconductor layer. The refractive index n1 of the transparent conductive film and the refractive index n1 of the first semiconductor layer of a junction solar cell in which the second semiconductor layer becomes the main photocurrent generation region due to the junction formed between the first semiconductor layer and the second semiconductor layer. Between the refractive index n2 and the refractive index n of the second semiconductor layer, nl
t depends on the inequality of <r+2<n3 and n3-n2>0.3 being satisfied. Nine layers of amorphous silicon are deposited on a stainless steel substrate 1 using glow discharge decomposition method 1 2.1
Layer 3.1 layer 4 are formed in this order. Furthermore, an ITO (indium tin oxide) layer 5 is formed as a transparent conductive film thereon. As described later, the refractive index of amorphous silicon and ITO
Due to the large difference in refractive index between the two, when light 6 enters, there is a large reflection at the interface between the two, which reduces the amount of light reaching layer 1 3, which is the main photocurrent generation area, and deteriorates the characteristics of the solar cell. ing.

第2図は本発明による第一の実施例で、以下の各図と同
様第1図と共通の部分には同一の符号を付している。ス
テンレス基板1上にグロー放電分解法により非晶質シリ
コンを9層2.1層3.1層14の順に形成する。ただ
しこの1層14は60A程度の大きさの微結晶粒を含ん
だ非晶質シリコンからなる。さらにその上にITO層5
を形成する0    亀 第3図は本発明による第二の実施例である。透明なガラ
ス基板21上にITO層5を形成し、その上にグロー放
電分解法により非晶質シリコン−カーバイドの9層22
、非晶質シリコンの1層3.1層4およびアルミニウム
電極25の順に形成す微結晶粒を含んだ非晶質シリコン
の屈折率は通常′微結晶粒を含んだ非晶質シリコンの屈
折率32は約2.8である。0.5μm以下では両者共
に増加するが、いずれにしろ屈折率の差は約0.4であ
る。
FIG. 2 shows a first embodiment of the present invention, and like the following figures, parts common to those in FIG. 1 are designated by the same reference numerals. Nine layers of amorphous silicon are formed on a stainless steel substrate 1 in the order of 2, 1, 3, and 14 by glow discharge decomposition. However, this one layer 14 is made of amorphous silicon containing microcrystalline grains with a size of about 60A. Further on top of that is an ITO layer 5.
Figure 3 shows a second embodiment of the present invention. An ITO layer 5 is formed on a transparent glass substrate 21, and nine layers 22 of amorphous silicon carbide are formed thereon by a glow discharge decomposition method.
, the refractive index of amorphous silicon containing microcrystalline grains formed in the order of 1 layer 3, 1 layer 4 of amorphous silicon, and the aluminum electrode 25 is usually 'the refractive index of amorphous silicon containing microcrystalline grains. 32 is approximately 2.8. At 0.5 μm or less, both increase, but in any case, the difference in refractive index is about 0.4.

一方ITOの屈折率33はほぼ一定で約2,0である。On the other hand, the refractive index 33 of ITO is approximately constant, approximately 2.0.

一般に屈折率の異なる二つの媒体の界面での反射率は屈
折率の差が大きくなれば、大きくなるので、この実施例
のように屈折率の異なる二つの層の間に中間の屈折率を
持った層が介在することlこより、反射率は小さくなる
Generally, the reflectance at the interface between two media with different refractive indexes increases as the difference in refractive index increases. The presence of the layer reduces the reflectance.

第5図は太陽電池の反射率の実測値を比較したものであ
る。曲線41は第1図に示した非晶質シリコンを用いた
従来、タイプの太陽電池の反射率である。一方向線42
はこのn層の非晶質シリコンを微結晶粒を含んだn層に
変え、他はまったく同じ条件で形成したもの、つまり第
2図に示した太陽電池の反射率である。屈折率が異なる
n層を用いることによって、反射率が減少し、電流発生
領越に到達する光量がその分増加する。それにより、太
陽電池の出力電流が増加する。
FIG. 5 compares the measured values of reflectance of solar cells. Curve 41 is the reflectance of a conventional type of solar cell using amorphous silicon as shown in FIG. One-way line 42
is the reflectance of the solar cell shown in FIG. 2, which was formed under exactly the same conditions except that the n-layer amorphous silicon was replaced with an n-layer containing microcrystalline grains. By using n-layers with different refractive indexes, the reflectance decreases and the amount of light reaching the current generation region increases accordingly. This increases the output current of the solar cell.

