JPS59120211A - Preparation of composite membrane - Google Patents
Preparation of composite membraneInfo
- Publication number
- JPS59120211A JPS59120211A JP57227480A JP22748082A JPS59120211A JP S59120211 A JPS59120211 A JP S59120211A JP 57227480 A JP57227480 A JP 57227480A JP 22748082 A JP22748082 A JP 22748082A JP S59120211 A JPS59120211 A JP S59120211A
- Authority
- JP
- Japan
- Prior art keywords
- support
- membrane
- polymer
- porous support
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 60
- 239000002131 composite material Substances 0.000 title claims description 29
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 229920000642 polymer Polymers 0.000 claims abstract description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 239000011148 porous material Substances 0.000 claims abstract description 14
- -1 polysiloxane Polymers 0.000 claims abstract description 11
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 10
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 9
- 230000035699 permeability Effects 0.000 claims description 15
- 239000010409 thin film Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims 1
- 239000000178 monomer Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 3
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract 2
- 230000008961 swelling Effects 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000010408 film Substances 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000007605 air drying Methods 0.000 description 2
- 238000000861 blow drying Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 1
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- IHZXTIBMKNSJCJ-UHFFFAOYSA-N 3-{[(4-{[4-(dimethylamino)phenyl](4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)methylidene}cyclohexa-2,5-dien-1-ylidene)(ethyl)azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 IHZXTIBMKNSJCJ-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000000352 supercritical drying Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/106—Membranes in the pores of a support, e.g. polymerized in the pores or voids
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は複合膜の製造方法、特にガス体の分離、とヤわ
け大気中からの酸素富化用とし1の複合膜の製造方法に
係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite membrane, particularly for the separation of gaseous bodies, especially for enriching oxygen from the atmosphere.
酸素濃度か25〜50%の酸素富化空気は、例えば冒炉
送風用、燃焼補助用、石油蛋白プロセス用、廃液処理用
、医療における呼吸用等に必賛とされる。酸素富化空気
を得る方法としては、従来高純度酸素を深冷液化蒸留法
にて製造し、次いで空気を混合しプロ的の酸素haを得
できた。Oxygen-enriched air with an oxygen concentration of 25 to 50% is indispensable for, for example, blowing air to open furnaces, assisting combustion, petroleum protein processing, waste liquid treatment, and breathing in medical care. Conventionally, as a method for obtaining oxygen-enriched air, high-purity oxygen was produced by cryogenic liquefaction distillation, and then air was mixed to obtain professional oxygen ha.
しかしかかる方法では、高純度酸素は一般に圧力容器に
入っているので、圧力容器の取シ扱いの危険性、或は混
合ガス嬢度を一定にする為の圧力調節器の必髪性、その
操作の煩雑性等種々の問題があった。However, in this method, since high-purity oxygen is generally contained in a pressure vessel, there are risks in handling the pressure vessel, or the necessity and operation of a pressure regulator to keep the mixed gas level constant. There were various problems such as complexity.
他方、25〜50%の酸素冨化窒気を得る方法として、
膜分阻法が提案さ扛ている。この方法は、直接酸素電化
空気が得られ、操作的に*j単であり、且経済的にも1
利である。On the other hand, as a method for obtaining 25 to 50% oxygen-enriched nitrogen,
A membrane blocking method has been proposed. This method directly obtains oxygen-electrified air, is operationally simple, and is economical.
It is advantageous.
このような目的に供される酸素n化膜としては、酸素の
選択分離性、透過速度共に優れていることは勿論、長期
使用にも朗える為の機械的強度等耐久性も兼ね備えてい
ることが要求される。Oxygen-containing membranes used for such purposes must not only have excellent oxygen selective separation and permeation rate, but also have mechanical strength and other durability to withstand long-term use. is required.
かかる要求を満たす為、通常は選択透過性を有する烏分
子素材ケ欠陥を生じない程度にできるたけ薄膜化し、補
強用の多孔質支持体に被接した複合膜、とじて実用に供
される。かがる複合膜化の方法としては従来種々検討し
、提案がなされている。例えば、希薄高分子溶液を水面
上に展開せしめた後、多孔質支持体上に付着せしめる所
謂水上キャスティング法(特開昭54−40868他)
、筒分子溶液を直接多孔質支持Rに上に流延或いは塗布
した後乾燥するコーティング法(特開昭54−1022
92他)等が知られている。しかしながら、前者の方法
におい又は、欠陥のない薄膜を形成させる事の困離さに
加えて、得られた薄膜を欠陥を生じせしめる事なく多孔
質支持体に付着させる事が著17<困難である。他方、
後者の方法においては、溶液と支持体との親和性或いは
支持体多孔中への溶液の浸み込み等の影響を受けて膜切
れ、膜厚の不均一性、膜厚の増大等の問題を生じ易い。In order to meet such requirements, a permselective material is usually made as thin as possible without causing defects, and a composite membrane is put into practical use by covering it with a porous support for reinforcement. Conventionally, various methods of forming a composite film by bending have been studied and proposals have been made. For example, the so-called water casting method in which a dilute polymer solution is spread on the water surface and then deposited on a porous support (Japanese Patent Application Laid-Open No. 40868/1986, etc.)
