JPS5912271A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPS5912271A JPS5912271A JP57121139A JP12113982A JPS5912271A JP S5912271 A JPS5912271 A JP S5912271A JP 57121139 A JP57121139 A JP 57121139A JP 12113982 A JP12113982 A JP 12113982A JP S5912271 A JPS5912271 A JP S5912271A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic
- way valve
- heat exchanger
- coil
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は電磁弁の切換えにより冷媒回路を変えて冷房ま
たは暖房を行ない得る空気調和機に係り、特に上記冷暖
切換用電磁弁部の熱ロスおよび消費電力を少なくぜんと
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that can perform cooling or heating by changing the refrigerant circuit by switching a solenoid valve. It is something to do.
従来の空気調和機の冷媒回路図は第1図の如(、圧縮機
l、電磁四方弁2、室外熱交換器3、室内熱交換器4.
キャピラリ5.6.および逆止弁7.8より構成され、
冷房時には電磁四方弁2の電磁コイル(図示せず)は通
電されず、実線の如く冷媒は1−2−3−5−8−4−
2−1の順に流れ室外熱交換器3で放熱し室内熱交換器
4で吸熱することにより室内を冷房する。次に暖房時に
は電磁四方弁2の電磁コイルに通電することにより、電
磁四方弁2は点線の如く切換わり、冷媒はl −2−4
−6−7−3−2−1の順に流れ、室内熱交換器4で放
熱し、室外熱交換器3で吸熱することにより、室内を暖
房するものである。The refrigerant circuit diagram of a conventional air conditioner is shown in FIG.
Capillary 5.6. and a check valve 7.8,
During cooling, the electromagnetic coil (not shown) of the electromagnetic four-way valve 2 is not energized, and the refrigerant flows in the 1-2-3-5-8-4-
The heat flows in the order of 2-1, radiates heat in the outdoor heat exchanger 3, and absorbs heat in the indoor heat exchanger 4, thereby cooling the room. Next, during heating, by energizing the electromagnetic coil of the electromagnetic four-way valve 2, the electromagnetic four-way valve 2 switches as shown by the dotted line, and the refrigerant changes to 1-2-4.
-6-7-3-2-1, heat is radiated by the indoor heat exchanger 4, and heat is absorbed by the outdoor heat exchanger 3, thereby heating the room.
上記の如き従来の空気調和機においては電磁四方弁2の
本体内において圧縮機lの高温吐出ガスと低温吸込ガス
の切換えが行なわれ、且同一本体内を高温ガスと低温ガ
スが常時流れることになるため、本体または弁体を通し
て高温ガスと低温ガスの熱交換が行なわれ、特に暖房時
の高温ガス温度低下により暖房能力が低下するという欠
点があった。また、電磁四方弁のコイルは暖房時1こ常
時通電されるため、消費電力が大きくなると共にコイル
の温度上昇による寿命劣化や電磁音の発生等の問題を有
していた。更に電磁コイルの温度上昇を押さえ且吸引力
を出すためにはコイルの巻線を太くし巻数を多くしなけ
ればならず、電磁コイルは大形で高価なものが使用され
ていた。In the conventional air conditioner as described above, switching between high-temperature discharge gas and low-temperature suction gas of the compressor 1 is performed within the main body of the electromagnetic four-way valve 2, and high-temperature gas and low-temperature gas constantly flow within the same main body. Therefore, heat exchange between the high-temperature gas and the low-temperature gas occurs through the main body or the valve body, which has the disadvantage that the heating capacity is reduced due to a drop in the temperature of the high-temperature gas during heating. In addition, since the coil of the electromagnetic four-way valve is constantly energized during heating, it consumes a large amount of power and has problems such as a decrease in the life of the coil and the generation of electromagnetic noise due to an increase in the temperature of the coil. Furthermore, in order to suppress the rise in temperature of the electromagnetic coil and to generate suction power, the coil had to be thickened and had a large number of turns, and the electromagnetic coil had to be large and expensive.
なお、従来の電磁四方弁の一例を上げれば、熱ロスは約
100 K−/h、電磁コイルの人力は約10Wにも達
するものである。In addition, to take an example of a conventional electromagnetic four-way valve, the heat loss is about 100 K/h, and the human power of the electromagnetic coil is about 10 W.
本発明の目的は前記従来の欠点を改善し、暖房時の熱ロ
スおよび電磁コイルの消費電力を少なくすることにより
暖房効率の良い空気調和機を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner with good heating efficiency by improving the above-mentioned conventional drawbacks and reducing heat loss during heating and power consumption of the electromagnetic coil.
