JPS59120263A - Manufacture of fine particles - Google Patents
Manufacture of fine particlesInfo
- Publication number
- JPS59120263A JPS59120263A JP57231425A JP23142582A JPS59120263A JP S59120263 A JPS59120263 A JP S59120263A JP 57231425 A JP57231425 A JP 57231425A JP 23142582 A JP23142582 A JP 23142582A JP S59120263 A JPS59120263 A JP S59120263A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- liquid
- nozzle
- fluid
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
- Nozzles (AREA)
- Glanulating (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は微粒子の製造方法および装置、に関し、特に従
来のものに比べ諭ちじるしく、倣少な粒子の製造方法お
よび装置に関すや。樹脂の微粉末?製造方法として従来
より知られているのは沈澱法と粉砕法である。沈澱法は
溶剤に溶解せ□しめておき、貧溶媒を加えるか熱を下け
る、紳剤をとばす、などの方法により溶解力を低ドさせ
粒子状に析出させて粒子を取り出す方法である。この方
法は良好な溶媒および析出条件が存在する材料には有効
である場合もあるが一般的な樹脂の微粉末の製造方法と
しては必ずしも適さない。また、実際に実用化するにあ
たって、使用した溶剤の処理液からの分離などに手間が
かかるのも大きな問題である○また、この方法において
の他の問題は、材料中に他の成分を混合することかびす
力・しいことである〇
一般的に多く用いられる微粉末の製造方法は粉砕方法で
ある。この方法においては材料は機械的な方法により粉
砕される。このような目的のための装置は目的に応じて
各種のものが知られており、特に微粒子を得ることを目
的とした、加圧空気を利用した粉砕装置等も知られてい
る。しかしこの方法はきわめて高いエネル甲−を必要と
するのが大きな欠点である。また材料は粉砕時の破砕力
のために変性をうけたりすることもある?このような効
果を防ぐため材料を冷却(凍結)したりするととも行な
われるがこれ、も必ずしも効果は充分でなく、また、コ
ストにも良い影響を与えないo″?!。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing fine particles, and more particularly to a method and apparatus for producing particles that are more precise and less imitable than conventional ones. Fine resin powder? Conventionally known production methods include precipitation and pulverization. The precipitation method is a method in which a substance is dissolved in a solvent, kept cool, and then the dissolving power is lowered by adding a poor solvent, lowering the heat, or removing a solvent to precipitate the substance into particles, and then the particles are taken out. Although this method may be effective for materials for which good solvent and precipitation conditions exist, it is not necessarily suitable as a method for producing general resin fine powders. Another major problem in practical application is that it takes time and effort to separate the solvent used from the processing solution.Other problems with this method include mixing other components into the material. The most commonly used method for producing fine powder is the pulverization method. In this method the material is ground by mechanical means. Various types of devices for this purpose are known depending on the purpose, and pulverization devices using pressurized air and the like are also known, particularly for the purpose of obtaining fine particles. However, a major drawback of this method is that it requires a very high energy level. Also, can materials be denatured due to the crushing force during crushing? In order to prevent this effect, materials are sometimes cooled (frozen), but this is not always effective and does not have a positive impact on costs.
たこの方法においては不規則な形状の粒子しか1与られ
ない0
このような従来の微粒子製造方法の欠点を解決する方法
として噴霧法による粒子の製造方法も提案されているが
従来知られている方法ね数10μ〜数100μの比較的
粗大な粒子を製造”す不方法□であり、特に微粒子を±
・る不法については智1られていなかった。In the octopus method, only one irregularly shaped particle is given.0 As a method to solve the drawbacks of such conventional fine particle manufacturing methods, a method of manufacturing particles by a spraying method has been proposed, but it is not known in the past. This method is an inconvenient method for producing relatively coarse particles of several tens to several hundred microns, and is especially difficult to produce fine particles.
・There was no wisdom regarding the illegality.