, a coating method in which a cylindrical molecule solution is directly cast or coated onto a porous support R and then dried (Japanese Patent Laid-Open No. 1022-1989)
92 et al.) are known. However, in addition to the difficulty in forming a defect-free thin film in the former method, it is also extremely difficult to attach the obtained thin film to a porous support without causing defects. On the other hand,
In the latter method, problems such as film breakage, non-uniformity of film thickness, and increase in film thickness may occur due to the influence of the affinity between the solution and the support or the penetration of the solution into the pores of the support. Easy to occur.
これらのI¥+1題を解決すべく幾つかの方法が更に提
案されているが、欠陥のない均一な薄膜複合膜を得るに
至っていない。Although several methods have been proposed to solve these I\+1 problems, it has not yet been possible to obtain a uniform thin film composite film free of defects.
本発明者らはかかる問題点を解決すべく種々研究、検討
した結果、特定の物理構造を有する多孔質支持膜を用い
、これ眠特定の液体を予め含浸させた後、高分子溶液を
塗布或いは流延し、乾燥することによって上記の問題を
解決でき、欠陥のない均一な膜厚の薄膜を有し/ヒ、カ
スの透過速度、分離能共に優れ、また機械的強度、耐久
性にも優れる複合膜が得られる事を見出した。The present inventors have conducted various studies and examinations to solve these problems, and have found that using a porous support membrane having a specific physical structure, impregnating it with a specific liquid in advance, and then applying a polymer solution or The above problems can be solved by casting and drying, and it has a thin film with a uniform thickness and no defects.It has excellent permeation rate and separation ability for dust and debris, and also has excellent mechanical strength and durability. It was discovered that a composite membrane could be obtained.
すなわち、多孔質支持体としてその断面を透過する酸素
ガスの透過速度か】o m’/m”・危・at)I]以
上、好ましくは50 m”7m”・左・atm以上であ
る事が肝要である。また、高分子薄膜を形成させる表面
の平均孔径が5〜500X、好捷しくは10〜300
X、更に好ましくは20〜100久であり、裏面は表面
よりも大きな孔径を有する所珀非対称構造を有する事が
必須である。これらの両特性を同時に満たす支持膜を用
いた場合に限り上記諸物件の発現が可能となるのである
。In other words, the permeation rate of oxygen gas passing through its cross section as a porous support should be at least [o m'/m''・danger・at)I], preferably at least 50 m"7m"・left・atm. It is also important that the average pore size of the surface on which the polymer thin film is formed is 5 to 500X, preferably 10 to 300X.
X, more preferably 20 to 100 days, and it is essential that the back surface has a slightly asymmetric structure with a larger pore diameter than the front surface. The above-mentioned properties can be achieved only when a support film that satisfies both of these properties at the same time is used.
通常の多孔質支持膜では一般に100X以下の微孔質と
なるに従い、ガスの透過速度が低下し、しば[2ば10
rr? /n?・丸・atm未満の透過性を示すにと
ど壕る事が知られている。なお、かかる微小孔の孔径を
正確に測定する事は困難であるが、適当な大きさの溶質
(例えばリゾチーム)の排除率等による評価、或いはバ
ブリング法等による評価が可能である。また、機械的強
度、耐久性に優れた複合膜を得る場合、一般によυ孔径
の小さな多孔質支持体を用いる事が有利となるが、この
場合、多孔質支持膜自体の透過抵抗が増大し、複合膜と
しての透過速度の減小、或いは、クヌーセン拡散の影響
を受けで複合膜としての分散能の減少等を招く。In a normal porous support membrane, the gas permeation rate decreases as the porosity becomes less than 100X.
rr? /n?・It is known that when the permeability is less than round/atm, it becomes unstable. Although it is difficult to accurately measure the diameter of such micropores, it is possible to evaluate by the exclusion rate of a solute of an appropriate size (for example, lysozyme), or by a bubbling method. Additionally, when obtaining a composite membrane with excellent mechanical strength and durability, it is generally advantageous to use a porous support with a smaller pore diameter, but in this case, the permeation resistance of the porous support membrane itself increases. This results in a decrease in the permeation rate as a composite membrane, or a decrease in dispersion ability as a composite membrane due to the influence of Knudsen diffusion.
