[go: up one dir, main page]

JPS59122812A - Combustion controller of multi-stage incinerator - Google Patents

Combustion controller of multi-stage incinerator

Info

Publication number
JPS59122812A
JPS59122812A JP22802882A JP22802882A JPS59122812A JP S59122812 A JPS59122812 A JP S59122812A JP 22802882 A JP22802882 A JP 22802882A JP 22802882 A JP22802882 A JP 22802882A JP S59122812 A JPS59122812 A JP S59122812A
Authority
JP
Japan
Prior art keywords
amount
combustion
furnace
air
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22802882A
Other languages
Japanese (ja)
Other versions
JPH0217775B2 (en
Inventor
Koji Horie
堀江 幸司
Toshio Fujiwara
利夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22802882A priority Critical patent/JPS59122812A/en
Publication of JPS59122812A publication Critical patent/JPS59122812A/en
Publication of JPH0217775B2 publication Critical patent/JPH0217775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To perform efficient operation of a furnace through prevention of the supply of excessive air, by a method wherein temperature in a furnace is kept constant by controlling the amount of an object to be incinerated charged and a blast generating furnace according to the temperature in the furnace, and an air-fuel ratio is maintained in an optimum value based on the amount of the object to be incinerated charged and the heat-generating amount of sludge. CONSTITUTION:A supply quantity controller A controls the amount of an object to be incinerated supplied according to a temperature condition in a furnace 10. A controller B for oxygen concentration and combustion air flow rate corrects the reference heat- generating amount of the object to be incinerated, and computes an air-fuel ratio to regulate the quantity of a combustion air. A controller C for fuel combustion in a blast furnace controls the flow rate of the fuel and the flow rate of combustion air of the burner of the combustion stage of the incinerator to keep temperature in the incinerator in an optimum value. A controller D for the flow rate of recycling gas finds the desired value of the flow rate of recycling gas from the quantity of the object to be incinerated charged and the flow rate of combustion air to control the quantity of exhaust gas recycled. A controller E for a pressure in the incinerator holds a pressure in the incinerator in a given value by adding variation in an air quantity caused due to control of the amount of a combustion air.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、汚泥ケーキ等の被焼却物を焼却する多段焼却
炉の燃焼制御゛装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combustion control device for a multistage incinerator for incinerating materials to be incinerated such as sludge cake.

〔発明の技術的背景〕         3、第1図は
、従来の多段焼却炉燃焼制御装置を示すものである。図
において、1は多段焼却炉であり、この炉1は上端部よ
り投入した汚泥ケーキを炉内で焼却した後、下端部より
焼却灰として排出する。燃焼用空気は押込空気ファン2
によりダンパー3を介して炉1の下端部から供給され、
汚泥ケーキ燃焼の用に供された後、排ガスファン4によ
り炉上端部から取り出され、排ガス処理装置5を介して
排出される。そして、炉内の温度が熱電対等の温度検出
器6で検出され、セレクタ7により高レベルの検出信号
のみが選択されて温度指示調節計(TIC)8に与えら
れる。すると温度指示調節計8では、設定温度との偏差
量を求めその偏差量を零にずべき修正信号を出力し、空
気流量指示調節計(FIC)9に与える。この調節計9
では、差圧式流量計10の検出信号と、前記修正信号と
を比較演算して最適空気量を求め、ダンノ(−3へ開度
調節信号を与える。これKよりダンパー3の弁開度が調
節されて最適な空気量が炉1に供給される。
[Technical Background of the Invention] 3. Fig. 1 shows a conventional multistage incinerator combustion control device. In the figure, reference numeral 1 denotes a multi-stage incinerator, which incinerates a sludge cake introduced from the upper end thereof and then discharges it as incinerated ash from the lower end. Combustion air is supplied by forced air fan 2
is supplied from the lower end of the furnace 1 via the damper 3,
After the sludge cake is used for combustion, it is taken out from the upper end of the furnace by the exhaust gas fan 4 and discharged through the exhaust gas treatment device 5. Then, the temperature inside the furnace is detected by a temperature detector 6 such as a thermocouple, and only a high level detection signal is selected by a selector 7 and given to a temperature indicating controller (TIC) 8. Then, the temperature indicating controller 8 calculates the amount of deviation from the set temperature, outputs a correction signal to reduce the deviation to zero, and provides it to the air flow rate indicating controller (FIC) 9. This controller 9
Now, the detection signal of the differential pressure type flowmeter 10 and the correction signal are compared and calculated to determine the optimum air amount, and an opening adjustment signal is given to Danno (-3).From this, the valve opening of the damper 3 is adjusted. The optimum amount of air is supplied to the furnace 1.

〔背景技術の問題点〕 このような従来の燃焼制御装置にあっては、炉内の温度
測定圧より燃焼空気量の制御を行なう程度のものである
から、温度検出器6による炉内の温度状況の把握が適確
に行なわれない場合、例えば、温度検出器6の取り付は
位置によっては直接炎を受けて高温測定してしまうよう
な場合などにおいては、空気量の制御が不正確となり、
炉内の供給空気量が過剰になったり、または不足圧なる
ような欠点があった。このため燃焼効率が低く、しかも
有害な排気ガスが多量に出て公害問題となる恐れがあっ
た。
[Problems in the Background Art] Such conventional combustion control devices only control the amount of combustion air based on the temperature measurement pressure in the furnace. If the situation is not properly grasped, for example, if the temperature sensor 6 is installed in a position where it is exposed to direct flame and may measure high temperature, the air volume control may become inaccurate. ,
There were drawbacks such as an excessive amount of air supplied to the furnace or insufficient pressure. As a result, combustion efficiency was low, and a large amount of harmful exhaust gas was emitted, which could lead to pollution problems.

即ち、汚泥ケーキは水分を多く含み、自燃状態が非常に
難しい。省エネルギーの見地から、自燃できるような効
率的な運転を行なうためには炉内温度を最適に保つこと
が必要となるが、従来の制御装置ではこれに対する手段
が施されていない。
That is, the sludge cake contains a lot of water, and it is very difficult to achieve self-combustion. From the standpoint of energy conservation, it is necessary to maintain the temperature inside the furnace at an optimum level in order to perform efficient operation that allows self-combustion, but conventional control devices do not have any means for this.

また、焼却炉において公害問題となるのは、NOxやH
Cjllなどの有害ガスの発生やばいじんおよび残置物
に残留する有毒重金属類の生成などである。通常、従来
の焼却炉1においては排ガス処理装置5により有害ガス
やばいじんの除去を行っているが、公害除去の見地から
は排ガス量を極力抑えることが重要となる。しかし従来
の燃焼制御装置圧おいてはこの点をあまり考慮していな
い。
In addition, pollution problems in incinerators include NOx and H
These include the generation of harmful gases such as carbon dioxide, and the generation of toxic heavy metals that remain in soot and debris. Normally, in the conventional incinerator 1, harmful gases and soot and dust are removed by the exhaust gas treatment device 5, but from the standpoint of pollution removal, it is important to suppress the amount of exhaust gas as much as possible. However, conventional combustion control device pressures do not take this point into consideration.