本発明の目的は上記従来の方法による微粒子製造法の欠
点を解決する新規々微遺子の製造方法を提供することに
ある。 ・
本発明の他の目的(−J市に微粒子の製造を可能にする
噴霧微粒化方法を示すことにある。An object of the present invention is to provide a novel method for producing microparticles that overcomes the drawbacks of the conventional methods for producing microparticles. Another object of the present invention is to demonstrate a spray atomization method that makes it possible to produce fine particles in -J City.
又本発明の他の目的は均一な形状を有する微粒子を得る
方法を示すことである〇
上記の如き目的を達成し生木発明の方法は加熱溶融状態
の材料を2流体))ル□に供給し、液体供給速度S’z
(t 7分)および犠体供給速度82 (11分)に
おいて微粒化せしちるに当り以□下の条件を満足する転
化条件で微ん化を行うことを特徴と量る微粉末の製造方
法である二′ □
a)Sz150 (醋)
2、o>b>o、o’t (咽)
0.03<31/S2<0.35
但し a:液体供給口径(−)
b:液体供給管先端と気体供給管先端との距離従来2流
体のノズ)!、Iを用いて微粒子を製造する方法は良く
知られてお夛冷却等のコストのかかる工程を必要とせず
また球状に近い粒子が得られる・ ため、Wへ冬等の微
粒化に実用化されている。Another object of the present invention is to show a method for obtaining fine particles having a uniform shape. In order to achieve the above-mentioned objects, the method of the raw wood invention is to supply a material in a heated molten state to two fluids)) and liquid supply speed S'z
(t 7 minutes) and sacrificial body supply rate 82 (11 minutes) A method for producing fine powder characterized by carrying out atomization under conversion conditions that satisfy the following conditions: 2' □ a) Sz150 (醋) 2, o>b>o, o't (throat) 0.03<31/S2<0.35 However, a: Liquid supply port diameter (-) b: Liquid supply pipe Distance between the tip and the tip of the gas supply pipe (conventional two-fluid nozzle)! The method of producing fine particles using I is well known and does not require costly processes such as repeated cooling, and can produce particles close to spherical. Therefore, it has been put into practical use for atomization in winter, etc. ing.
しかしながら従来知らilている2流体ノズルによる微
粒化の条件について鋭慈仙兇を続けたところ、本発明の
目的を達成するためには従来の霧化条件では不充分で上
記のような条件を必要とすることが認めら九メこ。However, when we continued to discuss the conditions for atomization using the conventionally known two-fluid nozzle, we found that the conventional atomization conditions were insufficient and the above-mentioned conditions were necessary to achieve the purpose of the present invention. It is recognized that this is the case.
本発明の目的を達成するために、まず微粒子が得られる
条件について鉦方法との関連について麩“リベたところ
従来公知のノズルはいずれもS、/S2が0.4〜20
程度で用いられているのに対し本発明の目的を達成する
ためには、0035以下、よシ望ましくは0.3以下で
あることが必要なことが明らかになった、この、ことは
液体の成葉に対し充分な気体の址を供給することを、意
味する。この/′cめには、、従来のノズルにりし気体
ノズルの口径を太きくし流量を増すかもしくは霧化気体
の圧力を烏めて供給し、流量を増すかである。どちらの
方法を用いてもよいが噴霧圧力は2 kg/cn1以上
るることが望ましい。In order to achieve the object of the present invention, we first investigated the conditions for obtaining fine particles in relation to the method, and found that all conventional nozzles have an S, /S2 of 0.4 to 20.
However, in order to achieve the object of the present invention, it has become clear that it is required to be 0.035 or less, more preferably 0.3 or less. This means providing sufficient gas space for adult leaves. To achieve this, the flow rate can be increased by increasing the diameter of the gas nozzle compared to the conventional nozzle, or by increasing the flow rate by reducing the pressure of the atomizing gas. Either method may be used, but it is desirable that the spray pressure be 2 kg/cn1 or more.