即ち、従来の空気調和機においては冷房と暖房の切換え
を一個の電磁四方弁で行なうため、熱ロスや電磁コイル
の大形化、消費電力が大きい等の問題を有していた点に
着眼し、圧縮機の吐出冷媒と吸込冷媒の切換えを別個の
切換弁で行なうことにより冷房と暖房の切換えを行なう
と共に電磁切換弁の電磁コイルへの通電を間欠通電とし
、熱ロスおよび消費電力が少な(且、電磁音等の問題も
少ない空気調和機を提供するものである。In other words, we focused on the fact that conventional air conditioners use a single electromagnetic four-way valve to switch between cooling and heating, resulting in problems such as heat loss, large electromagnetic coils, and high power consumption. By switching between the discharge refrigerant and suction refrigerant of the compressor using separate switching valves, switching between cooling and heating is performed, and the electromagnetic coil of the electromagnetic switching valve is energized intermittently, reducing heat loss and power consumption ( Moreover, the present invention provides an air conditioner that has fewer problems such as electromagnetic noise.
以下本発明の一実施例を説明する。第2図において9は
圧縮機、10は電磁式三方弁、11は室外熱交換器、1
2は室内熱交換器、13.14はキャピラリ、15.1
6は逆止弁、17は差圧式三方弁を示す。An embodiment of the present invention will be described below. In Fig. 2, 9 is a compressor, 10 is an electromagnetic three-way valve, 11 is an outdoor heat exchanger, 1
2 is an indoor heat exchanger, 13.14 is a capillary, 15.1
6 is a check valve, and 17 is a differential pressure type three-way valve.
先ず冷房状態時、電磁式三方弁10は第3図および第4
図の如く、復帰ばね19によりプランジャ20を介して
弁体21は押し下げられ、弁体21と連動するボール2
2によりポートCI QCは閉塞され、ポートBIOB
とポートAI OAが連通ずる。即ち第2図の冷媒回路
において実線の如く9−10B−10A−11−13−
16−12−17C−17B−9の順に流れ、室外熱交
換器11で放熱し、室内熱交換器12で吸熱することに
・より室内を冷房する。次に暖房時には電磁コイル2
3にプランジャ20を吸引するよう永久磁石24と同方
向の電磁力を発生する直流電圧を印加することにより、
永久磁石24および電磁コイル23の力が復帰ばね19
の力に打ち勝ってプランジャ20を吸引し弁体21およ
びボール22を回移させ、ボール22はCボートからA
ポートへ移動しCボートは開、Aポートは閉となる。即
ち電磁式三方弁はB−C間開、B−A間開となり、Cボ
ート側に高圧吐出ガスが流れるため、差圧式三方弁17
は第5図においてAボート17A側が高圧となるため、
可動弁26は矢印方向に押されAボート17Aは閉塞さ
れると共にB−Cポー)17B、17C間が開となる。First, in the cooling state, the electromagnetic three-way valve 10 operates as shown in FIGS. 3 and 4.
As shown in the figure, the valve body 21 is pushed down by the return spring 19 via the plunger 20, and the ball 21 interlocks with the valve body 21.
2, port CI QC is blocked and port BIOB
and port AI OA communicate. That is, in the refrigerant circuit of FIG. 2, 9-10B-10A-11-13-
The heat flows in the order of 16-12-17C-17B-9, radiates heat in the outdoor heat exchanger 11, and absorbs heat in the indoor heat exchanger 12, thereby cooling the room. Next, when heating, the electromagnetic coil 2
3 by applying a DC voltage that generates an electromagnetic force in the same direction as the permanent magnet 24 to attract the plunger 20.
The force of the permanent magnet 24 and the electromagnetic coil 23 causes the return spring 19
Overcoming the force, the plunger 20 is sucked, the valve body 21 and the ball 22 are rotated, and the ball 22 is moved from the C boat to the A boat.
When moving to the port, the C boat is opened and the A port is closed. In other words, the electromagnetic three-way valve opens between B and C and opens between B and A, and the high-pressure discharge gas flows to the C boat side, so the differential pressure three-way valve 17
In Figure 5, the A boat 17A side has high pressure, so
The movable valve 26 is pushed in the direction of the arrow, so that the A boat 17A is closed and the B-C ports 17B and 17C are opened.