さらにまた、下水汚泥焼却で特に問題となる残置物は6
価クロムである。これはクロムが酸化されて6価化合物
になるためで、カルシウムにより反応促進される。特に
消石灰薬注な行なった汚泥については残置物に6価クロ
ムが含有されている可能性が大きい。この6価クロムの
発生を抑えるには、焼却炉内の雰囲気を還状状態にして
置くことが必要である。しかし従来装置は前記と同様こ
の点をあまり考慮していない。以上のように、公害防止
の面からは、低酸素雰囲気中での焼却、即ち低空気化燃
焼が最良の手段となり、この低空気比燃焼の効果として
排ガス量の削減、NOx 発生量の減少、6価り四ム発
生量の減少および排ガス処置装置の縮少等の利点がある
。そして低空気比撚    ・焼を行うためには、制御
上燃焼空気量の制御が非常に重要な点となるにもかかわ
らず、前述したように従来装置では空気量制御の信頼性
が劣るとい5欠点があった。
Furthermore, there are 6 leftovers that are a particular problem when incinerating sewage sludge.
It is valent chromium. This is because chromium is oxidized to become a hexavalent compound, and the reaction is accelerated by calcium. In particular, with regard to sludge that has been treated with slaked lime, there is a high possibility that the residual material contains hexavalent chromium. In order to suppress the generation of hexavalent chromium, it is necessary to keep the atmosphere inside the incinerator in a cyclic state. However, conventional devices do not take this point into consideration much as described above. As mentioned above, from the perspective of pollution prevention, incineration in a low-oxygen atmosphere, that is, low-air combustion, is the best method.The effects of this low-air ratio combustion are a reduction in the amount of exhaust gas, a reduction in the amount of NOx generated, There are advantages such as a reduction in the amount of hexavalent tetrahydram generated and a reduction in the size of exhaust gas treatment equipment. In order to carry out low air ratio twisting/firing, control of the amount of combustion air is extremely important, but as mentioned above, the reliability of controlling the amount of air is poor with conventional equipment. There were drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のような従来技術の欠点を除去するため
になされたものであって、汚泥ケーキ等の被焼却物の投
入量や燃焼空気量の制御などを行い、最適な燃焼状態を
保つことにより、省エネルギー効果および公害対策の優
れる多段焼却炉の燃焼制御装置を提供することを目的と
する。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology, and maintains optimal combustion conditions by controlling the input amount of materials to be incinerated such as sludge cake and the amount of combustion air. The purpose of the present invention is to provide a combustion control device for a multistage incinerator that has excellent energy saving effects and anti-pollution measures.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明では、炉内の温度状
況により被焼却物供給量の増減を行なりて燃焼変動を抑
制する被焼却物の供給量制御装置と、炉内の酸素濃度を
所定値に制御する酸素濃度制御装置の制御信号により被
焼却物の基準発熱量を修正し、この発熱量より空燃比を
算出して過剰空気とならないように燃焼空気量の調節を
行う酸素濃度および燃焼空気流量制御装置と、炉の燃焼
段の温度により熱風炉バーナの燃料流量および燃焼空気
流量の制御を行ない炉内温度を最適に保つ熱風炉燃料燃
焼制御装置と、炉の乾燥段の温度を所定値に制御する温
度制御装置の制御出力値に基づいて前記被焼却物の投入
量および燃焼空気流量により再循環ガス流量の目標値を
求めて排ガスの再循環流量を制御する再循環ガス流量制
御装置と、前記燃焼空気量制御による空気量の変動を加
味して炉内圧力を所定値に保つ炉内圧力制御装置とを備
えて構成される。
In order to achieve this objective, the present invention includes a supply amount control device for incinerated materials that increases or decreases the amount of incinerated materials supplied depending on the temperature situation in the furnace to suppress combustion fluctuations, and The oxygen concentration and A combustion air flow rate control device, a hot air stove fuel combustion control device that controls the fuel flow rate and combustion air flow rate of the hot air stove burner according to the temperature of the combustion stage of the furnace, and maintains the temperature inside the furnace at an optimum level; Recirculation gas flow rate control that controls the recirculation flow rate of exhaust gas by determining a target value for the recirculation gas flow rate based on the input amount of the incineration material and the combustion air flow rate based on the control output value of a temperature control device that is controlled to a predetermined value. and a furnace pressure control device that maintains the furnace pressure at a predetermined value by taking into account the fluctuation of the air amount due to the combustion air amount control.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を添付図面を参照しつつ説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第2図は本発明の制御対象となる一般的な多段焼却炉の
構造図であり、この図をもとに多段焼却炉10の構造と
焼却原理について説明する。
FIG. 2 is a structural diagram of a general multi-stage incinerator to be controlled by the present invention, and the structure and incineration principle of the multi-stage incinerator 10 will be explained based on this diagram.

炉10の構造は、第2図に示すように多段の炉床11を
持ち、炉本体は耐火壁12で円筒型になっており、炉床
110段数は通常6〜10段程度で構成されている。炉
本体の中心にはセンターローラ13で回転自在に支持さ
れたセンターシャフト14が通っており、軸駆動電動機
15により、通常0.5〜1.5rpm程度の速度で回
転する。このシャフト14にラツプル・アーム(攪拌腕
)16が複数本取付けられており、さらにこのラツプル
・アーム16に汚泥ケーキ等の被焼却物の移動、攪拌を
行なうラップルのテイーズ(攪拌歯)17が付いている
。センターシャフト14を高温ガスから保護するため、
冷却ファン18により下方からシャフト14中に常時冷
却空気を送り込む。そしてこの冷却空気の一部は空気循
環管19を介して炉10の下端部に戻され燃焼用空気と
して利用されると共に、センター−シャフト14の上方
から送出される残りの空気は、排出管加および煙突を介
して外気に排出される。熱風発生炉21は中にバーナ2
2が設置されており、炉の立上げ時や汚泥ケーキを自然
燃焼させるための補助熱源として、直接および分岐室囚
を介して炉内へ熱風を供給する。バーナnの燃料には重
油以外に消化ガス等も使われる。
The structure of the furnace 10 has a multi-stage hearth 11 as shown in FIG. There is. A center shaft 14 rotatably supported by a center roller 13 passes through the center of the furnace body, and is rotated by a shaft drive motor 15 at a speed of usually about 0.5 to 1.5 rpm. A plurality of rapple arms (stirring arms) 16 are attached to this shaft 14, and rapple teeth (stirring teeth) 17 are attached to these ripple arms 16 for moving and stirring the materials to be incinerated such as sludge cake. ing. In order to protect the center shaft 14 from high temperature gas,
A cooling fan 18 constantly sends cooling air into the shaft 14 from below. A part of this cooling air is returned to the lower end of the furnace 10 via the air circulation pipe 19 and is used as combustion air, while the remaining air sent out from above the center shaft 14 is sent through the exhaust pipe. and is discharged to the outside air through the chimney. The hot air generating furnace 21 has a burner 2 inside.
2 is installed, and hot air is supplied into the furnace directly and through the branch chamber as an auxiliary heat source for starting up the furnace and for spontaneous combustion of the sludge cake. In addition to heavy oil, digester gas is also used as fuel for burner n.

汚泥ケーキの態動プロセスは、まず炉頂部の汚泥投入口
Uより汚泥ケーキが第1炉床に投入され、センターシャ
フト14の回転と共に、ラップルテイーズ17により攪
拌されながら、中央部(または外周部)の方へとかき寄
せられ、中央の落下口(または外周部の落下口)より下
段へと汚泥ケーキは落下して行く。落下した汚泥ケーキ
は、先程とは逆に、攪拌されながら外周部(または中央
部)の方へと押し拡げられてゆき、外周部落下口(また
は中央の落下口)より下段へ落下する。以下同様に各炉
床上で攪拌・移動しながら順次下段へ落下し、最後に底
部炉床に設けられた灰出口シュート5より炉外へ焼却灰
となり排出される。
The sludge cake behavior process is as follows: First, the sludge cake is introduced into the first hearth from the sludge inlet U at the top of the furnace, and as the center shaft 14 rotates, the sludge cake is stirred by the rapple teeth 17, ), and the sludge cake falls to the lower stage from the center droplet (or the outer droplet). Contrary to the previous step, the fallen sludge cake is pushed and spread toward the outer periphery (or the center) while being stirred, and falls to the lower stage from the outer periphery drop port (or the center drop port). Thereafter, while stirring and moving on each hearth, the ash sequentially falls to the lower stage, and finally is discharged as incinerated ash out of the furnace through an ash outlet chute 5 provided on the bottom hearth.