従って多孔質支持膜自体の酸素透過速度が上記範囲に満
たない場合には、分離膜となる高分子薄膜との複合膜と
してのカス透過速度が不充分となる。また、平均孔径が
太きすぎる場合には、薄膜の破損、孔内−1の陥没叫を
生じ複合膜としての分離能や耐久性が不充分となる。逆
に孔径が小さすぎた場合にはクヌーセン拡散の影響が強
くなるので不適尚である。廿た、非対称構造を有さない
多孔質支持体を用いた場合には細孔部分の抵抗が犬きく
クヌーセン拡散の影響が強くなり易いので複合膜の分離
性能が低下する。さらにこの場合、多孔質支持体中に含
浸させる液体の量や支持体表面からの位置ケコントロー
ルし難いので高分子薄膜の膜厚の均一性、再現性が不光
分となる。Therefore, if the oxygen permeation rate of the porous support membrane itself is less than the above range, the dregs permeation rate as a composite membrane with the polymer thin film serving as the separation membrane will be insufficient. Furthermore, if the average pore diameter is too large, the thin membrane may be damaged and the pores may collapse, resulting in insufficient separation ability and durability as a composite membrane. On the other hand, if the pore size is too small, the influence of Knudsen diffusion will become stronger, which is inappropriate. Furthermore, when a porous support without an asymmetric structure is used, the resistance of the pores is high and the influence of Knudsen diffusion tends to be strong, resulting in a decrease in the separation performance of the composite membrane. Furthermore, in this case, it is difficult to control the amount of liquid impregnated into the porous support and its position from the surface of the support, so that the uniformity and reproducibility of the film thickness of the polymer thin film becomes opaque.
かかる多孔η支持膜の材質とし仁は筒分子材制であれば
特に制約はないが、上記物理構造を与えるという点、機
械的な強度、耐熱性ならひ(先爵]亀剤性等といった観
点からポリスルホンが好適にに用男能でめる。その他、
ボ甚アクリロニトリル、ポリエチレン、ポリアミド、ポ
リビニルアルコール、セルロース、ホ’) 7 ト5
フルオロエナレン、N−ビニル−2−ピロリドン、ポリ
プロピレン及びこnらの中の2抽以上の成分の共重合体
−あるいは混合物幻も例示される。There are no particular restrictions on the material of such a porous η support membrane as long as it is a cylindrical material, but it should be considered from the viewpoints of providing the above-mentioned physical structure, mechanical strength, heat resistance, properties, etc. Polysulfone is suitable for use in men.Others,
Acrylonitrile, polyethylene, polyamide, polyvinyl alcohol, cellulose, white) 7
Examples include fluoroenalene, N-vinyl-2-pyrrolidone, polypropylene, and copolymers or mixtures of two or more of these components.
捷/ε、薄膜形成高分子材料としては時に制約されない
が、カス分離機能を翁する素材は有益に使用可能である
。特に本発明による枚@膜(−1酸素冨化空気の製造に
有利に使用可能であり、その場合、薄膜形成高分子材料
としては酸素の選択透過性に優れた素材が望ましく、酸
素/窒素のガス透過係数の比は最小限1.8、好凍しく
(・よ2.0か必要である。かかる特性を有する高分子
素材として、ポリジメチルシロキサンや屋索含南ポリシ
ロキサン等のオルガノポリシロキサン、ポリカーボネー
ト、ポリ酢酸ビニル、酢酸セルロース、ポIJ(4−メ
チルペンテン−1〕等のビニル重合体、フルオロオレフ
ィンとオレフィンビニルエーテル、ビニルエステル等の
共重合体、例えは、クロロトリフル芽ロエチレン/イソ
ブチルビニルニーフル/ビニルビバレート共重合体やク
ロロトリフル刊ロエチレン/ビニルビバレート共重合体
的か例示δね、和に窒素含有ポリシロキサンはカス透過
速劇ならびに分離性能の面から好適である。蟹素含冶ホ
リシロキサンとしては
OHs CHa CHs
CH3CH3
が例示される。Although there are no restrictions on the thin film-forming polymer material, materials that have a waste separation function can be advantageously used. In particular, the membrane according to the present invention (-1) can be advantageously used in the production of oxygen-enriched air. In this case, the thin film-forming polymer material is preferably a material with excellent oxygen permselectivity; The ratio of gas permeability coefficients must be at least 1.8 and freeze-friendly (2.0. , polycarbonate, polyvinyl acetate, cellulose acetate, vinyl polymers such as POIJ (4-methylpentene-1), copolymers of fluoroolefins and olefin vinyl ethers, vinyl esters, etc., such as chlorotrifluroethylene/isobutyl vinyl Examples include Niful/vinyl vivalate copolymer and Chlorotrifle loethylene/vinyl vivalate copolymer, but nitrogen-containing polysiloxane is preferable from the viewpoint of sludge permeation rate and separation performance. An example of the non-containing polysiloxane is OHs CHa CHs CH3CH3.