即ち第2図において冷媒は9−10B−10C−12−
14−15−11−17A−17B−9の順に流れ、室
内熱交換器12で放熱し、室外熱交換器11にて吸熱す
ることにより、室内を暖房するものである。That is, in FIG. 2, the refrigerant is 9-10B-10C-12-
The heat flows in the order of 14-15-11-17A-17B-9, radiates heat in the indoor heat exchanger 12, and absorbs heat in the outdoor heat exchanger 11, thereby heating the room.
なお、電磁コイル23への通電は弁体21が切換わるま
での数秒間のみでよい。即ち弁体21の移動後はBボー
トIOBからの高圧ガスとAボートIOAの低圧との差
圧によりボール22はAポー)IOAに押圧されており
、且プランジャ20が吸引され磁極面25に密着するた
め、永久磁石24によるプランジャ20の吸引力および
上記冷媒の差圧力の和が復帰ばね19の力より強くなる
よう永久磁石24の力を選定しておくものとする。Note that the electromagnetic coil 23 only needs to be energized for several seconds until the valve body 21 is switched. That is, after the valve body 21 is moved, the ball 22 is pressed against the A port IOA due to the pressure difference between the high pressure gas from the B boat IOB and the low pressure of the A boat IOA, and the plunger 20 is attracted and tightly contacts the magnetic pole face 25. Therefore, the force of the permanent magnet 24 is selected so that the sum of the attraction force of the plunger 20 by the permanent magnet 24 and the differential pressure of the refrigerant is stronger than the force of the return spring 19.
更に暖房から冷房に切換える場合は、電磁コイル23へ
暖房時と逆向きの直流電圧を印加し、永久磁石の磁力を
電磁コイル23の逆磁界により打ち消すことにより復帰
ばね19の力で弁体21を回移させ切換えるものである
。Furthermore, when switching from heating to cooling, a DC voltage in the opposite direction to that during heating is applied to the electromagnetic coil 23, and the magnetic force of the permanent magnet is canceled by the reverse magnetic field of the electromagnetic coil 23, so that the force of the return spring 19 causes the valve body 21 to be It is switched by rotating it.
即ち(1)冷媒差圧力〈復帰ばね力
(2)冷媒差圧力士永久磁石力〉復帰ばね力(3)冷媒
差圧力+復帰ばね力〈コイル吸引力の関係が成り立つよ
うに選定するものであるが、電磁コイル23への通電が
短時間であるため、コイル温度上昇や消費電力(通電々
流)を考慮しないですむため、従来に比べ小さな電磁コ
イルとすることかできる。That is, they are selected so that the following relationship holds: (1) refrigerant differential pressure <return spring force (2) refrigerant differential pressure + permanent magnet force> return spring force (3) refrigerant differential pressure + return spring force <coil attraction force. However, since the electromagnetic coil 23 is energized for a short time, there is no need to consider coil temperature rise or power consumption (current flow), so the electromagnetic coil can be made smaller than conventional ones.
以上の如く本発明によれば、圧縮@9の高温高圧吐出ガ
スと低温低圧吸込ガスを夫々別個の切換弁にて切換える
ことにより、冷媒同志の熱交換による暖房能力低下を少
なくすることができると共に電磁コイルは電磁式三方弁
10にのみ設ければ良く且冷房と暖房の切換え時の数秒
間のみ通電すれば良いため、コイルの消費電力は0に等
しく、コイルの温度上昇や寿命劣化、電磁音等の問題が
生じる恐れがない等多大な効果を有するものである。As described above, according to the present invention, by switching between compressed @9 high-temperature, high-pressure discharge gas and low-temperature, low-pressure suction gas using separate switching valves, it is possible to reduce the reduction in heating capacity due to heat exchange between refrigerants, and The electromagnetic coil only needs to be installed in the electromagnetic three-way valve 10, and it only needs to be energized for a few seconds when switching between cooling and heating, so the power consumption of the coil is equal to 0, and there is no increase in the temperature of the coil, deterioration of its life, or electromagnetic noise. This has great effects, such as eliminating the risk of problems such as the following.
なお電磁式三方弁lOにおいてA、Cボートのいずれか
が低圧ボートとなるが、第3図に示す如く低圧冷媒は閉
塞されており、面積も小さいため熱ロスは殆んどなく、
従来の四方弁の熱ロスが約100 K−/hあるのに対
し、本発明の電磁式三方弁10および差圧式三方弁を合
わせた熱ロスは従来のV2以下とすることができる。In the electromagnetic three-way valve lO, either boat A or C becomes a low-pressure boat, but as shown in Figure 3, the low-pressure refrigerant is blocked and the area is small, so there is almost no heat loss.