燃焼用空気は炉10の下段より吹き込まれるが、この空
気は通常センターシャフト14の冷却とともに加温され
、空気循環管19を介して炉1oの下端部から供給され
て燃焼用に供される。空気は汚泥ケーキと接触しながら
、上段へと向流して行き、燃焼排ガスとして排ガス出口
かから炉外へ排出される。さらにこの燃焼排ガスは排ガ
ス処理系へ導びかれる。
Combustion air is blown into the lower part of the furnace 10, and this air is normally heated as the center shaft 14 is cooled, and is supplied from the lower end of the furnace 1o via an air circulation pipe 19 for combustion. The air flows countercurrently to the upper stage while contacting the sludge cake, and is discharged outside the furnace from the exhaust gas outlet as combustion exhaust gas. Furthermore, this combustion exhaust gas is led to an exhaust gas treatment system.

炉内構成は、上部炉床を乾燥帯、中間部が燃焼帯、およ
び下段部が冷却帯と呼ばれ、三ゾーンに区分されている
。ここで、乾燥帯では、燃焼ガスと汚泥ケーキが接触し
、ケーキ中の水分の蒸発が行なわれる。乾燥帯の炉内温
度は通常150〜500℃程度である。燃焼帯では、汚
泥ケーキを燃焼するところで炉内の温度は最も高くなる
。燃焼帯の温度は汚泥ケーキ性状によっても異なるが、
一般には650〜850℃程度である。また、冷却帯で
は焼却灰と燃焼用空気との間に熱交換が行なわれる。
The inside of the furnace is divided into three zones: the upper hearth is called the drying zone, the middle section is called the combustion zone, and the lower section is called the cooling zone. Here, in the drying zone, the combustion gas and the sludge cake come into contact, and water in the cake evaporates. The temperature inside the oven in the drying zone is usually about 150 to 500°C. In the combustion zone, the temperature inside the furnace is highest where the sludge cake is burned. The temperature of the combustion zone varies depending on the properties of the sludge cake, but
Generally, the temperature is about 650 to 850°C. Further, in the cooling zone, heat exchange occurs between the incinerated ash and the combustion air.

一般的な雰囲気温度は200〜300 ℃程度である。The general ambient temperature is about 200 to 300°C.

第3図は、多段焼却炉燃焼制御装置の全体構成図である
。図におい【、矢印■は空気ライン、矢印@は排ガスラ
イン、および矢印θは燃料ラインを示している。
FIG. 3 is an overall configuration diagram of the multistage incinerator combustion control device. In the figure, the arrow ■ indicates an air line, the arrow @ indicates an exhaust gas line, and the arrow θ indicates a fuel line.

ここで、各機械的構成について説明する。汚泥ケーキ等
の被焼却物の供給機構は、定量フィーダ(脱水ケーキ定
量供給機)30、コンベ°ア重量計31および投入コン
ベア32を備え、定量フィーダ(資)から所定量の汚泥
ケーキが供給されると、この汚泥ケーキ量をコンベア重
量計31で計量した後、投入コンベア32により炉10
の脱水ケーキ投入日別へ投入する。燃焼空気供給機構は
、冷却ファン18から送り出される冷却空気を、センタ
ー・シャフト14→空気循環管19→排ガス出口九へと
経由させる。
Here, each mechanical configuration will be explained. The feeding mechanism for materials to be incinerated, such as sludge cake, includes a quantitative feeder (dehydrated cake quantitative feeding machine) 30, a conveyor weighing scale 31, and an input conveyor 32, and a predetermined amount of sludge cake is supplied from the quantitative feeder (equipment). Then, the amount of this sludge cake is weighed by the conveyor weighing scale 31, and then transferred to the furnace 10 by the feeding conveyor 32.
The dehydrated cake is added according to the date of introduction. The combustion air supply mechanism causes cooling air sent out from the cooling fan 18 to pass through the center shaft 14 → air circulation pipe 19 → exhaust gas outlet 9.

炉内の酸素濃度は炉出口に設置した酸素濃度計40で検
出され、また燃焼空気量の検出と調節は、空気循環管1
9に設けた流量計41と流量調節弁42で行なわれる。
The oxygen concentration in the furnace is detected by an oxygen concentration meter 40 installed at the furnace outlet, and the amount of combustion air is detected and adjusted by the air circulation pipe 1.
This is carried out using a flow meter 41 and a flow control valve 42 provided at 9.

炉内の燃焼段・乾燥段の温度は乾燥段に設けた温度検出
器33□、および燃焼段に設けた温度検出器33n、、
 33n、 33n+1でそれぞれ検出される。熱風発
生炉燃料・空気供給機構は、熱風発生炉21のバーナへ
所定量の重油等の燃料および空気を供給するもので、燃
料および空気量は流量計W。
The temperature of the combustion stage and drying stage in the furnace is determined by a temperature detector 33□ provided in the drying stage, and a temperature detector 33n provided in the combustion stage.
33n and 33n+1 are respectively detected. The hot air generating furnace fuel/air supply mechanism supplies a predetermined amount of fuel such as heavy oil and air to the burner of the hot air generating furnace 21, and the amount of fuel and air is measured by a flow meter W.

51で検出され、流量調節弁52 、53で調節される
51 and adjusted by flow rate control valves 52 and 53.

排ガス処理機構は、排ガス排出系と排ガス再循環系とか
らなる。排ガス排出系は、誘引ブロワωにより排ガス管
61を介して取り出された排ガスを、ガス洗浄塔62で
洗浄した後、電気集じん器(E−P)でばいじんの除去
を行ない、ダンパー64、誘引ブロワ(IDF)60を
介して再加熱炉65へ送り、この再加熱炉65で白煙防
止と防臭処理を施した後、煙突66から大気へ排出され
る。一方、排ガス再循環系は、排ガス管61を介して取
り出された排ガスを、ファン67により、排ガス循環管
部な介して再度炉10の下段へ送り、熱効率を高めるも
のである。この循環ガス量は、排ガス循環管68に設け
られた流量計69で検出され、流量調節弁70で流量調
節される。さらに、炉内圧力は、炉10に設けた圧力計
間で検出され、この検出値に基づいて排ガス系のダンパ
・−Bの開度調節が行なわれ、炉内が所定の負圧に保持
される。
The exhaust gas treatment mechanism consists of an exhaust gas exhaust system and an exhaust gas recirculation system. In the exhaust gas exhaust system, the exhaust gas taken out through the exhaust gas pipe 61 by the induction blower ω is cleaned in a gas cleaning tower 62, and then dust is removed by an electrostatic precipitator (E-P). It is sent to a reheating furnace 65 via a blower (IDF) 60, where it is subjected to white smoke prevention and deodorization treatment, and then discharged into the atmosphere from a chimney 66. On the other hand, the exhaust gas recirculation system uses a fan 67 to send the exhaust gas taken out through the exhaust gas pipe 61 to the lower stage of the furnace 10 via the exhaust gas circulation pipe section, thereby increasing thermal efficiency. The amount of circulating gas is detected by a flow meter 69 provided in the exhaust gas circulation pipe 68, and the flow rate is adjusted by a flow rate control valve 70. Furthermore, the pressure inside the furnace is detected between pressure gauges installed in the furnace 10, and based on this detected value, the opening of damper -B in the exhaust gas system is adjusted, and the inside of the furnace is maintained at a predetermined negative pressure. Ru.

以上のような機械的構成部分を制御する制御回路につい
て説明する。この制御回路、即ち制御装置は、汚泥ケー
キ等の被焼却物の供給量制御装置A、酸素濃度および燃
焼空気流量制御装置B、熱風発生炉燃料燃焼制御装置C
5再循環ガス流量制御装置D、および炉内圧力制御装置
Eからなる。
A control circuit that controls the mechanical components as described above will be explained. This control circuit, that is, the control device includes a supply amount control device A for incinerated materials such as sludge cake, an oxygen concentration and combustion air flow rate control device B, and a hot air generating furnace fuel combustion control device C.
5 Consisting of a recirculation gas flow rate control device D, and an in-furnace pressure control device E.