このように従来に比べて極端に霧化気体流量が多い場合
に安定した霧化をイjうための条件について横割したと
ころ本発明者らは流体ノズルと気体ノズルの開口部位振
の関係が1要であるということを発見した。すなわち図
面における即ち気体供線管先端と欣体供糺管先端との距
離すが上記の関係を満足することが必要であることを見
出した。In this way, when the conditions for achieving stable atomization when the atomizing gas flow rate is extremely large compared to the conventional one are horizontally divided, the present inventors found that the relationship between the opening vibration of the fluid nozzle and the gas nozzle is 1. I discovered that it is essential. That is, it has been found that it is necessary that the distance between the tip of the gas supply tube and the tip of the housing supply tube in the drawings satisfies the above relationship.
上記のような条件での霧化においては、従来の方法に比
べて液体の供紬加に比べてはるかに多量の気体を供給す
る。この場合すが0.(1,i龍以下であると、液体が
多量の気体のために霧化でさすむしろ逆流する現象を生
ずる。従来このような場合、液体を加圧して供給する方
法がとられたが本発明の目的とするような微粒化にiい
ては1ましくない。1 jc bが2 y++π以上で
あるとli&粒化が九分に行なうことかできない。In atomization under the above conditions, a much larger amount of gas is supplied than in the conventional method when a liquid is supplied. In this case, the water is 0. (If the pressure is less than 1, the liquid will flow backwards rather than atomize due to the large amount of gas. Conventionally, in such cases, a method was used to pressurize the liquid and supply it, but the present invention For the purpose of atomization, i is not 1. If 1 jc b is greater than 2 y++π, li & granulation cannot be achieved to a certain extent.
また、次に本発明の他の目的でおる均一な粒子を得るた
めの方法を横側したととろa ) S 1/ 50(朋
)であることが必要であるンとか認められた。Further, when we next discussed the method for obtaining uniform particles, which is another object of the present invention, it was found that it is necessary to obtain particles with a particle size of 1/50.
従来aはすなわち液体の吐出部の口径は液体の供給量に
対応して決められていたが一般にはaはS、15〜S
L / 20程度であった。本発明にお、、ける条件は
すなわち液体の供給量に対し液体の吐出y:+sの口径
が充分に大きいことを意味する。本発明者らの考捩によ
ると液体は管壁を伝わって霧化1分″に供給されるため
、減量に対し口径が太き、いは、ど管壁での液膜が薄く
なp、均一な粒子ができる。と考えられる。Conventionally, a means the diameter of the liquid discharge part, which is determined according to the amount of liquid supplied, but generally a means S, 15 to S.
It was about L/20. In the present invention, the condition mentioned herein means that the aperture of the liquid discharge y:+s is sufficiently large with respect to the amount of liquid supplied. According to the inventors' thoughts, since the liquid is supplied through the tube wall and is atomized for 1 minute, the diameter is large for the weight loss, or the liquid film on the tube wall is thin. It is thought that uniform particles are formed.
本発明を実施するだめの材料としてはポリオレイン、ワ
ックスポリアミド、ポリオレイン、ポリエステル、ポリ
スチレン等が用いられる最も好適なのはIリオレフイン
、ワックスのような明確な融点を有し融点以上では極め
て低粘度になシ、また融点以下では急速に凝固する性質
金有する相料ソ今る。互いに混合しうる独々の熱可塑性
声脂からの混合物を用いても良い。Polyolein, wax polyamide, polyolein, polyester, polystyrene, etc. are used as the material for carrying out the present invention.The most preferred material is I-lyolefin, which has a clear melting point like wax and has an extremely low viscosity above the melting point. Also, it is a phase material that has the property of rapidly solidifying below its melting point. Mixtures of individual thermoplastic vocal fats that are mixable with each other may also be used.
また必要に応じて各棟の添加剤を混入してもよい。添加
剤とは例えは光、紫外線に対する安定剤、さらに顔料染
料等の着色料、金八酸化物ガレスセンイ等の充てん剤を
混合しても良い。Additionally, additives for each building may be mixed as necessary. The additives may include, for example, stabilizers against light and ultraviolet rays, colorants such as pigment dyes, and fillers such as gold octoxide galesthene.
