[go: up one dir, main page]

JPS59121868A - Complementary mis static memory cell - Google Patents

Complementary mis static memory cell

Info

Publication number
JPS59121868A
JPS59121868A JP57227419A JP22741982A JPS59121868A JP S59121868 A JPS59121868 A JP S59121868A JP 57227419 A JP57227419 A JP 57227419A JP 22741982 A JP22741982 A JP 22741982A JP S59121868 A JPS59121868 A JP S59121868A
Authority
JP
Japan
Prior art keywords
layer
type
inverter
film
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227419A
Other languages
Japanese (ja)
Inventor
Masaki Sato
正毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57227419A priority Critical patent/JPS59121868A/en
Publication of JPS59121868A publication Critical patent/JPS59121868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to improve the integration by connecting a p type diffused layer of at least one inverter to an n type diffused layer, and forming wirings of high melting point metal or its silicide film extending on the surface of the gate electrode of the other inverter. CONSTITUTION:A p-well 102 is presented on an n type silicon substrate 101, and an n type impurity diffused region 103 and a p type impurity diffused region 104 are connected via a molybdenum silicide 106 through a buried hole. A polycrystalline silicon film 107 is buried under an insulating film 108, and wirings of aluminum alloy metal 109 are formed on a molybdenum silicide layer 106. When thus constructed, the polycrystalline silicon common gate 107 of an MIS type transistor of one inverter and the layer 106 for connecting the layer 104 to the layer 103 are formed in the separate steps. Accordingly, both can be approached to each other. The integration of the aluminum film 109 to be superposed with the layer 106 is performed by the bit lines desired to have low wiring resistance.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明けCMO8型半導体装置による集積回路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an integrated circuit using a CMO8 type semiconductor device.

[従来技術ととその問題点] 半導体装置特に集積回路においては、高集積化素子の高
速化を達成するだめに素子寸法の小形化が熱望され、各
方面で盛んに研究がなされている。
[Prior art and its problems] In semiconductor devices, especially integrated circuits, there is a desire to reduce the size of elements in order to achieve higher speeds in highly integrated elements, and active research is being carried out in various fields.

高融壱、金にまたはそのシリサイドは多結晶シリコンや
拡散層に比べて電気抵抗が低いこと々らびにアルミニウ
ムと異なり高温工程に耐えることが可能であり装置の動
作速度の向とや製造工程の自由度を増やす等の利点を有
する吉いわれている。しかしながら、従来、高融改金属
またはそのノリサイドを使用した集積回路、特に相補型
MISスタティックメモリセルの構造はなされていない
High melting metals, gold, or their silicides have lower electrical resistance than polycrystalline silicon or diffusion layers, and unlike aluminum, can withstand high-temperature processes, making it easier to improve the operating speed of equipment and the manufacturing process. It is said to have the advantage of increasing the degree of freedom. However, conventionally, no integrated circuit, particularly a complementary MIS static memory cell structure, has been constructed using a high-melting modified metal or its nolicide.