そして、この多段焼却炉10の制御は、自動制御運転を
行う前に操作員により処理すべき汚泥ケーキの供給量と
汚泥ケーキの発熱量を予め設定する。
In controlling the multistage incinerator 10, the amount of sludge cake to be treated and the calorific value of the sludge cake are set in advance by the operator before automatic control operation is performed.

すると、汚泥ケーキ供給量制御装置Aでは、炉内の温度
状況により供給量の増減指令を行ない、汚泥ケーキの性
状の違いによる燃焼の変動を極力抑えるようにする。汚
泥ケーキの発熱量は酸素濃度制御装置からの偏差出力信
号より得られる値を修正演算し求める。燃焼空気流量制
御装置は、前記汚泥ケーキの発熱量より空燃比を算出し
、過剰空気とならないように空気量の調節を行う。熱風
発生炉燃料燃焼制御装置Cは、炉10の燃焼段温度(燃
焼段の代表温度として一般には中段温度)が一定範囲に
入るように熱風発生炉21の燃焼制御を行なう。即ち、
汚泥焼却の場合、自燃燃焼の可能性が低く、したがって
、熱風発生炉21により熱量の補給を行ない、炉内温度
を最適に保つ。再循環ガス流量制御装置りは、炉lOの
乾燥段における汚泥ケーキの乾燥を促進し、炉内燃焼効
率を為めるために、排ガスを再循環させる。さらに、炉
内圧力制御装置Eは、炉の安全性、燃焼効率等を考慮し
て、炉内を一定の負圧に保つ。以下、各制御装置A−E
を第3図とこの詳細を示す第4図〜第9図とを参照しつ
つ説明する。
Then, the sludge cake supply amount control device A issues commands to increase or decrease the supply amount depending on the temperature condition inside the furnace, thereby suppressing fluctuations in combustion due to differences in the properties of the sludge cake as much as possible. The calorific value of the sludge cake is determined by correcting the value obtained from the deviation output signal from the oxygen concentration control device. The combustion air flow rate control device calculates the air-fuel ratio from the calorific value of the sludge cake, and adjusts the amount of air so as not to produce excess air. The hot air generating furnace fuel combustion control device C performs combustion control of the hot air generating furnace 21 so that the combustion stage temperature of the furnace 10 (generally the middle stage temperature as a representative temperature of the combustion stage) falls within a certain range. That is,
In the case of sludge incineration, the possibility of self-combustion combustion is low, so the amount of heat is replenished by the hot air generating furnace 21 to maintain the temperature inside the furnace at an optimum level. The recirculation gas flow control system recirculates the exhaust gas to facilitate drying of the sludge cake in the drying stage of the furnace 10 and to increase combustion efficiency within the furnace. Further, the furnace pressure control device E maintains the inside of the furnace at a constant negative pressure in consideration of furnace safety, combustion efficiency, and the like. Below, each control device A-E
will be explained with reference to FIG. 3 and FIGS. 4 to 9 showing details thereof.

(1)汚泥ケーキ供給量制御装置A 第4図は汚泥ケーキ供給量制御装置Aの詳細図である。(1) Sludge cake supply amount control device A FIG. 4 is a detailed diagram of the sludge cake supply amount control device A.

この供給量制御では、当初に設定器100により基準投
入量W。を手動で設定し、炉10が定常運転に入った段
階で基準投入量W0を炉内の温度情報により一定周期ご
とに修正演算し、目標の汚泥ケーキ量を決め定量フィー
ダ刃の回転数制御を行なう。
In this supply amount control, the standard input amount W is initially set by the setting device 100. is manually set, and when the furnace 10 enters steady operation, the standard input amount W0 is corrected and calculated at regular intervals based on the temperature information in the furnace, the target sludge cake amount is determined, and the rotation speed of the metering feeder blade is controlled. Let's do it.

即ち、温度検出器33□により炉10の乾燥膜温度を、
温度検出器33n−8,33n、33n+1により炉1
0の燃焼段温度をそれぞれ検出する。これらの各温度検
出器331 t ”3n−0,33n、おn+□はその
検出精度を上げるためにそれぞれ少なくとも一対以上設
置され、温度平均回路101.102.103.104
でそれぞれ平均値を算出した後、炉温分布判定回路10
5に与えられる。一般的に燃焼段の温度分布は中段温度
(温度検出器33nの検出値)Tnが最大ピークとなる
ような状態が最適燃焼状態であり、一方燃焼段の上段温
度(温度検出器33n−□)Tn−□が最大ピークとな
るような状態を示すときは汚泥ケーキの投入量不足によ
り乾燥が促進されたためであり、そのため投入量を増や
す方向に制御する必要があり、他方燃焼段の下段温度(
温度検出器33n+1の検出値)Tn+1が最大ピーク
となるような状態を示すときは燃焼状態が正常でないた
め、燃え切りが悪いことを示しており、そのため炉内燃
焼の異常と判断して投入量を減らす方向圧制御する必要
がある。このため、炉温分布判定回路105中の第1の
判定回路105□では、 ■ Tn、)Tn、 Tn+□のとき投入量不足と判定
し、増量修正信号α、を出力し、また、■ Tn+i 
> Tn I Tn−1のとき投入量過剰と判定し、減
量修正信号α2を出力する。さらに、乾燥膜温度(温度
検出器お、の検出値)T1が規定温度より高い状態では
、汚泥量が少な(排ガスとの接触による熱交換量が少な
いことを意味し、そのため汚泥投入量を増やす方向圧制
御する必要がある。このため、炉温分布判定回路105
中の第2の判定回路1052では、 ■ T□>T、  のとき投入量不足と判定し、増量修
正信号α3を出力する。但しT、は規定温度である。
That is, the temperature of the dried film in the furnace 10 is determined by the temperature detector 33□.
Furnace 1 by temperature detectors 33n-8, 33n, 33n+1
The combustion stage temperature of 0 is detected respectively. Each of these temperature detectors 331t''3n-0, 33n, and n+□ is installed in at least one pair or more to increase the detection accuracy, and the temperature averaging circuit 101.102.103.104
After calculating the respective average values, the furnace temperature distribution determination circuit 10
given to 5. Generally, the optimum combustion state is the temperature distribution of the combustion stage where the middle stage temperature (detected value of temperature detector 33n) Tn has the maximum peak, while the upper stage temperature of the combustion stage (temperature detector 33n-□) When the Tn-
When Tn+1 (detected value of temperature detector 33n+1) reaches its maximum peak, it indicates that the combustion condition is not normal and burnout is poor. It is necessary to control the directional pressure to reduce. Therefore, the first determination circuit 105□ in the furnace temperature distribution determination circuit 105 determines that the input amount is insufficient when ■Tn, )Tn, Tn+□, outputs the increase correction signal α, and also outputs ■Tn+i.
> Tn I When Tn-1, it is determined that the input amount is excessive, and a reduction correction signal α2 is output. Furthermore, when the drying membrane temperature (detected value of temperature sensor O) T1 is higher than the specified temperature, the amount of sludge is small (meaning that the amount of heat exchanged by contact with exhaust gas is small, so the amount of sludge input is increased). It is necessary to control the directional pressure.For this reason, the furnace temperature distribution determination circuit 105
The second determination circuit 1052 in the middle determines that the input amount is insufficient when T□>T, and outputs an increase correction signal α3. However, T is the specified temperature.