噴繕のだめの気体としては空気、不活性ガス又は水蒸気
が用いられる。気体は材料の融点よシラ0℃程度高い温
度に加熱して用いられる。Air, inert gas, or water vapor is used as the gas for the erecting pot. The gas is heated to a temperature approximately 0° C. higher than the melting point of the material.
本発明の方法によシ生成される微粒子は各種用途に周込
られる。一つの適した用途は、いわゆる粉末塗料であり
1着色材料を含有せしめて用いられる。The fine particles produced by the method of the present invention can be used in a variety of applications. One suitable application is the use of so-called powder coatings, which contain a coloring material.
また他の適した一つの用途は電子写真法、静電写真法、
磁気記録法又は静電印枦j法などに用いられるトナーで
ある。Another suitable application is electrophotography, electrostatography,
This is a toner used in magnetic recording methods or electrostatic printing methods.
従来とのような目的のトナーには熱可塑性樹脂と染料又
は顔料の如き着色材を混合し高温で溶融混練し混合物を
室温になるまで冷却して微粒子に粉砕して用いた。しか
しながらこのような製造法によるトナーは形状、粒径が
一定にならず、またトナー同士の均一性、トナー内部で
の均一性を得ることが本質的に困難であシ、それに起因
するトナーの実用性能上の不充分さは様々な形であられ
れた・
またこのような製造法によ、シトナーを製造するために
は多大の経費がかか)特に微粒子トナーを得るだめの工
程は極めて多くのエネルギーを要し装置コストの面でも
、ランニングコストの面でも多くをしめた。Conventionally, the intended toner is prepared by mixing a thermoplastic resin and a coloring material such as a dye or a pigment, melting and kneading the mixture at high temperature, cooling the mixture to room temperature, and pulverizing it into fine particles. However, the shape and particle size of the toner manufactured by this method are not constant, and it is essentially difficult to obtain uniformity between toners and within the toner, which makes it difficult to put the toner into practical use. Inadequacies in performance can be found in various ways (and producing toner using this manufacturing method requires a great deal of expense), especially in the process of obtaining fine particle toner. This required a lot of energy, which resulted in high equipment costs and running costs.
またこのような製造法は使用する羽村をも大きく限定す
るものであった。すなわち、微粒子状で均一なものを得
るためにはかなシ均一な混線か心太で、材料も混線性の
良い材料を選択する必要があった。Moreover, such a manufacturing method greatly limits the type of Hamura to be used. In other words, in order to obtain uniform fine particles, it was necessary to select a material with a uniform crosstalk or a thick core with good crosstalk properties.
また微粉状トナーを得るためには特に材料の微粉砕特性
が生産性上大きな問題で心りた。すなわちトナーとして
作られるためにはそのバインダーには先ず脆性が必要で
あシそれは必ずしもトナーの性能から要求されるバイン
ダーの特性とは一致せず、トナーの要求性能から希望の
バインダーを従来の製造法に用いることはできなかった
。Furthermore, in order to obtain a fine powder toner, particular attention was paid to the fine pulverization characteristics of the material, which poses a major problem in terms of productivity. In other words, in order to be made into a toner, the binder must first be brittle, and this does not necessarily match the characteristics of the binder required from the performance of the toner. It could not be used for
上記のような#J題に対し本発明による微粒子の製造方
法?′i根本的な解法を与えるものである。A method for producing fine particles according to the present invention for the above #J problem? 'i gives a fundamental solution.
すなわち極めて短時間に希望する粒度の微粒子を多量に
得ることができる。In other words, a large amount of fine particles of a desired particle size can be obtained in an extremely short period of time.
トナーとして用いる場合好ましい材料としてはいわゆる
ワックスとして知られるC42〜C5oの炭化氷菓連鎖
を有する化合物、およびその誘導体や低分子のポリオレ
フィン、ポリアミドなどがあシ、これらが着色剤と溶融
混練されて用いられる。必要に応じて他の添加剤、充填
剤を加えても良いし、また磁気特性を付与するため磁性
体を添加しても良い。When used as a toner, preferred materials include compounds having C42 to C5o carbonized ice chains known as so-called waxes, derivatives thereof, low-molecular polyolefins, polyamides, etc., which are melt-kneaded with a colorant and used. . Other additives and fillers may be added as necessary, and a magnetic material may be added to impart magnetic properties.