箪1図は従来公知の相補型M’ I 8スタテイツクメ
モリセルの回路図である。pチャネルMIS型トランジ
スタTIとNチャネルMISトランジスタT2のp、N
拡散J脅、ゲート同志が共通接続されてインバータを構
成している。pチャネルMIS型トランジスタT3とN
チャネルMIS型トランジスタT4も同様にインバータ
を榊成し、一方のインバータのp型拡散層とN型拡散層
が他方のインバータのゲートに接続し相補型MISスタ
ティックメモリセルを構成している。T5 、 ’]’
6はNチャネルM ISトランジスタからなるトランス
ファーゲートで夫々ビット線B、百に接続される。p型
拡舷層とN型拡散層を多結晶シリコン配線で接続すると
PN接合が形成され第2図に示すようにダイオードが生
じ正常な動作が1難になるのでこの回路を実現するには
各インバータ内で共通ゲートとし、配線は、第1図に於
けるVDDを基板拡散層、ゲート′醒極及びワード線W
を多結晶シリコン膜、vss、ビ ゛ット線B、汀、そ
してp型拡赦層とN型拡散層を他方のインバータのゲー
トに接続する配線をhlJ膜で形成する事が考えられる
。しかし、セル上に多数本のhll配線がレイアウトさ
れることになり高集積化に適さんい。即ちA、l膜によ
る反射や下地の凹凸によるリングラフィの制約によりA
14のピッチは余り取れないからである。
Figure 1 is a circuit diagram of a conventionally known complementary M'I 8 static memory cell. p, N of p-channel MIS transistor TI and N-channel MIS transistor T2
The gates are commonly connected to form an inverter. p-channel MIS type transistors T3 and N
Similarly, the channel MIS type transistor T4 also constitutes an inverter, and the p-type diffusion layer and the N-type diffusion layer of one inverter are connected to the gate of the other inverter, thereby forming a complementary MIS static memory cell. T5, ']'
Reference numeral 6 denotes a transfer gate consisting of an N-channel MIS transistor, which is connected to bit lines B and 10, respectively. When the p-type widening layer and the n-type diffusion layer are connected with polycrystalline silicon wiring, a PN junction is formed and a diode is generated as shown in Figure 2, making normal operation difficult. A common gate is used in the inverter, and the wiring connects VDD in FIG. 1 to the substrate diffusion layer, the gate's rising pole, and the word line W.
It is conceivable to use a polycrystalline silicon film, vss, bit line B, bottom, and wiring connecting the p-type amended layer and the n-type diffusion layer to the gate of the other inverter to be formed using a hlJ film. However, a large number of HLL wirings are laid out on the cell, which is not suitable for high integration. In other words, due to the limitations of phosphorography due to the reflection from the A and l films and the unevenness of the underlying layer, the
This is because 14 pitches cannot be taken very often.

これに対し、高融点金属とhl膜との多層構造にし、高
融点金属により上記異導電型拡散層間の配線とゲート電
極とを一体形成する事が考えられる。
In contrast, it is conceivable to adopt a multilayer structure of a high melting point metal and an HL film, and to integrally form the wiring between the different conductivity type diffusion layers and the gate electrode using the high melting point metal.

この場合トランジスタのゲート材料の仕事関数を揃える
事が設計上好ましいので両インバータ共この様な工夫を
するととKなるが、セル内に高融点金属から成る配線は
AIlと同様余り密にできないのでやはり高集積化の妨
げとなる。
In this case, it is preferable in terms of design to match the work functions of the gate materials of the transistors, so it would be good to do this for both inverters, but the wiring made of high melting point metal in the cell cannot be made too dense as in AIl, so it is still a problem. This hinders high integration.

[発明の目的] 本発明は上記事情に鑑みて為されたもので、先述したイ
ンバータの異導電型拡散層の接続に際しPN接合が形成
されない様にすると共に、相補型Ivf I Sスタテ
ィックメモリセルの集積度を向上させる事を目的とする
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and it prevents the formation of a PN junction when connecting the different conductivity type diffusion layers of the above-mentioned inverter, and also prevents the formation of a PN junction in the complementary type Ivf I S static memory cell. The purpose is to improve the degree of integration.

[発明の概妄] 本発明はインバータの共通ゲートを対向配置した相補型
MISスタティックメモリセルに於いて少なくとも一方
のインバータのp型拡赦層とN散拡# 層を接続すると
共に他方のインバータのゲート電極表面に延在する配線
(接続部材)を設け、との配線に高融点金属又はそのシ
リサイド膜を用いた事を特徴とする。
[Summary of the Invention] The present invention provides a complementary MIS static memory cell in which the common gates of inverters are arranged opposite each other, in which the p-type permissive layer and the N-diffusion layer of at least one inverter are connected, and the It is characterized by providing wiring (connecting member) extending on the surface of the gate electrode, and using a high melting point metal or its silicide film for the wiring.