ここで、多段炉の特性上、汚泥ケーキを炉内に投入して
から燃焼するまでの時間的な遅れが非常に大きい。この
ため、この時間遅れを考慮に入れ、オンディレィタイマ
106.107により前記判定回路105の出力信号α
1.α2.α3を一定時間遅らせて汚泥ケーキ量修正演
算回路108 K与える。すると、この修正演算回路1
08では、前記基準投入量Woと修正信号α1.α2.
α、とから一定時間条件が続行した場合に投入量の修正
演算を行ない、この演算値Wn′ttVXJリミッタ1
09で振幅制御をした後、切換スイッチ110を介して
ケーキ量指示調節計(WIC)111に与える。ここで
切換スイッチ110は、運転始動時K”1”モードに入
り、基準投入量W。をケーキ量指示調節計111 K与
えるが、定常運転でII 21+モードに入り、前記演
算回路108の演算量W をケーキ量指示調節計111
に与える。
Here, due to the characteristics of a multi-stage furnace, there is a very large time delay from when the sludge cake is introduced into the furnace until it is combusted. Therefore, taking this time delay into consideration, the on-delay timers 106 and 107 adjust the output signal α of the determination circuit 105.
1. α2. α3 is delayed for a certain period of time to provide sludge cake amount correction calculation circuit 108K. Then, this modified calculation circuit 1
08, the reference input amount Wo and the correction signal α1. α2.
If the condition continues for a certain period of time from α, the input amount is corrected, and this calculated value Wn'ttVXJ limiter
After the amplitude is controlled in step 09, it is applied to a cake quantity indicating controller (WIC) 111 via a changeover switch 110. Here, the changeover switch 110 enters the K"1" mode at the start of operation, and the reference input amount W is set. is given to the cake amount indicating controller 111 K, but enters the II 21+ mode during steady operation, and the calculation amount W of the arithmetic circuit 108 is given to the cake amount indicating controller 111.
give to

ケーキ量指示調節計111では前記修正演算値Wnとコ
ンベア重量計31の投入ケーキ量測定値とから最適な定
量フィーダ回転数を求め、定量フィーダ(資)の回転数
を制御してケーキ投入量の調整を行なう。以上のように
炉内の温度条件により目標投入量W0の増減操作を行な
う。なお、炉10の特性によっては上記条件通りには適
用できない場合もあるので、実際には現地実証により判
定条件を確認し、場合によっては適宜判定方法を変更す
る。
The cake amount indicating controller 111 determines the optimum quantitative feeder rotation speed from the corrected calculation value Wn and the input cake amount measurement value of the conveyor weighing scale 31, and controls the rotation speed of the quantitative feeder (material) to adjust the cake input amount. Make adjustments. As described above, the target input amount W0 is increased or decreased depending on the temperature conditions inside the furnace. Note that, depending on the characteristics of the furnace 10, the above conditions may not be applicable in some cases, so the determination conditions are actually confirmed through on-site verification, and the determination method is changed as appropriate depending on the situation.

(2)酸素濃度および燃焼空気流量制御装置B第5図は
この制御装置Bの詳細図である。公害防止の観点より低
空気量制御は重要なポイントとなる。そこでこの制御装
置Bでは、汚泥ケーキを燃焼するに必要な理論空気量を
汚泥ケーキの発熱量より求める方式を採用している。
(2) Oxygen concentration and combustion air flow rate control device B FIG. 5 is a detailed diagram of this control device B. Low air volume control is an important point from the perspective of pollution prevention. Therefore, this control device B adopts a method of determining the theoretical amount of air required to burn the sludge cake from the calorific value of the sludge cake.

即ち、当初に設定器120により汚泥ケーキや基準発熱
量Huoを手動で設定する。一方、酸素濃度計40によ
り炉内の酸素濃度が検出され、この検出値が酸素濃度計
異常検知器121を介してZリミッタ122に与えられ
、このlシLリミッタ122で振幅制限した後、酸素濃
度指示調節計(0,IC)123に与えられる。この調
節計123では目標値との偏差量MYを求め、Ipbリ
ミッタ124および切換スイッチ125を介して発熱量
修正演算回路126に与えられる。ここで、酸素濃度計
40が故障していない場合は、切換スイッチ125がI
I 111モードに入り、酸素濃度指示調節計123の
出力値MVが修正演算回路126に与えられるが、濃度
計40が故障した場合には、これを異常検知器121が
検出して切換スイッチ125を1121モードに切換え
るので、固定値MV0を修正演算回路126に与える。
That is, initially, the sludge cake and the standard calorific value Huo are manually set using the setting device 120. On the other hand, the oxygen concentration in the furnace is detected by the oxygen concentration meter 40, and this detected value is given to the Z limiter 122 via the oxygen concentration meter abnormality detector 121. After the amplitude is limited by this L limiter 122, the oxygen concentration is The signal is given to the concentration indicator controller (0, IC) 123. The controller 123 determines the amount of deviation MY from the target value, and provides it to the calorific value correction calculation circuit 126 via the Ipb limiter 124 and changeover switch 125. Here, if the oxygen concentration meter 40 is not malfunctioning, the changeover switch 125 is set to
I111 mode is entered, and the output value MV of the oxygen concentration indicating controller 123 is given to the correction calculation circuit 126. However, if the concentration meter 40 malfunctions, the abnormality detector 121 detects this and switches on the changeover switch 125. Since the mode is switched to 1121 mode, the fixed value MV0 is given to the modification calculation circuit 126.

これにより酸素濃変針故障時の対策を講じている。発熱
量修正演算回路126では、基準発熱量九。と酸素濃度
の出力値MVとから、次式に基づいて発熱量の修正演算
を行い最適な発熱量Huを求める。
This provides countermeasures in the event of an oxygen concentration change course failure. In the calorific value correction calculation circuit 126, the standard calorific value is 9. From the output value MV of the oxygen concentration and the output value MV of the oxygen concentration, a corrective calculation of the calorific value is performed based on the following equation to obtain the optimal calorific value Hu.

但し、kl ;定数 この発熱量九はH7,y ミツ月27を介して空燃比演
算回路128に与えられる。この演算回路128では核
発熱量Huに対応する空燃比りを演算し、乗算器129
に与える。一方、コンベア重量計31で計測された汚泥
ケーキ投入量W(第3図中では※1)は、遅延回路13
0を介して一定時間経過後、乗算器129に与えられる
。すると、乗算器129では次式の演算を行ない必要な
燃焼空気流量Arを求め、空気量指示調節計130 K
与える。
However, kl is a constant.This calorific value 9 is given to the air-fuel ratio calculation circuit 128 via H7,y 27. This calculation circuit 128 calculates the air-fuel ratio corresponding to the nuclear heating value Hu, and multiplier 129
give to On the other hand, the sludge cake input amount W (*1 in Fig. 3) measured by the conveyor weighing scale 31 is determined by the delay circuit 13.
0 and after a certain period of time has elapsed, it is applied to the multiplier 129. Then, the multiplier 129 calculates the required combustion air flow rate Ar by calculating the following equation, and then calculates the required combustion air flow rate Ar.
give.

A、=に、XLXW 但し、k2;定数 一方、差圧式流量計41で検出された検出値(差圧)は
開平演算器132に与えられ、この演算器132で燃焼
空気流量が演算されて前記調節計131に与えらる。こ
のため調節計131は前記空気流量A との偏差値を求
めてIしLリミッタ133を介して流量調節弁42に与
え、炉罠与える燃焼空気量を制御する。
A, =, XLXW However, k2: Constant On the other hand, the detected value (differential pressure) detected by the differential pressure type flowmeter 41 is given to the square root calculator 132, and the combustion air flow rate is calculated by this calculator 132 and the above It is given to the controller 131. Therefore, the controller 131 calculates the deviation value from the air flow rate A and supplies it to the flow rate control valve 42 via the L limiter 133 to control the amount of combustion air supplied to the furnace trap.

以上のような燃焼空気量の制御は、第6図に示すように
進行する。即ち、設定発熱量H6oが高すぎる場合には
、設定空燃比りが高く、このため燃焼空気流量が実必要
空気量より多過ぎる。これは酸素濃度測定値が高いこと
を意味する。そこで、発熱量修正演算回路126では、
酸素濃度制御MV値を下降させて発熱量Hな減らす補正
を行ない、この補正値に基づいて燃焼空気量の制御が行
なわれる。
The control of the amount of combustion air as described above proceeds as shown in FIG. That is, if the set calorific value H6o is too high, the set air-fuel ratio is high, and therefore the combustion air flow rate is too much than the actual required air amount. This means that the measured oxygen concentration is high. Therefore, in the calorific value correction calculation circuit 126,
A correction is made to reduce the calorific value H by lowering the oxygen concentration control MV value, and the amount of combustion air is controlled based on this correction value.