これらの薄膜形成高分子素材を多孔質支持体の微細孔側
表面に付着せしめるにあたって、予じめ該高分子素材な
らびに多孔質支持膜を溶解ないし膨潤しない液体を多孔
質支持体の細孔内に含浸させておく事が必要である。こ
の場合、該液体は薄膜形成高分子を溶解し2ている溶媒
と相溶性を不さなくても良いが、これは本質的な要件で
はない。重要な事は、該液体が画商分子を溶解ないしは
膨潤しない事であって、該液体と上記溶媒とは相溶性を
有していても良い。かかる液体は薄膜形成高分子と多孔
質支持体となる高分子の種類によるが、一般的には水、
メタン−四等が好適に使用される。特に、多孔質支持膜
の製造工程との関連において水は好適に使用可能である
。Before attaching these thin film-forming polymeric materials to the surface of the porous support on the micropore side, a liquid that does not dissolve or swell the polymeric material and the porous support membrane is injected into the pores of the porous support in advance. It is necessary to impregnate it. In this case, the liquid need not be miscible with the solvent in which the thin film-forming polymer is dissolved, but this is not an essential requirement. What is important is that the liquid does not dissolve or swell the art dealer molecules, and the liquid and the solvent may be compatible. Such liquids depend on the types of polymers forming the thin film and the porous support, but generally include water,
Methane-quaternary and the like are preferably used. In particular, water can be suitably used in connection with the manufacturing process of porous support membranes.
さらに得られる複合膜の性能をコントロールする為に、
多孔質支持膜に含浸させる液体の量、より正確には、被
覆される膜と接する表面から液面までの深さを制御する
事が重要である。このような%:を一義的に定量化表現
する事は多孔質支持体の微細構造にも依存するので困難
でおるが、何らかの操作、処理において液体の含浸隼、
?コントロールする事が望ましい。In order to further control the performance of the resulting composite membrane,
It is important to control the amount of liquid with which the porous support membrane is impregnated, more precisely the depth from the surface in contact with the membrane being coated to the liquid level. It is difficult to uniquely quantify and express such a percentage because it depends on the microstructure of the porous support, but it is difficult to express it quantitatively because it depends on the microstructure of the porous support.
? It is desirable to control it.
かかる操作、処理としてはスポンジロール等を用いた多
孔質支持体表面のふきと9、ロール加圧、液体の蒸発等
の方法が採用できる。特にロール加圧による方法は好適
に採用可能である。As such operations and treatments, methods such as wiping the surface of the porous support using a sponge roll or the like, applying pressure with a roll, and evaporating the liquid can be adopted. In particular, a method using roll pressure can be suitably employed.
例えば、具体的には、甘ず、水やメタノール等の液体中
に多孔質支持体を浸漬し、その孔の内部にこれら液体を
充分に満たす。For example, specifically, a porous support is immersed in a liquid such as sweet potato, water, or methanol, and the pores are sufficiently filled with the liquid.
多孔質支持体が乾燥していたり、水やメタノールと相溶
性のない溶媒を含浸している場合に!d II次溶媒憤
換したり、超音波を照射して多孔質支持体中に水やメタ
ノール等の液体を充分含浸させることも必要に応じて行
われる。その後、多孔質支持体を液体中から引上げ、液
ぎれをした後o1〜5 Kq/crA−a 、好ましく
は1〜3Kr/(−d−Gのニップエア圧及び0.1〜
1om/m、好ましくは1〜5m/朋のロール表面速度
で駆動しているニップロールを用いて液体含浸多孔質支
持体をニップすることにより、多孔質支持体中の液体の
含浸itコントロールすることが出来る。When the porous support is dry or impregnated with a solvent that is incompatible with water or methanol! d II Step If necessary, the porous support may be sufficiently impregnated with a liquid such as water or methanol by evaporating the solvent or by irradiating the porous support with ultrasonic waves. After that, the porous support is pulled out of the liquid, and after the liquid is drained, the nip air pressure of o1 to 5 Kq/crA-a, preferably 1 to 3 Kr/(-dG and 0.1 to
It is possible to control the impregnation of the liquid in the porous support by nipping the liquid-impregnated porous support using nip rolls driven at a roll surface speed of 1 om/m, preferably 1-5 m/m. I can do it.
かくして得られた液体含浸膜上に高分子溶液を担持し、
複合膜化を行う方法としては、コーティング法、ディッ
ピング法等が例示されるが、特にこれらの方法に限定さ
れるものではない。A polymer solution is supported on the liquid-impregnated membrane thus obtained,
Examples of the method for forming a composite film include a coating method, a dipping method, etc., but the method is not particularly limited to these methods.
また、これらの溶液を付着せしめた多孔質支持体は、例
えば風乾、送風乾燥、減圧乾燥、凍結乾燥、臨界点乾燥
等の方法を適宜用いて乾燥されるが、好適には、風乾や
送風乾燥によシ乾燥される。In addition, the porous support to which these solutions are attached is dried using an appropriate method such as air drying, blow drying, reduced pressure drying, freeze drying, critical point drying, etc., but preferably air drying or blow drying is used. It is thoroughly dried.