[発明の効果] 本発明によれば、一方のインバータのp型拡散層とN型
拡散層を接続すると共に他方のインバータのゲート電極
表面に延在する配線を設け、この配線に高融薇金属又は
そのシリサイドを用いるようにしているので、配線部で
PN接合が形成されるのを防止しつつ上記p型拡散層、
N型拡散層のコンタクト部における上記配線をそのイン
バータのゲート直極に近づけて形成する事が出来高集積
化を図る上で有利となる。
[Effects of the Invention] According to the present invention, a wiring is provided that connects the p-type diffusion layer and the n-type diffusion layer of one inverter and extends to the surface of the gate electrode of the other inverter, and this wiring is made of high-melting metal or its like. Since silicide is used, the p-type diffusion layer and the
Forming the wiring in the contact portion of the N-type diffusion layer close to the direct pole of the gate of the inverter is advantageous in terms of achieving higher integration.

゛ 又、多結晶シリコン、接続部材、hlの多層構造に
する事ができ、前記拡散層間の配線とビット線を重ねて
集積度を著しく向上させる事ができる、又、インバータ
間の2本の配線の内、1本に対して本発明を施し、他方
をhi配線とすれば、前記高融点金属又はそのシリサイ
ドと拡散7mとのコンタクトが自由にあけられるように
なシ、相方のインバータの拡散層間の距離をアイソレー
ションの極限まで縮めることが出来る。
゛ Also, it is possible to have a multilayer structure of polycrystalline silicon, connection members, and HL, and the wiring between the diffusion layers and the bit line can be overlapped to significantly improve the degree of integration. If the present invention is applied to one of the inverters and the other is made into hi wiring, contact between the high melting point metal or its silicide and the diffusion layer 7m can be made freely, and between the diffusion layers of the other inverter. distance can be reduced to the limit of isolation.

[発明の実施例] 実施例1 以下この発明の一実施例を図面第3図、第4図を参照し
ながら説明する。
[Embodiments of the Invention] Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS. 3 and 4 of the drawings.

第3図は前述の配線を高融薇金属のシリサイドした部分
は拡散層を示し、丸印を施した部分は高融点金属のシリ
サイド層を示し左上がら右下へ斜牛県斗央央部分けA1
合金層を示してい63図X・−Y部の断面図を第4図に
示す。
In Figure 3, the part of the above-mentioned wiring that is silicided with high-melting metal shows the diffusion layer, and the part marked with a circle is the silicide layer of high-melting metal.
FIG. 4 is a cross-sectional view of the section X and -Y in FIG. 63 showing the alloy layer.

n型シリコン基板101上に形成されたpウェル102
が存在しn型不純物拡故領域103、p型不純物拡赦領
域104が、埋込開口を介してモリブデンシリサイド1
06により接続されている。多結晶シリコン107はモ
リブデンシリサイド層106の下絶縁膜10Bの下に埋
設され、モリブデンノリサイド層106上にはA1合金
属109配線が形成されている。
P well 102 formed on n-type silicon substrate 101
exists, and the n-type impurity expansion region 103 and the p-type impurity expansion region 104 are connected to the molybdenum silicide 1 through the buried opening.
06. Polycrystalline silicon 107 is buried under the lower insulating film 10B of molybdenum silicide layer 106, and A1 alloy metal 109 wiring is formed on molybdenum silicide layer 106.

この実施例では拡散層103,104、多結晶シリコン
107、モリブデンシリサイド層106、A7合金層1
09、の四層の配線が形成され、きわめて高集積な相補
型スタティックMISメモリセルが実現できる。即ち、
一方のインバータのMI13型トランジスタTl 、T
2の多結晶シリコン共通ゲートと、そのp型拡赦層とN
型拡散層を接続するモリブデンシリサイド層とは別工程
で作られるので互いに近接させることが可能である。ト
ランジスタT3 、 T4においても同様であるが、 
T3については他方のインバータの共通ゲートの延在部
をモリブデンシリサイド層下に下地として設ける為、多
結晶シリコン配線間のピッチだけ右方に位置する構造と
なっているが、全体として高集積化が達成されている。
In this embodiment, diffusion layers 103 and 104, polycrystalline silicon 107, molybdenum silicide layer 106, and A7 alloy layer 1
09, four layers of wiring are formed, and an extremely highly integrated complementary static MIS memory cell can be realized. That is,
MI13 type transistors Tl, T of one inverter
2 polycrystalline silicon common gate, its p-type forgiveness layer and N
Since the molybdenum silicide layer connecting the mold diffusion layer is made in a separate process, they can be placed close to each other. The same applies to transistors T3 and T4, but
Regarding T3, since the extension of the common gate of the other inverter is provided as a base under the molybdenum silicide layer, the structure is positioned to the right by the pitch between the polycrystalline silicon wirings, but overall it is difficult to achieve high integration. has been achieved.