(3)熱風発生炉燃料燃焼制御装置C 第7図はこの制御装置Cの詳細図であるうこの熱風炉燃
料燃焼制御は燃焼段のうち中段温度により熱風炉バーナ
nの燃料流量および燃焼空気流量の制御を行なうもので
ある。
(3) Hot blast furnace fuel combustion control device C Figure 7 is a detailed diagram of this control device C. Hot blast furnace fuel combustion control is performed by controlling the fuel flow rate and combustion air flow rate of the hot blast burner n depending on the middle stage temperature of the combustion stages. It controls the

炉10の中段温度Tnは温度検出器33nを少なくとも
2本(33n1,33n2)炉内に対で設置し、これら
2本の温度検出器33nよ、33n2の検出信号を温度
検出異常検知器140を介して温度平均回路141 K
与え、この回路141で温度平均値を求める。ここで、
温度検出器オn1,33n2の故障があった場合、温度
検出異常検知器140が作動して切換スイッチ142を
切換え、温度平均回路141から正常な温度検出器の信
号を出力させることにより、温度検出の信頼性を高めて
いる。この出力信号は熱風炉燃焼制御設定演算回路14
3に与えられる。
The middle temperature Tn of the furnace 10 is determined by installing at least two temperature detectors 33n (33n1, 33n2) in pairs in the furnace, and transmitting the detection signals of these two temperature detectors 33n and 33n2 to the temperature detection abnormality detector 140. Temperature averaging circuit through 141 K
This circuit 141 calculates the temperature average value. here,
When there is a failure in the temperature detectors ON1 and 33N2, the temperature detection abnormality detector 140 is activated and changes over the changeover switch 142, causing the temperature averaging circuit 141 to output a normal temperature detector signal. is increasing its reliability. This output signal is transmitted to the hot air stove combustion control setting calculation circuit 14.
given to 3.

この演算回路143中の演算器143□では、第8図に
示すような燃焼段温度により決定される熱風炉バーナ燃
焼特性曲線から熱風炉バーナnの設定値Svを算出する
。なお1.第8図において、実線はバーナ点火から消火
、破線はバーナ消火から点火への燃焼特性曲線をそれぞ
れ示している。そしてTH<Tの温度範囲は汚泥ケーキ
の自燃領域を示しているので、この温度範囲では熱風炉
バーナnの燃焼を止め、またTA<T<THの温度範囲
では炉内温度忙対応した熱風炉バーナηの燃焼制御を行
い、さらにT<TAの温度範囲では炉内の加温を速める
ためにバーナnをフル運転に近いもつとも効果的な状態
で燃焼させる必要がある。また、自然点TH付近の温度
ではバーナ燃焼のオン−オフ繰り返しを防ぐために、前
記演算回路143中の不感帯設定器143□により不感
帯Tn−d<T<Tnを設定し、炉温がTn−dまで下
降したとき始めてバーナ燃焼を開始するよ5にしている
。以上のようにして決定されるバーナ燃焼の目標値S■
はバーナnの燃料流量制御系および燃焼空気流量制御系
へ与えられる。
A computing unit 143□ in this computing circuit 143 calculates a set value Sv of the hot blast stove burner n from the hot blast stove burner combustion characteristic curve determined by the combustion stage temperature as shown in FIG. Note 1. In FIG. 8, the solid line shows the combustion characteristic curve from burner ignition to extinguishing, and the broken line shows the combustion characteristic curve from burner extinguishing to ignition. The temperature range of TH<T indicates the self-combustion region of the sludge cake, so in this temperature range, combustion of the hot-air burner n is stopped, and in the temperature range of TA<T<TH, the hot-air burner is turned off to accommodate the internal temperature of the furnace. It is necessary to control the combustion of the burner η, and in order to speed up the heating in the furnace in the temperature range T<TA, the burner n must be burnt in a state close to full operation but still effective. In addition, in order to prevent burner combustion from repeatedly turning on and off at a temperature near the natural point TH, the dead zone setter 143□ in the arithmetic circuit 143 sets a dead zone Tn-d<T<Tn, so that the furnace temperature is Tn-d. I set it to 5 so that the burner combustion starts only when the temperature drops to 5. Target value S of burner combustion determined as above
is applied to the fuel flow control system and combustion air flow control system of burner n.

バーナ燃料流量制御系では、燃料流量指示調節計144
により前記目標値Svで燃料流量のPID制御を行い、
流量調節弁52の開度調整を行なう。一方、バーナ燃料
空気流量制御系では、燃料流量による比率制御を行なっ
て燃焼空気流量の制御を行う。即ち、燃料流量計間の検
出値忙基づきスフ−リング(SK)145で比率設定を
行なって目標空気量を求め、この目標空気量を空気流量
指示調節計146に与える。との調節計146では前記
目標空気量と、差圧流量計51および開平演算器147
から求めた測定流量とから、両者の偏差値を零とする制
御信号を出力し、この出力信号に基づいて流量調節弁5
3の開度調節を行なって空気量の制御を行う。
In the burner fuel flow control system, the fuel flow indicator controller 144
PID control of the fuel flow rate is performed using the target value Sv,
The opening degree of the flow control valve 52 is adjusted. On the other hand, the burner fuel air flow rate control system performs ratio control based on the fuel flow rate to control the combustion air flow rate. That is, based on the detected value between the fuel flowmeters, a ratio is set in the fuel flow meter (SK) 145 to obtain a target air amount, and this target air amount is provided to the air flow rate indicating controller 146. The controller 146 calculates the target air amount, the differential pressure flow meter 51 and the square root calculator 147.
A control signal that makes the deviation value between the two zero is output from the measured flow rate obtained from
The amount of air is controlled by adjusting the opening degree in step 3.

ここで、応答性を向上させるために、加算器148によ
りバーナ燃焼の目標値Svを前記燃焼空気流量の制御出
力に加算し、顎tリミッ月49を介して流量調節弁53
に与えるようにする。なお、燃料として一般的には重油
などが使用されるが、下水処理場で発生する消化ガスを
共用する場合には、燃料切換えによる空気流量制御の比
率を変える必要がある。そこで、手動または外部接点に
より作動する切換スイッチ150で、消化ガス比率KA
、重油比率KBの切換え変換ができる構成とする。
Here, in order to improve responsiveness, the target value Sv of burner combustion is added to the control output of the combustion air flow rate by an adder 148, and the flow control valve 53 is
Try to give it to Although heavy oil or the like is generally used as a fuel, if the digestion gas generated at a sewage treatment plant is shared, it is necessary to change the ratio of air flow rate control by fuel switching. Therefore, with the changeover switch 150 operated manually or by an external contact, the digestion gas ratio KA is
, the heavy oil ratio KB can be switched.

以上のような燃焼制御を行うことにより、燃料の節約、
省エネルギー効率等が期待できる。
By performing combustion control as described above, fuel savings and
Energy saving efficiency can be expected.

(4)  再循環ガス流量制御装置り 第9図はこの制御装置りの詳細図である。汚泥ケーキは
乾燥段で排ガネと接触し、水分を蒸発して乾燥するが、
この乾燥段に供給する排ガス量は汚泥ケーキ量に対応し
て与えられる。本制御では、温度指示調節計160によ
り乾燥膜温度T□の修正量を求め、この温度制御出力値
MV。’を主体に、汚泥ケーキ投入量Wおよび燃焼空気
流量Fの値(第3図では※lおよび※2)より再循環ガ
ス流量設定演算回路161で再循環ガス流量目標値s■
を演算し、μtリミッタ162を介してガス流量指示調
節計163に与える。するとこの調節計163では、流
量計69および開平演算器164 Kより求めたガス流
量測定値に基づいて目標値S■との偏差量を算出し、修
正信号を流量調節弁7oに与える。これにより最適ガス
流量に制御される。
(4) Recirculation gas flow rate control device FIG. 9 is a detailed diagram of this control device. The sludge cake comes into contact with the exhaust gas in the drying stage, evaporates water and dries.
The amount of exhaust gas supplied to this drying stage is given in accordance with the amount of sludge cake. In this control, the amount of correction of the dry film temperature T□ is determined by the temperature indicating controller 160, and this temperature control output value MV is determined. Based on the values of the sludge cake input amount W and the combustion air flow rate F (*l and *2 in Fig. 3), the recirculation gas flow rate setting calculation circuit 161 uses the recirculation gas flow rate target value s■
is calculated and provided to the gas flow rate indicating controller 163 via the μt limiter 162. Then, the controller 163 calculates the amount of deviation from the target value S■ based on the measured gas flow rate obtained from the flow meter 69 and the square root calculator 164K, and provides a correction signal to the flow rate control valve 7o. This allows the gas flow rate to be controlled to the optimum level.