また、流@特性を向上させたシ取シ扱い特性を向上させ
たシするだめに微粒子状のシリカ等の添加剤を混合して
用いて□も良い。Further, additives such as fine particulate silica may be mixed and used in order to improve flow properties and handling properties.
また、本発明の方法によりm造した粒子の表面に樹脂コ
ーティングを行い、いわゆるマイクロカプセル化して用
いても良い。Furthermore, the surfaces of the particles produced by the method of the present invention may be coated with a resin to form so-called microcapsules.
とのよ5な方法としては、従来公知のカプセル化技術を
利用することができる。As an alternative method, a conventionally known encapsulation technique can be used.
例えば、スゲレードラム法、界面重合法、コアセルベー
ション法、相分離方法、1n−situ重合法など米国
特許第3,338,991号明細書、同第3.326,
848号明細書、同第3,502,582号明細書など
に記載されている方法などが使用できる。For example, U.S. Patent No. 3,338,991, U.S. Pat. No. 3,326, U.S. Pat.
Methods such as those described in Japanese Patent No. 848 and Japanese Patent No. 3,502,582 can be used.
実施例1 以下の物質を混合した。Example 1 The following materials were mixed.
低分子量ポリエチレン 50部
パラフィンワックス 50部
カーボンブラック 10部
以上混合物を溶融混合し均一な混合物としたのち150
’Cにおいて図面のa = 1.5 、 b =0.1
の2流体ノズルを用いS、=60g−/分 S、=38
0t/分の条件で微粒化せしめた錫化気体は空気であシ
気体温度は120℃で使用した。錫化された粒子は気体
中で捕集せしめられた。得られた粒子は完全な球状をし
ておシまたカー?ンの分散は均一で必シ、また極めて流
動性の良い粉体であった。Low molecular weight polyethylene 50 parts Paraffin wax 50 parts Carbon black 10 parts or more After melting and mixing the mixture to make a homogeneous mixture, 150 parts
'C of the drawing a = 1.5, b = 0.1
Using a two-fluid nozzle of S, = 60 g-/min S, = 38
The tinning gas which was atomized under the conditions of 0 t/min was air and the gas temperature was 120°C. The tinned particles were collected in the gas. The resulting particles have a perfect spherical shape and are similar to a cylindrical shape. The dispersion of the powder was uniform and the powder had extremely good fluidity.
平均粒径は9,5μであったみ次いてこの微粒子を粉体
100部に対し1部の微粉末状超粗水性シリカ微粉末と
混合し、さらに鉄粉に対し、24HMで0.2部で混合
し現像剤とし、次いて磁性スリーブを有する現像器に供
給し、正の静電沿イボを有する光導電体上に接触させ現
像したとζろ極めて鮮明な画像が得られた。次いでこの
画像をコロナ放電を用いて普通紙上に転写し、さらに線
圧]、 5 kgの2本の圧接ローラーを通過させたと
ころ完全に定着した。The average particle size was 9.5μ.Next, the fine particles were mixed with 1 part of ultra-coarse aqueous silica powder per 100 parts of the powder, and further 0.2 parts of 24HM was added to the iron powder. The mixture was mixed to form a developer, then supplied to a developer having a magnetic sleeve, and brought into contact with a photoconductor having positive electrostatic warts for development, resulting in an extremely clear image. Next, this image was transferred onto plain paper using corona discharge, and then passed through two pressure rollers with a linear pressure of 5 kg, whereupon it was completely fixed.
実施例2 以下の物質を混合した。Example 2 The following materials were mixed.