While the heat loss of a conventional four-way valve is about 100 K-/h, the combined heat loss of the electromagnetic three-way valve 10 and the differential pressure three-way valve of the present invention can be reduced to less than V2 of the conventional one.
本発明は圧縮機9の吐出側を人口ボートIOBとし室外
熱交換器11と室内熱交換器12とに出口ポートIOA
、IOcを切換える電磁式三方弁lOおよび圧縮機9の
吸込側を出口ボー)17Bとし室外熱交換器l】と室内
熱交換器12とに人口ボー)17A、17Cを切換え得
る差圧式三方弁17を有するので、暖房時の熱ロスを大
幅に少なくすることができる。また、電磁式三方弁10
に駆動源として電磁コイル23と復帰ばね19および保
持源として永久磁石24を具備することにより電磁式三
方弁のコイルへの通電を数秒間のみの間欠通電とするこ
とができ電磁コイル23の消費電力をほぼ0に等しくで
き、且コイルの小形化や電磁音の発生防止等多大な効果
を有する空気調和機を容易に製作し得るものである。The present invention uses an artificial boat IOB on the discharge side of the compressor 9, and an outlet port IOA on the outdoor heat exchanger 11 and the indoor heat exchanger 12.
, an electromagnetic three-way valve 17 that can switch IOc, and a differential pressure three-way valve 17 that can switch the output bow) 17B on the suction side of the compressor 9 and the artificial bow) 17A, 17C between the outdoor heat exchanger l] and the indoor heat exchanger 12. As a result, heat loss during heating can be significantly reduced. In addition, the electromagnetic three-way valve 10
By providing the electromagnetic coil 23 and the return spring 19 as a driving source, and the permanent magnet 24 as a holding source, the coil of the electromagnetic three-way valve can be energized intermittently for only a few seconds, reducing the power consumption of the electromagnetic coil 23. can be made almost equal to 0, and an air conditioner can be easily manufactured that has great effects such as reducing the size of the coil and preventing the generation of electromagnetic noise.
第1図は従来の空気調和機の冷媒回路図、第2図は本発
明の一実施例を示す空気調和機の冷媒回路図、第3図、
第4図は電磁式三方弁の断面図、第5図は差圧式三方弁
の断面図を示す。
9・・・圧縮機、lO・・・電磁式三方弁、11・・・
室外熱交換器、12・・・室内熱交換器、13.14・
・・キャピラリ、15.16・・・逆止弁、17・・・
差圧式三方弁、19・・・復帰ばね、20・・・プラン
ジャ、21・・・弁体、22・・・ボール、23・・・
電磁コイル、24・・・永久磁石。
第 / 図
第2図FIG. 1 is a refrigerant circuit diagram of a conventional air conditioner, FIG. 2 is a refrigerant circuit diagram of an air conditioner showing an embodiment of the present invention, and FIG.
FIG. 4 is a sectional view of the electromagnetic three-way valve, and FIG. 5 is a sectional view of the differential pressure three-way valve. 9...Compressor, lO...Solenoid three-way valve, 11...
Outdoor heat exchanger, 12... Indoor heat exchanger, 13.14.
...Capillary, 15.16...Check valve, 17...
Differential pressure type three-way valve, 19...Return spring, 20...Plunger, 21...Valve body, 22...Ball, 23...
Electromagnetic coil, 24...Permanent magnet. Figure 2
Claims (1)
室外熱交換器(11)と室内熱交換器(12)とに出口
ポートCl0A、10C)を切換える電磁式三方弁(1
0)および圧縮機(9)の吸込側を出口ボート(17B
)とし室外熱交換器(11)と室内熱交換器(12)と
に入口ポート(17A、17C)を切換え得る差圧式三
方弁(17)を有すると共に、上記電磁式三方弁(10
)に駆動源として電磁コイル(23)と復帰ばね(19
)および保持源としての永久磁石(24)を具備するこ
とにより電磁式三方弁の動作を間欠通電としたことを特
徴とする空気調和機。 2、電磁コイル(23)への印加電圧を冷房時と暖房時
とで十−逆方向とした特許請求の範囲第1項記載の空気
調和機。[Claims] 1. An electromagnetic type in which the discharge side of the compressor (9) is an artificial port (10B) and the outlet ports Cl0A, 10C) are switched between an outdoor heat exchanger (11) and an indoor heat exchanger (12). Three-way valve (1
0) and the suction side of the compressor (9) to the outlet boat (17B
) and has a differential pressure type three-way valve (17) that can switch the inlet ports (17A, 17C) between the outdoor heat exchanger (11) and the indoor heat exchanger (12), and the electromagnetic type three-way valve (10).