(5)炉内圧力制御装置E 第3図に示すように、この炉内圧力制御では、圧力指示
調節計170により、圧力計(資)で求めた炉内圧と目
標値との偏差量を算出し、修正信号を出力する。すると
、この修正信号により誘引ブロワωのダンパ−64開度
が調節され、炉内が一定の負圧に保持される。ここで、
制御の応答性を良(するためK、加算器171により、
流量計41および開平演算器132で求めた燃焼空気量
(第3図の※2)を前記圧力指示調節計170の出力値
に加算し、燃焼空気量の変動による要因を加味した炉内
圧制御を行う。
(5) Furnace pressure control device E As shown in Fig. 3, in this furnace pressure control, the pressure indicating regulator 170 calculates the deviation amount between the furnace pressure determined by the pressure gauge (equipment) and the target value. and outputs a correction signal. Then, the opening degree of the damper 64 of the induced blower ω is adjusted by this correction signal, and the inside of the furnace is maintained at a constant negative pressure. here,
In order to improve the responsiveness of the control, K is added by the adder 171,
The amount of combustion air determined by the flow meter 41 and the square root calculator 132 (*2 in Fig. 3) is added to the output value of the pressure indicating controller 170, and the furnace internal pressure is controlled taking into account factors due to fluctuations in the amount of combustion air. conduct.

以上説明したようK、この実施例では、炉内温度に基づ
き、汚泥ケーキの投入量および熱風発生炉を制御して炉
内温度を一定に保つようにし、さらに汚泥投入量と汚泥
の発熱量に基づき、空燃比を最適に保ち、過剰の空気供
給を避けて炉10の効率運転を行なう。一方、汚泥ケー
キの水分を蒸発するため、炉10の乾一段で排ガスによ
り汚泥ケーキの乾燥を行うが、これには汚泥ケーキ投入
量、燃焼空気量、および乾燥−温i制御の出力値に基づ
いて、再循環ガス流量を演算、し、最適な排ガス量を炉
10の乾燥段に供給する。而して最適空気量制御により
省エネルギー化および公害対策において効果のある制御
となる。
As explained above, in this embodiment, the amount of sludge cake input and the hot air generating furnace are controlled based on the temperature inside the furnace to keep the temperature inside the furnace constant, and the amount of sludge input and the calorific value of the sludge are Based on this, the air-fuel ratio is maintained at an optimum level, excessive air supply is avoided, and the furnace 10 is operated efficiently. On the other hand, in order to evaporate the moisture in the sludge cake, the sludge cake is dried using exhaust gas in the drying stage of the furnace 10. Then, the recirculation gas flow rate is calculated and the optimum amount of exhaust gas is supplied to the drying stage of the furnace 10. Therefore, optimal air flow control results in effective control for energy saving and pollution control.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、炉内温度より被焼却
物の投入量および熱風発生炉を制御して炉内温度を一定
に保つようにし、さらに被焼却物投入量と汚泥の発熱量
より空燃比を最適に保ち、過剰の空気供給を避けて炉の
効率運転を行なう。
As explained above, in the present invention, the amount of material to be incinerated and the hot air generation furnace are controlled based on the temperature inside the furnace to keep the temperature inside the furnace constant, and the amount of material to be incinerated and the calorific value of sludge are Keep the air-fuel ratio optimal and avoid excessive air supply to ensure efficient furnace operation.

しかも、汚泥ケーキ投入量、燃焼空気量および炉内温度
に基づいて最適な再循環ガス流量を供給して被焼却物の
乾燥を促進する。これにより【エネルギーの節約と公害
防止を図ることができる。
Furthermore, the optimal recirculation gas flow rate is supplied based on the amount of sludge cake input, the amount of combustion air, and the temperature inside the furnace to promote drying of the material to be incinerated. This will help save energy and prevent pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多段焼却炉燃焼制御装置の説明図、第2
図は本発明の制御対象となる一般的な多段焼却炉の構造
図、第3図は本発明の実施例に係る燃焼制御装置の全体
構成図、第4図は第3図中の汚泥ケーキ等の被焼却物の
供給量制御装置の詳細説明図、第5図は第3図中の酸素
濃度および燃焼空気流量制御装置の詳細説明図、第6図
は第5図の動作説明図、第7図は第3図中の熱風炉燃料
燃焼制御装置の詳細説明図、第8図は第7図中の燃焼制
御設定演算回路の動作説明図、第9図は第3図中の再循
環ガス流量制御装置の詳細説明図である。 A・・・汚泥ケーキ等の被焼却物の供給量制御装置、B
・・・酸素濃度および燃焼空気流量制御装置、C・・・
熱風発生炉燃料燃焼制御装置、D・・・再循環ガス流量
制御装置、E・・・炉内圧力制御装置、10・・・多段
焼却炉、21・・・熱風発生炉、31・・・重量計、あ
□、33n−1,33n、33n+1・・・温度検出器
、40・・・酸素濃度計、41 、50 、51 、6
9・・・流量計、42 、52 。 田、70・・・流量調節弁、64・・・ダンパー、(資
)・・・圧力計、100・・・基準投入量設定器、10
5・・・炉温分布判定回路、108・・・汚泥ケーキ量
修正演算回路、111・・・重量指示調節計、120・
・・基準発熱量設定器、123・・・酸素濃度指示調節
計、126・・・発熱量修正演算回路、128・・・空
燃比演算回路、129・・・乗算器、131・・・流量
指示調節計、143・・・熱風炉燃焼制御設定演算回路
、144・・・流量指示調節計、145・・・スケーリ
ング、146・・・流量指示調節計、148・・・加算
器、160・・・温度指示調節針、161・・・再循環
ガス流量設定演算回路、163・・・流量指示調節計、
170・・・圧力指示調節計、171・・・加算器。 出願人代理人  猪  股     清第6図 圓Vテク 手続補正書 昭和閏年2月10日 特許庁長官   若 杉 和 夫殿 1、事件の表示 昭和57年特許願第228028号 2、発明の名称 多段焼却炉の燃焼制御装置 3、補正をする者 事件との関係特許出願人 (307)東京芝浦電気株式会社 7、補正の対象   ′ 図面 8、補正の内容 図面の浄書(内容に変更なし)
Figure 1 is an explanatory diagram of a conventional multi-stage incinerator combustion control device, Figure 2
The figure is a structural diagram of a general multistage incinerator to be controlled by the present invention, Figure 3 is an overall configuration diagram of a combustion control device according to an embodiment of the present invention, and Figure 4 is a sludge cake etc. in Figure 3. 5 is a detailed explanatory diagram of the device for controlling the supply amount of the incinerated material, FIG. 5 is a detailed explanatory diagram of the oxygen concentration and combustion air flow rate control device in FIG. 3, FIG. The figure is a detailed explanatory diagram of the hot stove fuel combustion control device in Figure 3, Figure 8 is an explanatory diagram of the operation of the combustion control setting calculation circuit in Figure 7, and Figure 9 is the recirculation gas flow rate in Figure 3. It is a detailed explanatory diagram of a control device. A: Supply amount control device for materials to be incinerated such as sludge cake, B
...Oxygen concentration and combustion air flow rate control device, C...
Hot air generating furnace fuel combustion control device, D... Recirculation gas flow rate control device, E... Furnace pressure control device, 10... Multi-stage incinerator, 21... Hot air generating furnace, 31... Weight Meter, A□, 33n-1, 33n, 33n+1...Temperature detector, 40...Oxygen concentration meter, 41, 50, 51, 6
9...Flowmeter, 42, 52. 70...Flow control valve, 64...Damper, (equipment)...Pressure gauge, 100...Reference input amount setting device, 10
5...Furnace temperature distribution determination circuit, 108...Sludge cake amount correction calculation circuit, 111...Weight indicating controller, 120...
...Reference calorific value setting device, 123... Oxygen concentration indicating controller, 126... Calorific value correction calculation circuit, 128... Air-fuel ratio calculation circuit, 129... Multiplier, 131... Flow rate indication Controller, 143...Hot blast furnace combustion control setting calculation circuit, 144...Flow rate indicating controller, 145...Scaling, 146...Flow rate indicating controller, 148...Adder, 160... Temperature indication adjustment needle, 161... Recirculation gas flow rate setting calculation circuit, 163... Flow rate indication controller,
170...Pressure indicating controller, 171...Adder. Applicant's agent Kiyoshi Inomata Figure 6 En V Tech procedural amendment February 10, 1949 Leap Year Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case 1982 Patent Application No. 2280282, Name of the invention Multi-stage incineration Furnace combustion control device 3, person making amendment Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 7, subject of amendment 'Drawing 8, contents of amendment Engraving of drawing (no change in content)