パラフィン 60部
カルナバワックス 40部
マグネタイト 50部
上記混合物を溶融混合し、均一な混合物としたのち、実
施例1と同様の条件で微粒子化せしめ捕集した。平均粒
径は9.0μであった。Paraffin: 60 parts Carnauba wax: 40 parts Magnetite: 50 parts The above mixture was melt-mixed to form a homogeneous mixture, which was then atomized and collected under the same conditions as in Example 1. The average particle size was 9.0μ.
次すで得られた粒子番10%のスチレンジメチルアミン
エチルメタアクリレート共重合体溶液に分散し、スプレ
ードライ装置を用いて噴霧し、表面に樹脂コートを行な
った。Next, the particles were dispersed in the styrene dimethylamine ethyl methacrylate copolymer solution having a particle number of 10% obtained in the next step, and sprayed using a spray drying device to coat the surface with a resin.
得られた微粉末に微粉末シリカを加え埃像剤としたのち
正の靜を潜悸を現像したところ極めて鮮明な画像が得ら
れた。また実施例1と同様に転写比較例1
実施例1においてノズルのa = 0.5 mmでかつ
Sl =90y−/分 S、=−200t/分である以
外は同様のノズルでかつ同様のノズルでき化した。平均
粒径は25μであシかつ粒度の分布は広かった。Finely powdered silica was added to the resulting fine powder to form a dust image agent, and then an extremely clear image was obtained when a positive image was developed. Also, in the same way as Example 1, Transfer Comparative Example 1 The same nozzle and the same nozzle were used in Example 1 except that the nozzle a = 0.5 mm and Sl = 90y-/min S, = -200t/min. It became a reality. The average particle size was 25 μm and the particle size distribution was wide.
実施例1と同様にトナーとして用いた191画質が粗で
かつ転写効率が悪かった。As in Example 1, the image quality of 191 used as a toner was poor and the transfer efficiency was poor.
比較例2
実施例1においてノズルのb = 0.005mmのノ
ズルを用いたところ、液体はノズルから出ていかず転化
できなかった。Comparative Example 2 When a nozzle with b = 0.005 mm was used in Example 1, the liquid did not come out of the nozzle and could not be converted.
実施例3
実施例1の材料を用いてa=5.Ob=0.2の2υ1
1.体ノズルを用いS、=3077分 52=500t
/分で微粒化をわなった平均粒径は8μであ少均−でb
った。Example 3 Using the material of Example 1, a=5. 2υ1 of Ob=0.2
1. Using body nozzle S, = 3077 minutes 52 = 500t
The average particle size that exceeded the atomization rate per minute was 8μ, and the average particle size was slightly smaller than b.
It was.
図面は本発明において用いる2v1シ体ノズルの睨明図
である。
手続補正■(・(方式9
1 事件の表示
+14和97年待 訴願第231午2ヶ号2 発明の名
相、
事件との閏(k 出 願 人
4、代月1 人
住 所 東京都モ代113区丸の内2丁116番2リ
ー九の内へ重洲ビル3305、 補正命令の11イ」
8 補正の内容 別紙のとおり
補 正 書
本願明細書中下記事項を補正いたします。
記
1、発明の名づか」を次の如く訂正する。
419−The drawing is a perspective view of a 2v1 body nozzle used in the present invention. Procedural amendment ■(・(Form 9 1 Indication of the case + 14 Japan 1997) Petition No. 231 No. 2 No. 2 Appearance of the invention, leap to the case (k Applicants: 4, 1 person) Address: Tokyo, MO 3305 Shizusu Building, 2-116-2 Marunouchi, 113-ku, Tokyo, 11-1 of the amendment order 8. Contents of the amendment The following matters in the specification of the present application will be amended as shown in the attached sheet.Note 1, Invention 419-
Claims (1)
速度S1.jS’/分)および部体供給速度52(1/
分)において微粒化せしめる5当り以下のや件を満足す
る輛化条件で微粒化を行うことを特徴とする微粉末の製
造方法。 a)81150(覇) 2.0)b〉0.01 (咽) 0.03<81/82<、0.35 但し a:液内供給口径(聾) b;液体供給管先端と気体供給管先端との距離[Claims] A material in a heated molten state is supplied to a two-fluid nozzle, and the liquid supply rate is S1. jS'/min) and part feeding speed 52 (1/min)
A method for producing fine powder, characterized in that the atomization is carried out under atomization conditions that satisfy the condition of 5 per cent or less for atomization. a) 81150 (master) 2.0) b>0.01 (throat) 0.03<81/82<, 0.35 However, a: Liquid supply port diameter (deaf) b: Liquid supply pipe tip and gas supply pipe Distance to tip
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57231425A JPH0616182B2 (en) | 1982-12-27 | 1982-12-27 | Method for producing fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57231425A JPH0616182B2 (en) | 1982-12-27 | 1982-12-27 | Method for producing fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59120263A true JPS59120263A (en) | 1984-07-11 |