) is equipped with an electromagnetic coil (23) and a return spring (19) as a driving source.
) and a permanent magnet (24) as a holding source, so that the operation of the electromagnetic three-way valve is made to be intermittently energized. 2. The air conditioner according to claim 1, wherein the voltage applied to the electromagnetic coil (23) is applied in opposite directions during cooling and heating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57121139A JPS5912271A (en) | 1982-07-14 | 1982-07-14 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57121139A JPS5912271A (en) | 1982-07-14 | 1982-07-14 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5912271A true JPS5912271A (en) | 1984-01-21 |
Family
ID=14803829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57121139A Pending JPS5912271A (en) | 1982-07-14 | 1982-07-14 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5912271A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02249180A (en) * | 1989-03-10 | 1990-10-04 | Irwin Magnetic Syst Inc | Servo system and method for positioning converter head |
JPH03181756A (en) * | 1989-12-08 | 1991-08-07 | Tokyo Gas Co Ltd | Air conditioning equipment |
WO2004085936A1 (en) * | 2003-03-25 | 2004-10-07 | Daikin Industries, Ltd. | Three-way valve, bridge circuit, and refrigeration apparatus with the bridge circuit |
WO2018025305A1 (en) * | 2016-08-01 | 2018-02-08 | 三菱電機株式会社 | Air conditioner |
WO2023144902A1 (en) * | 2022-01-26 | 2023-08-03 | 三菱電機株式会社 | Air conditioner and air conditioner control method |
-
1982
- 1982-07-14 JP JP57121139A patent/JPS5912271A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02249180A (en) * | 1989-03-10 | 1990-10-04 | Irwin Magnetic Syst Inc | Servo system and method for positioning converter head |
JP2762307B2 (en) * | 1989-03-10 | 1998-06-04 | アーウイン マグネテイツク システムズ インコーポレイテツド | Servo system and method for transducer head positioning |
JPH03181756A (en) * | 1989-12-08 | 1991-08-07 | Tokyo Gas Co Ltd | Air conditioning equipment |
WO2004085936A1 (en) * | 2003-03-25 | 2004-10-07 | Daikin Industries, Ltd. | Three-way valve, bridge circuit, and refrigeration apparatus with the bridge circuit |
WO2018025305A1 (en) * | 2016-08-01 | 2018-02-08 | 三菱電機株式会社 | Air conditioner |
JPWO2018025305A1 (en) * | 2016-08-01 | 2019-03-22 | 三菱電機株式会社 | Air conditioner |
WO2023144902A1 (en) * | 2022-01-26 | 2023-08-03 | 三菱電機株式会社 | Air conditioner and air conditioner control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998005907A1 (en) | Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle | |
US11450465B2 (en) | Magnetic field application device | |
US4805666A (en) | Slide valve | |
JPS5912271A (en) | Air conditioner | |
CN2490378Y (en) | Bistable electromagnetic four-way change valve | |
JPS5912270A (en) | Air conditioner | |
KR101160875B1 (en) | Derection control valve for air conditioner | |
JP3746839B2 (en) | Refrigeration cycle | |
JPS63297883A (en) | Selector valve | |
JPH09292050A (en) | Four-way valve | |
JP3123901B2 (en) | Composite valve for refrigeration cycle | |
JP2004125254A (en) | Heat storage type air conditioner | |
JPS62177376A (en) | Selector valve device | |
CN215172264U (en) | Direct-acting two-position two-way fuel electromagnetic valve | |
JP2002295715A (en) | Fluid control valve | |
CN109916103A (en) | A kind of four-way reversing valve | |
JPH116573A (en) | Four way valve suppressing switching shock | |
JP2003021433A (en) | Driving device for fluid control valve and air conditioner | |
JPS58152988A (en) | Reversible magnet valve | |
JP2000213822A (en) | Air conditioner | |
JP2002364769A (en) | Driving device for fluid control valve and air conditioner | |
JPH11201306A (en) | Two-way switching control valve | |
JPS6024977U (en) | Self-holding four-way switching valve | |
JPS61192974A (en) | Four way type valve for refrigerating cycle | |
JPS61218883A (en) | Four-way reversing valve for reversible refrigeration cycle |