かくして得られた複合膜は、架橋、グラフト等の二次処
理を施す事も可能である。その場合には予じめ架橋剤を
高分子溶液中に分散ないし溶解しておいてもよいし、一
旦薄膜を形成せしめた後、硬化剤を含む溶液を該薄膜表
面に塗布し、架橋、グラフト等を行うことも出来る。こ
のようにして得らnfc複合膜に、更に別の分離膜を積
層して所浦多層積層複合膜とすることも可能である。そ
の場合、上のせする層とじ1は多孔質支持体に直接担持
した膜よシ、史に選択性に優れた膜を用いることも好適
である。The thus obtained composite membrane can also be subjected to secondary treatments such as crosslinking and grafting. In that case, the crosslinking agent may be dispersed or dissolved in the polymer solution in advance, or once a thin film is formed, a solution containing a curing agent is applied to the surface of the thin film to perform crosslinking and grafting. You can also do the following. It is also possible to further laminate another separation membrane on the NFC composite membrane obtained in this manner to form a Tokoura multilayer laminated composite membrane. In this case, it is also preferable to use a membrane with excellent selectivity as the layer binding 1 to be placed, rather than a membrane supported directly on a porous support.
次に本発明を実施例によシ説明する。Next, the present invention will be explained using examples.
実施例 1
ポリジメチルシロキサンをトリクロロトリフルオロエタ
ンに溶解し、05%(W/V)の溶液を調製する。メタ
ノールを充分に含んだホリスルホン製非対称多孔質膜(
表面活性層ボア径線3oX、酸累透過速度Qo 2−1
00 yt?/m” −fyp ・atm裏打ち不織布
を含めた膜厚240μ)を二本ロール圧着機を用いて、
ニップエア圧1.7 Kr/i−G、ロール表面速度1
m/mでニップする。このメタノール含侵水すスルホン
製非対称多孔質膜表面に該シリコン溶液を製膜速度3m
/mixで2回コーティングし、これを乾燥して所定の
複合膜を得る。この複合膜のカス透過性を測定した結果
、酸紫透過速度Qox−1,2n?/’mF ・−/y
l −atm酸素/窒素分離係数αは2.0であった。Example 1 Polydimethylsiloxane is dissolved in trichlorotrifluoroethane to prepare a 0.5% (W/V) solution. Asymmetric porous membrane made of folysulfone containing sufficient methanol (
Surface active layer bore diameter line 3oX, cumulative acid permeation rate Qo 2-1
00yt? /m''-fyp・film thickness 240μ including atm lining non-woven fabric) using a two-roll crimping machine,
Nip air pressure 1.7 Kr/i-G, roll surface speed 1
Nip at m/m. The silicone solution was applied to the surface of the methanol-impregnated water sulfone asymmetric porous membrane at a film forming rate of 3 m.
/mix twice and dry it to obtain the desired composite membrane. As a result of measuring the scum permeability of this composite membrane, the acid violet permeation rate Qox-1,2n? /'mF ・-/y
The l-atm oxygen/nitrogen separation coefficient α was 2.0.
実施例2
シリコン#液として数平均沖合度約5000のなる組成
を有するアミン基含廟ホリオルガノシロキサンを用いる
事と、多孔質支持体に含浸する液体としてメタノールの
代りに水を用いる以外は実施例】に従って複合膜を作製
し、そのカス透過性を測定したところ、QO2””。O
(単位省略以下同じ〕α=2.0が得られた。Example 2 Example except that an amine group-containing polyorganosiloxane having a composition of approximately 5000 in number average degree of offsetting was used as the silicone liquid, and water was used instead of methanol as the liquid to be impregnated into the porous support. ] A composite membrane was prepared according to the method and its sludge permeability was measured, and it was found to be QO2''. O
(The same applies hereinafter where units are omitted) α=2.0 was obtained.
実施例3
シリコン溶液として数平均S:合度約5000のなる組
成を崩するアミン基含有ポリオルガノシロキサン51と
架橋剤β−(3,4−エホキシシクロヘキシル)エチル
トリメトキシシラン0.2F ’& トリクロロトリフ
ルオロエタン1tに溶解したも〜のを用いる以外は実施
例1に従って複合膜を作製し、その方ス透過性を測定し
たところQ、02=4.81α−2,0が得られた。Example 3 Amine group-containing polyorganosiloxane 51 that disrupts the composition of number average S: degree of about 5000 as a silicone solution and crosslinking agent β-(3,4-ethoxycyclohexyl)ethyltrimethoxysilane 0.2F'& trichloro A composite membrane was prepared according to Example 1 except that the membrane dissolved in 1 t of trifluoroethane was used, and its permeability was measured, and Q, 02 = 4.81α-2,0 was obtained.