JPH0616182B2 JPH0616182B2 (en) | 1994-03-02 |
Family
ID=16923371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57231425A Expired - Lifetime JPH0616182B2 (en) | 1982-12-27 | 1982-12-27 | Method for producing fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0616182B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269348A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method and apparatus for removing nitrogen oxides |
JPH05269351A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method for removing nitrogen oxides |
JPH05269349A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method and apparatus for removing nitrogen oxides |
EP1521127A2 (en) | 2003-10-01 | 2005-04-06 | Ricoh Company, Ltd. | Toner process of manufacturing toner, developer, toner container, process cartridge image forming apparatus and image forming process |
-
1982
- 1982-12-27 JP JP57231425A patent/JPH0616182B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269348A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method and apparatus for removing nitrogen oxides |
JPH05269351A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method for removing nitrogen oxides |
JPH05269349A (en) * | 1992-03-27 | 1993-10-19 | Tokyo Gas Co Ltd | Method and apparatus for removing nitrogen oxides |
EP1521127A2 (en) | 2003-10-01 | 2005-04-06 | Ricoh Company, Ltd. | Toner process of manufacturing toner, developer, toner container, process cartridge image forming apparatus and image forming process |
EP1521127A3 (en) * | 2003-10-01 | 2006-04-05 | Ricoh Company, Ltd. | Toner process of manufacturing toner, developer, toner container, process cartridge image forming apparatus and image forming process |
US7498114B2 (en) | 2003-10-01 | 2009-03-03 | Ricoh Company, Ltd. | Toner, process of manufacturing toner, developer, toner container, process cartridge, image forming apparatus, and image forming process |
Also Published As
Publication number | Publication date |
---|---|
JPH0616182B2 (en) | 1994-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3326848A (en) | Spray dried latex toners | |
US4599294A (en) | Particles obtained by atomization while applying voltage | |
JPH06500580A (en) | Powder coating composition and method for producing the same | |
JP4214318B2 (en) | Granulated powder paint and method for producing the same | |
JPS59120263A (en) | Manufacture of fine particles | |
KR101285210B1 (en) | Spherical composite composition and process for producing spherical composite composition | |
JPH0527851B2 (en) | ||
JP3274311B2 (en) | Powder coating manufacturing method | |
JP2002275272A (en) | Method for fine particulate colored resin production, fine particulate color resin and method for article coloration | |
EP1307518B1 (en) | Melt-sprayed curing agent powder and powder coating compositions made therefrom | |
JPS6154829B2 (en) | ||
JPH1180602A (en) | Powder slurry paint manufacturing method | |
JPH04118664A (en) | Production of magnetic toner | |
JPS58216259A (en) | Microcapsule toner | |
JP2005029651A (en) | Preparation method of powder coating | |
JPH04182660A (en) | Method for manufacturing toner for electrophotography | |
JPS63159480A (en) | Powder coating | |
JP2005148573A (en) | toner | |
JP2005024863A (en) | Toner manufacturing method and toner | |
JPS6016992B2 (en) | water-based dispersion paint | |
JP2003055609A (en) | Powder coating and manufacturing method of powder coating | |
JPS58173755A (en) | Toner | |
JPS59226024A (en) | Preparation of fine particles | |
JPH0547112B2 (en) | ||
JPS58216736A (en) | Microencapsulated particles |