この状況は非晶質シリコン−カーバイドを用いた第二の
実施例でもまったく同じである。第4図に示すように非
晶質シリコン−カーバイドの屈折率34は0.5μm以
上の波長で約2.6で、通常の非晶質シリコンの屈折率
31と、ITOの屈折率33の中間の値である。従って
この非晶質シリコン−カーバイドのp層を主たる光電流
発生領域である1層3の入射側に用いた第3図の太陽電
池の反射率は小さくなり、出力電流が増加する。
This situation is exactly the same in the second embodiment using amorphous silicon carbide. As shown in FIG. 4, the refractive index 34 of amorphous silicon-carbide is approximately 2.6 at wavelengths of 0.5 μm or more, which is between the refractive index 31 of ordinary amorphous silicon and the refractive index 33 of ITO. is the value of Therefore, the reflectance of the solar cell shown in FIG. 3 in which this amorphous silicon carbide p-layer is used on the incident side of the first layer 3, which is the main photocurrent generating region, decreases, and the output current increases.

以上の実施例では微結晶粒を含んだ非晶質シリコンある
いは非晶質シリコン−カーバイドを光の入射側の添加層
に用いた太陽電池は、通常の非晶質シリコンと屈折率が
異なる効果により変換効率が上昇することを示してきた
。このような特性改善は入射側の添加層の屈折率が主た
る光電流発生領域の屈折率より2以上小さい場合に得ら
れる。
In the above examples, solar cells using amorphous silicon containing microcrystalline grains or amorphous silicon carbide as an additive layer on the light incident side have a different refractive index from normal amorphous silicon. It has been shown that the conversion efficiency increases. Such improvement in characteristics can be obtained when the refractive index of the doped layer on the incident side is two or more smaller than the refractive index of the main photocurrent generating region.

従って第2図に示した構造の場合微結晶粒の含有量は屈
折率に対応して調整される。
Therefore, in the structure shown in FIG. 2, the content of microcrystalline grains is adjusted in accordance with the refractive index.

本発明は光電流発生領域の光の入射側の添加層の屈折率
が光電流発生領域の屈折率と異なる材料台も異なる導電
形間のpn接合でも、抵抗率の異なる同−導電形間の接
合でもよいことはいうまでもない。
The present invention can be applied to a material base in which the refractive index of the doped layer on the light incident side of the photocurrent generation region is different from the refractive index of the photocurrent generation region, or a pn junction between different conductivity types, or between the same conductivity types with different resistivities. Needless to say, bonding may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池の構造の一例を示す断面図、第
2図、第3図はそれぞれ本発明による太陽電池の二つの
異なる実施例を示す断面図、第4図は各種材料の屈折率
の波長による変化を示す線図、第5図は第1図に示す太
陽電池と第2図に示す太陽電池における反射率の波長に
よる変化を示す線図である。 2・・・非晶質シリコ79層、3・・非晶質シリコン1
R15・・・ITO層、14・・・微結晶粒を含む非晶
質シリコン層、22・・・非晶質シリコン−カーバイド
9層。 特許出願人 石 坂 誠 − 警 1′1 (2)       ′A−2図?3  図 θ3 θ4〜 θSθj60’708  (だ)ノくj
二1顎i (7)Lイフ弓′7ンオ4 (2) 4/ /−ぐ 0.3 0.40S  O,60,70S汲長(μに) 7.3図 ”>、q  t、。 ? 0、’?  t、0
FIG. 1 is a cross-sectional view showing an example of the structure of a conventional solar cell, FIGS. 2 and 3 are cross-sectional views showing two different embodiments of the solar cell according to the present invention, and FIG. 4 is a cross-sectional view showing an example of the structure of a conventional solar cell. FIG. 5 is a diagram showing changes in reflectance depending on wavelength in the solar cell shown in FIG. 1 and the solar cell shown in FIG. 2. 2...79 layers of amorphous silicon, 3...1 amorphous silicon
R15...ITO layer, 14...Amorphous silicon layer containing microcrystalline grains, 22...9 layers of amorphous silicon carbide. Patent applicant Makoto Ishizaka - Kei1'1 (2) 'A-2 Figure? 3 Figure θ3 θ4~ θSθj60'708 (da) nokuj
21 Jaw i (7) L If Bow '7 N O 4 (2) 4/ /-g0.3 0.40S O,60,70S Kump Length (to μ) 7.3 Figure">, q t,. ?0,'?t,0