実施例4
実施例1においてポリジメチルシロキサンの代りに実施
例2で用いたアミン暴言イ〕ポリオルカノシロキザンを
用い、更にメタノールを充分に宮んたポリスルホン製多
孔賀支持体のロール二ツ7”k4’lニッグエア圧3
f /’ crA −G 、ロール表面速度3 m /
’mrnとする以外は全て実施例1に従って複合膜を作
製し、そのカス透過性を測定したところ、Qo2−13
.α=21であった。Example 4 Two rolls of a polysulfone porous support made of polyolkanosiloxane, which was used in Example 2 instead of polydimethylsiloxane in Example 1, and further filled with methanol. k4'l nig air pressure 3
f/' crA -G, roll surface speed 3 m/
A composite membrane was prepared according to Example 1 except for 'mrn', and its sludge permeability was measured, and it was found that Qo2-13
.. α=21.
実施例5
実施例1においてポリジメチルシロキサンの代りに
なる組成を肩するクロロトリフルオロエチレン/イソブ
チルビニルエーテル/ビニルヒバレート三元共重合体(
テトラヒドロフラン中30℃における固イ」粘度0.4
6、酸素透過係数PO2−7x ]、 0−10al
(STP) −cm/’ad −S−cmHgα−48
)を用いる以外は全て実施例1に従って複合族を作製シ
フ、そのカス透過性を測建したところ、QO2−0,0
15、α=4.8であった。Example 5 In Example 1, a chlorotrifluoroethylene/isobutyl vinyl ether/vinyl hybarate terpolymer (
Solid viscosity at 30°C in tetrahydrofuran: 0.4
6. Oxygen permeability coefficient PO2-7x], 0-10al
(STP) -cm/'ad -S-cmHgα-48
) was prepared in accordance with Example 1, and its scum permeability was measured.
15, α=4.8.
実施例6
実施例3で作製したアミノ基含有架橋ポリオルノノノシ
ロキザン/ポリスルホンk 多孔質膜の板台膜表面に
δ
なる組成を有するクロロトリフルオロエチレン/ビニル
ビバレート二元共重合体(テトラヒドロフラン中30℃
における固有粘i1.45゜PO2−lXl0’、α=
4.6)を水上キャスティング法により超薄膜(膜厚4
00^)としたものを積層した。得られた複合膜のカス
透過性はQ02−0.6.α=4.1でめった。Example 6 Amino group-containing crosslinked polyornononosiloxane/polysulfone k produced in Example 3 A chlorotrifluoroethylene/vinyl vivalate binary copolymer (in tetrahydrofuran) having a composition of δ was applied to the surface of the porous membrane. 30℃
Intrinsic viscosity i1.45°PO2-lXl0', α=
4.6) into an ultra-thin film (thickness 4
00^) were laminated. The scum permeability of the obtained composite membrane was Q02-0.6. It was rare with α=4.1.
比較例1
実施例2においてポリスルボン製非対称多孔層膜の代り
に対称構造を不するセルムース製多孔質膜(シリボアフ
ィルターMFVS 、ホア径250 X)を用いる以外
は全て実施例2と同一操作で複合膜を作製し、そのガス
透過性を測定したところQo 2 ”’ 1.5 +α
−1,3であった。Comparative Example 1 Composite was carried out in the same manner as in Example 2, except that in Example 2, a cellumous porous membrane with an asymmetrical structure (Siliboa Filter MFVS, hore diameter 250X) was used instead of the asymmetric porous layer membrane made of polysulfone. When a membrane was prepared and its gas permeability was measured, it was found that Qo 2 ''' 1.5 +α
-1.3.
比較例2
実施例1においてメタノールを充分含んだポリスルホン
製非対称多孔質膜のロールニップ操作を省略し、その他
i1:実施例1に従って複合膜を作製し、そのガス透過
性を測定したところ、Qo2’=2.3〜55.α工1
.5〜2.0と場所により大きな違いが見られた。Comparative Example 2 In Example 1, the roll nip operation of the polysulfone asymmetric porous membrane containing sufficient methanol was omitted, and other i1: A composite membrane was prepared according to Example 1, and its gas permeability was measured, and Qo2'= 2.3-55. α engineering 1
.. There were large differences between 5 and 2.0 depending on the location.
比較例3
実施例2において微細孔@l+表面ボア径が30Xのポ
リスルホン製非対称多孔質膜の代りにボア径】000^
のニトロセルロース製対称構造多孔質膜(東洋口紙メン
ブランフィルタ−8/TM−s)を用いる他は全て実施
例3と同じ操作で複合膜を作製し2、そのカス透過性を
測定したところ、Qoz=88+α−1,2であった。Comparative Example 3 Instead of the polysulfone asymmetric porous membrane with fine pores @ l + surface bore diameter of 30X in Example 2, bore diameter]000^
A composite membrane was prepared in the same manner as in Example 3, except for using a nitrocellulose symmetrically structured porous membrane (Toyo Kouchi Membrane Filter-8/TM-s)2, and its scum permeability was measured. Qoz=88+α-1.2.