又、低い配線抵抗が望捷れるビット線B、Bはモリブデ
ンシリサイド層と重々るAl膜として形成され高集積化
が達成されている。本発明を適用せず多結晶シリコン、
hllの2層配線とした場合の平面図を比較の為第5図
に示す。
Further, the bit lines B and B, which are desired to have low wiring resistance, are formed as an Al film overlapping with a molybdenum silicide layer, thereby achieving high integration. Polycrystalline silicon without applying the present invention,
For comparison, a plan view of a two-layer HLL wiring is shown in FIG.

[発明の他の実施例] 上述の実施例Iでは2本の配線を2本共モリブデンシリ
サイドを用いた例を示したが、例えばモリブデンシリサ
イドとhl1合金を使用することも可能である。第6図
に配線の一方をモリブデンシリサイド膜、他方をM合金
膜によシ形成したスタティックメモリセルの平面図、第
7図にそのX−Y部の断面図を示す。前述の実施例1と
同様にn型シリコン基板201上に形成されたpウェル
202が存在し、n型不純物領域203、n型不純物領
域204が一方がモリブデンシリサイド206配線、一
方がA1合金209配線によ多接続される。
[Other Embodiments of the Invention] In the above-mentioned Embodiment I, an example was shown in which both of the two wirings were made of molybdenum silicide, but it is also possible to use, for example, molybdenum silicide and hl1 alloy. FIG. 6 is a plan view of a static memory cell in which one of the wirings is formed of a molybdenum silicide film and the other is formed of an M alloy film, and FIG. 7 is a sectional view of the X-Y section thereof. As in Example 1, there is a p-well 202 formed on an n-type silicon substrate 201, and an n-type impurity region 203 and an n-type impurity region 204 have molybdenum silicide 206 wiring on one side and A1 alloy 209 wiring on the other side. Connected to many.

自〜C5はコンタクトホールを示す。ここでは自、C2
,C5はC3,C4と別工程であけられるので相方、 
 のインバータの拡散層間を縮小することができる。
Self to C5 indicate contact holes. Here, self, C2
, C5 is drilled in a separate process from C3 and C4, so
The distance between the diffusion layers of the inverter can be reduced.

即ち、 W、、W3はコンタクトホールの目合せ余裕、
W2は拡散層間の距離を示すが、両方共モリブデンシリ
サイド配線を使用する場合に比べてWl、W2のみ関係
する様になり、しかもW2はアイソレーションの極限寸
で縮めることができるのでさらに高集積化が可能さガる
That is, W, , W3 is the contact hole alignment margin,
W2 indicates the distance between the diffusion layers, but compared to the case where both are used with molybdenum silicide wiring, only Wl and W2 are related. Furthermore, W2 can be reduced at the limit of isolation, resulting in even higher integration. is possible.

さらに第3図または第6図に示される多結晶シリコンの
代わりにモリブデンシリサイドとは異なるレベルの高融
点金属またはそのシリサイド膜ヲ利用することにょシヮ
ード線の抵抗も低減されたさらに高速動作の可能となる
メモリセルを得ることができる(図面省略)。
Furthermore, by using a metal with a high melting point different from molybdenum silicide or its silicide film in place of the polycrystalline silicon shown in FIG. 3 or FIG. (Drawings omitted)