Claims (1)

【特許請求の範囲】[Claims] 1)透明導電膜と該透明導電膜に接する第一の半導体層
と、第一の半導体層に接し、第一の半導体層と同一ある
いは異なる導電型で第一の半導体層との間ζこ生ずる接
合により主たる光電流発生領域となる第二の半導体層と
を備える接合型太陽電池において、透明導電膜の屈折率
n1と、第一の半導体層の屈折率n2と、第二の半導体
層の屈折率n3との間に、nl <n2 (n3および
n、nlン0.3の不等式が満足されることを特徴とす
る太陽電池。
1) A gap occurs between a transparent conductive film, a first semiconductor layer that is in contact with the transparent conductive film, and a first semiconductor layer that is in contact with the first semiconductor layer and has the same or different conductivity type as the first semiconductor layer. In a junction type solar cell including a second semiconductor layer which becomes a main photocurrent generating region by junction, the refractive index n1 of the transparent conductive film, the refractive index n2 of the first semiconductor layer, and the refractive index of the second semiconductor layer A solar cell characterized in that the inequality nl < n2 (n3 and n, nl n 0.3) is satisfied between the ratio n3 and nl < n2.
JP58000443A 1983-01-07 1983-01-07 Solar battery Pending JPS59125669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58000443A JPS59125669A (en) 1983-01-07 1983-01-07 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58000443A JPS59125669A (en) 1983-01-07 1983-01-07 Solar battery

Publications (1)

Publication Number Publication Date
JPS59125669A true JPS59125669A (en) 1984-07-20

Family

ID=11473940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000443A Pending JPS59125669A (en) 1983-01-07 1983-01-07 Solar battery

Country Status (1)

Country Link
JP (1) JPS59125669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233870A (en) * 1984-02-24 1985-11-20 エナージー・コンバーション・デバイセス・インコーポレーテッド Photosensitive semiconductor device with antireflection double layer coating
JPS6265478A (en) * 1985-09-18 1987-03-24 Sanyo Electric Co Ltd Photovoltaic device
JPH01128476A (en) * 1987-11-12 1989-05-22 Sanyo Electric Co Ltd Laminated layer type photoelectromotive device
JP2002076396A (en) * 2000-08-29 2002-03-15 Fuji Electric Corp Res & Dev Ltd Multi-junction thin-film solar cell and manufacturing method thereof
WO2013179529A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233870A (en) * 1984-02-24 1985-11-20 エナージー・コンバーション・デバイセス・インコーポレーテッド Photosensitive semiconductor device with antireflection double layer coating
JPS6265478A (en) * 1985-09-18 1987-03-24 Sanyo Electric Co Ltd Photovoltaic device
JPH01128476A (en) * 1987-11-12 1989-05-22 Sanyo Electric Co Ltd Laminated layer type photoelectromotive device
JP2002076396A (en) * 2000-08-29 2002-03-15 Fuji Electric Corp Res & Dev Ltd Multi-junction thin-film solar cell and manufacturing method thereof
WO2013179529A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Solar cell

Similar Documents

Publication Publication Date Title
CN112201701B (en) Solar cell and photovoltaic module
US4644091A (en) Photoelectric transducer
JP4257332B2 (en) Silicon-based thin film solar cell
JP2814351B2 (en) Photoelectric device
CN100435357C (en) Tandem Thin Film Solar Cells
JP4811945B2 (en) Thin film photoelectric converter
JPS60208813A (en) Photoelectric converting device and manufacture therefor
JPS6155268B2 (en)
CN101286531A (en) Solar cell
JPS60233870A (en) Photosensitive semiconductor device with antireflection double layer coating
JPH04372177A (en) Photovoltaic device
JPH07321362A (en) Photovoltaic device
US4922218A (en) Photovoltaic device
JPS62209872A (en) Photoelectric conversion element
JPS59125669A (en) Solar battery
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JP3342257B2 (en) Photovoltaic element
CN218182221U (en) Solar cells and photovoltaic modules
JP3196155B2 (en) Photovoltaic device
JP5542038B2 (en) Thin film solar cell and method for manufacturing the same, thin film solar cell module
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JP2007251114A (en) Substrate for high-performance solar cell having optical multi-layer film, and manufacturing method therefor
JP3241234B2 (en) Thin film solar cell and method of manufacturing the same
JPS6034080A (en) Optical amplifying photovoltaic element
JP2994716B2 (en) Photovoltaic device