比軟例4
実施例2においでポリスルホン製非対称多孔質膜のQ+
12が5である以外は全て実施例2に従って複合膜を作
製し、そのカス透過性を測定し/とところ、Qo2=0
7+α=2.0であった。Ratio Example 4 Q+ of the asymmetric porous membrane made of polysulfone in Example 2
A composite membrane was prepared according to Example 2 except that 12 was 5, and its scum permeability was measured.
7+α=2.0.
比較例5
実施例2においてポリスルホン製非対称多孔質膜として
水を含浸したものを用いる代りに、乾燥したものケ用い
る以外は実施例2に従って複合膜を作製し、そのガス透
過性を測定した結果、Q o x ” ” rα−2,
0であった。Comparative Example 5 A composite membrane was prepared according to Example 2 except that instead of using a water-impregnated polysulfone asymmetric porous membrane in Example 2, a dried one was used, and the gas permeability of the membrane was measured. Q ox ” ” rα−2,
It was 0.
復代理人 内 1) 明 復代理人 萩 原 亮 − 79Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara - 79
Claims (1)
は塗布した後、乾燥する事によって多孔質支持体の表面
に高分子の薄膜を形成させるに際し、該多孔質支持体l
l;Ir面を透過する酸素力スの透過速度が10ぜ/m
″・左・atm以上で、高分子薄膜を形成させる表面の
平均孔径が5〜500久であり裏面の平均孔径がこれよ
り大きな非対称構造多孔質高分子支持体を用い、予じめ
該支持体に該薄膜形成高分子及び多孔質支持体を実質的
に膨潤もしくは溶解しない液体を含浸させておく事を特
徴とする複合膜の製造方法。 (2) 薄膜形成高分子が敏素/輩素の透過係数比1
.8以上を示す選択ガス透過性を有する1合体である請
求の範囲(1)の方法。 (8) 薄膜形成高分子が有機ホリシロキサンである
請求の範囲(1)又は(2)の方法。 (4)肩機ポリシロキサンは、審素含廟ポリシロキサン
である請求の範囲(8)の方法。 (5) 多孔質支持体の材質がポリスルホンである請
求の範囲(1)の方法。[Scope of Claims] (1) When forming a thin film of a polymer on the surface of a porous support by coating or coating the surface of a porous support with a polymer solution, the porous quality support l
l; The permeation rate of oxygen force passing through the Ir surface is 10 ze/m
''・Left・A porous polymer support with an asymmetric structure having an average pore diameter of 5 to 500 mm on the surface on which a polymer thin film is formed and a larger average pore diameter on the back surface is used at ATM or higher, and the support is prepared in advance. A method for producing a composite membrane, characterized in that the thin film-forming polymer and the porous support are impregnated with a liquid that does not substantially swell or dissolve the thin film-forming polymer. Transmission coefficient ratio 1
.. The method according to claim (1), wherein the method is a monomer having a selective gas permeability of 8 or more. (8) The method according to claim (1) or (2), wherein the thin film-forming polymer is an organic polysiloxane. (4) The method according to claim (8), wherein the polysiloxane is a siloxane-containing polysiloxane. (5) The method according to claim (1), wherein the material of the porous support is polysulfone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57227480A JPS59120211A (en) | 1982-12-28 | 1982-12-28 | Preparation of composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57227480A JPS59120211A (en) | 1982-12-28 | 1982-12-28 | Preparation of composite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59120211A true JPS59120211A (en) | 1984-07-11 |
Family
ID=16861536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57227480A Pending JPS59120211A (en) | 1982-12-28 | 1982-12-28 | Preparation of composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59120211A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61133102A (en) * | 1984-11-30 | 1986-06-20 | ミリポア・コーポレイシヨン | Porous film having hydrophilic surface and manufacture thereof |
JPS63296822A (en) * | 1987-05-28 | 1988-12-02 | Matsushita Electric Ind Co Ltd | Composite membrane for gas separation |
EP1021296A4 (en) * | 1997-08-29 | 2001-05-23 | Foster Miller Inc | Composite solid polymer electrolyte membranes |
EP1163949A2 (en) * | 2000-06-13 | 2001-12-19 | Praxair Technology, Inc. | Method of preparing composite gas separation membranes from perfluoropolymers |
WO2003049843A1 (en) * | 2001-12-10 | 2003-06-19 | Toray Industries, Inc. | Separation membrane |
JP2013533370A (en) * | 2010-08-13 | 2013-08-22 | エスケー イノベーション シーオー., エルティーディー. | Multilayer composite separation membrane with protected pores and method for producing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4915685A (en) * | 1972-06-05 | 1974-02-12 | ||
JPS4996976A (en) * | 1973-01-20 | 1974-09-13 | ||
JPS5316373A (en) * | 1976-07-30 | 1978-02-15 | Toyo Soda Mfg Co Ltd | Preparation of combined membrane |