第8図は前述の実施例1のモリブデンシリサイド106
のかわシに多結晶シリコン312膜と気相成長法で拡散
層303 、304上に選択的に形成したタングステン
311膜きを用いて拡散層を接続した例であシ本発EI
JK含まれる事は言うまでもない。
FIG. 8 shows the molybdenum silicide 106 of the above-mentioned Example 1.
This is an example in which the diffusion layers are connected using a polycrystalline silicon 312 film and a tungsten 311 film selectively formed on the diffusion layers 303 and 304 by vapor phase growth.
It goes without saying that JK is included.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は相補型MISスタティククメモリセル
の回路(Δ、第3図は本発明の詳細な説明するための相
補型MISスタティックメモリセルの平面図、第4図は
そのx−ylfr而図、面5図は多結晶シリコン、A7
配線を備えるメモリセルの平面図、第6図は本発明の他
の実施例を説明するの実施例を説明する断面図である。 図において、 101.201,301 ・−n型シリコン基板、] 
02 、202 、302・・Pウェル領域、103.
203,303 ・−n型不純物拡散領域、104.2
04.304・・・p型 106.206,306・・モリブデンノリサイド、1
07.207,307,312 ・・・多結晶イリフン
、108、.105,205,208,110,210
,305,308,310−・・絶縁膜、109 、2
09 、309・・A7合金膜、31トタンゲステン膜
。 代理人 弁理士  則 近 憲 佑 (他1名) 第1図 第2図 手続補正書C方式) ■、事件の表示 昭和57年特願第227419号 2、発明の名称 相補型MISスタティックメモリセル 3 補正をする者 事件との関係 特許出願人 (307”1  東京芝浦軍気株式会社4代理人 〒100 東京都千代田区内幸町1−]−6 6、補正の対象 0図  而(、マノうi量、 、j−s回1オ61])
7 補正の内容 0図面の浄書(内容に変更なし) ・ ・    t”、・ノ °・。
1 and 2 are complementary MIS static memory cell circuits (Δ, FIG. 3 is a plan view of the complementary MIS static memory cell for detailed explanation of the present invention, and FIG. 4 is the x -ylfr diagram, surface 5 diagram is polycrystalline silicon, A7
FIG. 6 is a plan view of a memory cell provided with wiring, and a cross-sectional view illustrating another embodiment of the present invention. In the figure, 101.201,301 -n-type silicon substrate, ]
02, 202, 302...P well region, 103.
203,303 -n-type impurity diffusion region, 104.2
04.304...p-type 106.206,306...molybdenum nolicide, 1
07.207,307,312...Polycrystalline Irifun, 108,. 105, 205, 208, 110, 210
, 305, 308, 310--Insulating film, 109, 2
09, 309...A7 alloy film, 31 galvanized steel film. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Procedural amendment C method) ■, Indication of the case, 1982 Patent Application No. 227419 2, Title of the invention Complementary MIS Static Memory Cell 3 Relationship with the case of the person making the amendment Patent applicant (307”1 Tokyo Shibaura Gunki Co., Ltd. 4 Agent 1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100) 6. 0 figures subject to amendment , ,j-s times 1o61])
7 Contents of amendment 0 Engraving of drawing (no change in content) ・ ・ t”,・ノ °・.

Claims (1)

【特許請求の範囲】[Claims] 半導体基体上にゲート共通のpチャネルMIS型トラン
ジスタとnチャネルMIS型トランジスタからなるイン
バータを2つ備え、このインバータの前記共通ゲートが
対向して配置されると共に一方のインバータのn型拡散
層とn型拡散層が他方のゲートに接続された相補型MI
Sスタティックメモリセルに於いて、少なくとも一方の
インバータのn型拡散層とn型拡散層を接続すると共に
他方のインバータのゲート電極表面に延在する配線を設
け、との配線に高融点金属またはそのシリサイド膜を用
いた事を%徴とする相補型M I Sスタティックメモ
リセル。
Two inverters each consisting of a p-channel MIS type transistor and an n-channel MIS type transistor having common gates are provided on a semiconductor substrate, and the common gates of the inverters are arranged to face each other, and the n-type diffusion layer of one inverter and the n-type Complementary MI in which the type diffusion layer is connected to the other gate
In the S static memory cell, a wiring is provided that connects the n-type diffusion layers of at least one inverter and the n-type diffusion layer and extends to the surface of the gate electrode of the other inverter, and the wiring is made of a high melting point metal or its like. A complementary MIS static memory cell that uses a silicide film.
JP57227419A 1982-12-28 1982-12-28 Complementary mis static memory cell Pending JPS59121868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227419A JPS59121868A (en) 1982-12-28 1982-12-28 Complementary mis static memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227419A JPS59121868A (en) 1982-12-28 1982-12-28 Complementary mis static memory cell