Claims (1)

【特許請求の範囲】 1、熱風発生炉により熱量の補給を行ない、燃焼段炉床
で被焼却物を燃焼し、これ罠より生じた燃焼排ガスによ
り乾燥膜炉床で新たに投入される被焼却物の水分を蒸発
させる多段焼却炉において、 被焼却物の基準投入量を炉内の乾燥段および燃焼段の温
度により修正演算して目標投入量を求め、この目標投入
量により被焼却物の投入量を制御する被焼却物の供給量
制御装置と、炉内の酸素濃度を所定値に制御する酸素濃
度制御装置の制御信号により、被焼却物の基準発熱量を
修正演算し、この発熱量から空燃比を算出してこの空燃
比と前記被焼却物の投入量とから燃焼空気量を算出し、
この空気量忙より炉の燃焼空気量を制御する酸素濃度お
よび燃焼空気流量制御装置と、 炉の燃焼段の温度により熱風発生炉バーナの燃焼熱量の
目標値を演算し、この目標値によりバーナの燃料流量を
制御し、かつバーナの燃料流量によりバーナの燃焼空気
量を演算し、この空気量によりバーナの燃焼空気量を制
御する熱風炉燃料燃焼制御装置と、 炉の乾燥膜温度を所定値に制御する温度制御装置の制御
出力値に基づいて、前記被焼却物の投入量および燃焼空
気流量により再循環ガス流量の目標値を演算し、この目
標値により排ガスの再循環流量を制御する再循環ガス流
量制御装置と、 前記燃焼空気量制御による燃焼空気量の変動を抑制して
炉内圧力を所定値に制御する炉内圧力制御装置とを備え
た多段焼却炉の燃焼制御装置。
[Scope of Claims] 1. The amount of heat is replenished by a hot air generating furnace, the material to be incinerated is burned in the combustion stage hearth, and the combustion exhaust gas generated from this trap is used to newly inject the material to be incinerated in the dry membrane hearth. In a multi-stage incinerator that evaporates moisture from materials, the standard input amount of materials to be incinerated is corrected and calculated based on the temperatures of the drying stage and combustion stage in the furnace to determine the target input amount, and the amount of materials to be incinerated is determined based on this target input amount. The reference calorific value of the incinerated material is corrected and calculated based on the control signal of the supply amount control device of the incinerated material and the oxygen concentration control device that controls the oxygen concentration in the furnace to a predetermined value. Calculating the air-fuel ratio and calculating the amount of combustion air from this air-fuel ratio and the input amount of the material to be incinerated,
The oxygen concentration and combustion air flow rate control device that controls the amount of combustion air in the furnace uses this amount of air, and the temperature of the combustion stage of the furnace calculates a target value for the combustion heat amount of the hot air generating furnace burner. A hot blast furnace fuel combustion control device that controls the fuel flow rate, calculates the amount of combustion air in the burner based on the fuel flow rate in the burner, and controls the amount of combustion air in the burner based on the air amount; Recirculation that calculates a target value for the recirculation gas flow rate based on the control output value of the temperature control device to be controlled, the input amount of the material to be incinerated and the combustion air flow rate, and controls the recirculation flow rate of the exhaust gas using this target value. A combustion control device for a multi-stage incinerator, comprising: a gas flow rate control device; and an in-furnace pressure control device that suppresses fluctuations in the amount of combustion air due to the combustion air amount control and controls the in-furnace pressure to a predetermined value.
JP22802882A 1982-12-28 1982-12-28 Combustion controller of multi-stage incinerator Granted JPS59122812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22802882A JPS59122812A (en) 1982-12-28 1982-12-28 Combustion controller of multi-stage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22802882A JPS59122812A (en) 1982-12-28 1982-12-28 Combustion controller of multi-stage incinerator

Publications (2)

Publication Number Publication Date
JPS59122812A true JPS59122812A (en) 1984-07-16
JPH0217775B2 JPH0217775B2 (en) 1990-04-23

Family

ID=16870061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22802882A Granted JPS59122812A (en) 1982-12-28 1982-12-28 Combustion controller of multi-stage incinerator

Country Status (1)

Country Link
JP (1) JPS59122812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108108A (en) * 1986-10-24 1988-05-13 Tokyo Met Gov Incineration of sludge in sewerage
JPH02192506A (en) * 1989-01-21 1990-07-30 Ngk Insulators Ltd Combustion control method for multistage incinerator
JPH08183558A (en) * 1994-12-28 1996-07-16 Hirata Shikan Kk Paper tube closing member made of paper and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108108A (en) * 1986-10-24 1988-05-13 Tokyo Met Gov Incineration of sludge in sewerage
JPH02192506A (en) * 1989-01-21 1990-07-30 Ngk Insulators Ltd Combustion control method for multistage incinerator
JPH08183558A (en) * 1994-12-28 1996-07-16 Hirata Shikan Kk Paper tube closing member made of paper and its manufacture

Also Published As

Publication number Publication date
JPH0217775B2 (en) 1990-04-23

Similar Documents

Publication Publication Date Title
CN109084324B (en) The burning air quantity control system and control method of biomass boiler
EP0267931A1 (en) Combustion control system
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
CN106439858A (en) A Complex Feedforward Control Method for Hazardous Waste Incineration Flue Gas Circulation and Quenching
US20040255831A1 (en) Combustion-based emission reduction method and system
JPS59122812A (en) Combustion controller of multi-stage incinerator
CN107401923A (en) Kiln burning efficiency control method
KR102260259B1 (en) Apparatus for increasing combustion efficiency of hot blast stoves
JP2712017B2 (en) Combustion system and combustion furnace
JP5508022B2 (en) Batch waste gasification process
CN112781032A (en) Control method and control device for secondary air of circulating fluidized bed boiler
JP2005024126A (en) Combustion control method
JPH0470528B2 (en)
US20130323657A1 (en) Method and apparatus for controlling combustion in a combustion boiler
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JPH071084B2 (en) Air amount control method for fluidized bed furnace with boiler
JPH0323806B2 (en)
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
CN115371078B (en) A method and system for automatically adjusting the temperature deviation of flue gas at the outlet of a boiler furnace
JP2015145733A (en) Waste treatment plant
JP2002122317A (en) Combustion control system of refuse incinerator
CN117053203A (en) Control method of sludge drying and incinerating system
JPH06331123A (en) Control of amount of combustion air for incinerator for waste
JPH0772603B2 (en) Combustion control method for refuse incinerator
JPH0465290B2 (en)