JPS54135674A (en) * | 1978-04-12 | 1979-10-22 | Toyo Soda Mfg Co Ltd | Forming method for firmly combined high molecular thin membrane on porous board surface |
JPS58120206A (en) * | 1982-01-12 | 1983-07-18 | Fuji Photo Optical Co Ltd | Production of optical fiber bundle having flexibility |
JPS58180206A (en) * | 1982-04-15 | 1983-10-21 | Toray Ind Inc | Production of selective permeable membrane |
-
1982
- 1982-12-28 JP JP57227480A patent/JPS59120211A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4915685A (en) * | 1972-06-05 | 1974-02-12 | ||
JPS4996976A (en) * | 1973-01-20 | 1974-09-13 | ||
JPS5316373A (en) * | 1976-07-30 | 1978-02-15 | Toyo Soda Mfg Co Ltd | Preparation of combined membrane |
JPS54135674A (en) * | 1978-04-12 | 1979-10-22 | Toyo Soda Mfg Co Ltd | Forming method for firmly combined high molecular thin membrane on porous board surface |
JPS58120206A (en) * | 1982-01-12 | 1983-07-18 | Fuji Photo Optical Co Ltd | Production of optical fiber bundle having flexibility |
JPS58180206A (en) * | 1982-04-15 | 1983-10-21 | Toray Ind Inc | Production of selective permeable membrane |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61133102A (en) * | 1984-11-30 | 1986-06-20 | ミリポア・コーポレイシヨン | Porous film having hydrophilic surface and manufacture thereof |
JPH0475051B2 (en) * | 1984-11-30 | 1992-11-27 | ||
JPS63296822A (en) * | 1987-05-28 | 1988-12-02 | Matsushita Electric Ind Co Ltd | Composite membrane for gas separation |
EP1021296A4 (en) * | 1997-08-29 | 2001-05-23 | Foster Miller Inc | Composite solid polymer electrolyte membranes |
EP1163949A2 (en) * | 2000-06-13 | 2001-12-19 | Praxair Technology, Inc. | Method of preparing composite gas separation membranes from perfluoropolymers |
EP1163949A3 (en) * | 2000-06-13 | 2005-03-30 | Praxair Technology, Inc. | Method of preparing composite gas separation membranes from perfluoropolymers |
WO2003049843A1 (en) * | 2001-12-10 | 2003-06-19 | Toray Industries, Inc. | Separation membrane |
US7615105B2 (en) | 2001-12-10 | 2009-11-10 | Toray Industries, Inc. | Separation membrane |
JP2013533370A (en) * | 2010-08-13 | 2013-08-22 | エスケー イノベーション シーオー., エルティーディー. | Multilayer composite separation membrane with protected pores and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930003213B1 (en) | Permeable membrane for improved gas separation | |
US4938778A (en) | Composite hollow fiber type separation membranes processes for the preparation thereof and their use | |
US5522991A (en) | Cellulosic ultrafiltration membrane | |
JP2885712B2 (en) | Polymer solution for asymmetric single membrane and asymmetric single membrane using the same | |
KR940006394B1 (en) | Composite membrane and their manufacture and use | |
US4764320A (en) | Method for preparing semipermeable membrane compositions | |
US20030038081A1 (en) | High strength asymmetric cellulosic membrane | |
US4681605A (en) | Anisotropic membranes for gas separation | |
JPS6182810A (en) | Production of united assymmetric membrane for mutually separating gases | |
JPS63116723A (en) | Method of forming hollow fiber irregular gas separating film | |
JPS6351921A (en) | Multicomponent gas separating membrane | |
KR101035717B1 (en) | Asymmetric Porous Polyiserblockamide Membrane for Composite Membranes and Methods for Manufacturing the Same | |
GB2138702A (en) | Composite membrane for gas separation | |
JPS59120211A (en) | Preparation of composite membrane | |
JPH0312224A (en) | selectively permeable membrane | |
JPH05317664A (en) | Porous hollow fiber membrane | |
JP2688882B2 (en) | Method for producing composite membrane for gas separation | |
JP2539799B2 (en) | Method for manufacturing gas selective permeable membrane | |
CN1451465A (en) | Method for making composite membrane for separation of polymer fluid | |
US5320754A (en) | Pan composite membranes | |
JP2002126479A (en) | Porous membrane, gas separating membrane and method of manufacturing for the same | |
RU2655140C1 (en) | Fiberglass composite gas-filling membrane and the method of its production | |
JPS5857963B2 (en) | Manufacturing method of composite permeable membrane | |
JPH0256224A (en) | Production of laminated hollow fiber membrane | |
JPS6087807A (en) | Preparation of composite hollow yarn film |