Publications (1)

Publication Number Publication Date
JPS59121868A true JPS59121868A (en) 1984-07-14

Family

ID=16860541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227419A Pending JPS59121868A (en) 1982-12-28 1982-12-28 Complementary mis static memory cell

Country Status (1)

Country Link
JP (1) JPS59121868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131558A (en) * 1984-11-30 1986-06-19 Toshiba Corp Semiconductor device
US5717254A (en) * 1993-09-20 1998-02-10 Fujitsu Limited Semiconductor device including a plurality of transistors
US6548885B2 (en) 1994-05-27 2003-04-15 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107056A (en) * 1980-12-25 1982-07-03 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107056A (en) * 1980-12-25 1982-07-03 Fujitsu Ltd Semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131558A (en) * 1984-11-30 1986-06-19 Toshiba Corp Semiconductor device
US5717254A (en) * 1993-09-20 1998-02-10 Fujitsu Limited Semiconductor device including a plurality of transistors
US6160294A (en) * 1993-09-20 2000-12-12 Fujitsu Limited Semiconductor device having an interconnection pattern for connecting among conductive portions of elements
US6548885B2 (en) 1994-05-27 2003-04-15 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same
US6809399B2 (en) 1994-05-27 2004-10-26 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7022568B2 (en) 1994-05-27 2006-04-04 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7023071B2 (en) 1994-05-27 2006-04-04 Hitachi Ulsi Engineering Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7253051B2 (en) 1994-05-27 2007-08-07 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7397123B2 (en) 1994-05-27 2008-07-08 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7456486B2 (en) 1994-05-27 2008-11-25 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7511377B2 (en) 1994-05-27 2009-03-31 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7834420B2 (en) 1994-05-27 2010-11-16 Renesas Electronics Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7910427B1 (en) 1994-05-27 2011-03-22 Renesas Electronics Corporation Semiconductor integrated circuit device and process for manufacturing the same
US8093681B2 (en) 1994-05-27 2012-01-10 Renesas Electronics Corporation Semiconductor integrated circuit device and process for manufacturing the same
US8133780B2 (en) 1994-05-27 2012-03-13 Renesas Electronics Corporation Semiconductor integrated circuit device and process for manufacturing the same

Similar Documents

Publication Publication Date Title
CA2105039C (en) Semiconductor device and wafer structure having a planar buried interconnect by wafer bonding
KR20150024756A (en) Semiconductor logic circuits fabricated using multi-layer structures
JPS6164166A (en) semiconductor equipment
JPS59121868A (en) Complementary mis static memory cell
JPS62119936A (en) Complementary lsi chip
JPS6348182B2 (en)
JPS6161536B2 (en)
JPH0374848A (en) Semiconductor device and its manufacturing method
JPH04215473A (en) Static ram
JPS61201460A (en) Semiconductor device
KR19980018086A (en) Semiconductor device
US20230114418A1 (en) Semiconductor structure and method for manufacturing semiconductor structure
JPS58140151A (en) Semiconductor integrated circuit device
JPH0247849A (en) Semiconductor device
JPS63204628A (en) Semiconductor integrated circuit device
JPS5978573A (en) Semiconductor device
JPH0727979B2 (en) Semiconductor memory device
JP2001284470A (en) Semiconductor memory device
JPS63142658A (en) Connection of wiring
JP2004071787A (en) Semiconductor device
JPH0666427B2 (en) Method for manufacturing MOS semiconductor integrated circuit device
JPS5816338B2 (en) Hand tie souchi
JPS62262458A (en) Semiconductor integrated circuit device
JPS58142579A (en) Mos transistor
JPS6329953A (en) Semiconductor device