[go: up one dir, main page]

JPS59119742A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59119742A
JPS59119742A JP57226514A JP22651482A JPS59119742A JP S59119742 A JPS59119742 A JP S59119742A JP 57226514 A JP57226514 A JP 57226514A JP 22651482 A JP22651482 A JP 22651482A JP S59119742 A JPS59119742 A JP S59119742A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
melting point
high melting
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57226514A
Other languages
Japanese (ja)
Other versions
JPH0418700B2 (en
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57226514A priority Critical patent/JPS59119742A/en
Publication of JPS59119742A publication Critical patent/JPS59119742A/en
Publication of JPH0418700B2 publication Critical patent/JPH0418700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • H01L23/5254Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、半導体の製造方法に関するものであり、より
詳しく述べるならば、半導体装置の断線状態の配線を通
電可能状態にする方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor, and more specifically, to a method for bringing disconnected wiring in a semiconductor device into a state in which electricity can be supplied. be.

(2)技術の背景 半導体装置、特に、半導体メモリーにおいては配線を断
線状態にする、すなわち、ヒユーズを溶断することによ
って情報を書き込んだり、不良ビットに代わる冗長回路
(予備)の行や列を使用している。これとは逆に断線状
態の配線を通な可能状態にすることによって同様に情報
の書き込み、予備行又は列の使用が可能である。また、
ダートアレイ(マスタスライス)集積回路では必要な回
路配線パターンを適切に形成することで構成している。
(2) Background of the technology Semiconductor devices, especially semiconductor memories, write information by breaking wiring, that is, by blowing fuses, or by using rows and columns of redundant circuits (spare) to replace defective bits. are doing. On the contrary, it is possible to write information and use spare rows or columns in the same way by making disconnected wires passable. Also,
Dirt array (master slice) integrated circuits are constructed by appropriately forming necessary circuit wiring patterns.

この場合には新らたに所定の配線を形成するわけである
が、断線状態の配線をあらかじめ全体に形成して所定配
線を通電状態にして必要な配線ノぐターンを得ることが
可能である。
In this case, a new predetermined wiring is formed, but it is possible to form the entire disconnected wiring in advance and make the predetermined wiring energized to obtain the necessary wiring turn. .

(3)従来技術と問題点 断線状態の配線全通電可能にする方法としては、例えば
ノンドーグ多結晶シリコンを介してその両端にドープ多
結晶シリコンを配した構造を形成し、これにレーデ光な
どのエネルギー線を局所的に照射し加熱することでドー
プ多結晶シリコンからノンドープ多結晶シリコンへの不
純物の再拡散を起こし、通電可能にする方法がある(M
inato etal。
(3) Conventional technology and problems A method to enable full conduction of current in disconnected wiring is, for example, to form a structure in which doped polycrystalline silicon is placed on both ends of non-doped polycrystalline silicon, and this is exposed to radar light, etc. There is a method of locally irradiating and heating energy rays to cause re-diffusion of impurities from doped polycrystalline silicon to non-doped polycrystalline silicon, making it possible to conduct electricity (M
inato etal.

l5SCC1981゜5ESSION 1.WAM 1
.2日立参照)。
l5SCC1981゜5ESSION 1. WAM 1
.. 2 Hitachi).

しかし、この方法は、導電体材料としてドープ多結晶シ
リコンのみしか用いることができないという制約があり
、配線抵抗を軽減する際rc問題を生ずる。
However, this method has a limitation in that only doped polycrystalline silicon can be used as the conductor material, which causes an rc problem when reducing wiring resistance.

(4)発明の目的 本発明の目的は、上述した問題のない断線状態の配線を
通電可能状態にする方法を提案することである。
(4) Purpose of the Invention The purpose of the present invention is to propose a method for bringing a disconnected wire into a state in which electricity can be supplied without the above-mentioned problems.

本発明の別の目的は、半導体装置の配砂工程に断線状態
から通電可状態するやり万全採用して半導体装置を製造
する方法を提案することである。
Another object of the present invention is to propose a method for manufacturing a semiconductor device in which the sand distribution process of the semiconductor device is completely adapted to change the wire from a disconnected state to an energized state.

(5)発明の構成 これらの目的が、半導体装置の配線形成工程が層にまた
がってノンドープの多結晶シリコン層を形成し、(ロ)
この多結晶シリコン層上で第1.第2の導電体層にまた
がる部分に対応する領域に高融点金属シリサイド層を形
成し、およびに)この高融点金属シリサイド層の光面を
酸化性雰囲気中でエネルギ線により加熱酸化して酸化物
層を形成しかつ高融点金属シリサイド層が第1.第2の
導電体層を接続する、ことを含んでなることを特徴とす
る半導体装置の製造方法によって達成嘔れる。
(5) Structure of the Invention These objects are aimed at forming a non-doped polycrystalline silicon layer across layers in the wiring formation process of a semiconductor device;
On this polycrystalline silicon layer, the first. A high melting point metal silicide layer is formed in a region corresponding to the portion spanning the second conductive layer, and a) the optical surface of the high melting point metal silicide layer is heated and oxidized with an energy beam in an oxidizing atmosphere to form an oxide. a first layer and a high melting point metal silicide layer. This is achieved by a method for manufacturing a semiconductor device, which is characterized in that it includes connecting a second conductor layer.

本発明は、シリコン層上に高融点シリサイド層を形成し
、このシリサイド層を熱酸化するとシリサイド層上に二
酸化シリコン(StO2)層が形成され同時にシリサイ
ド層下のシリコン層の厚さが減少して実質的にこの高融
点シリサイド層が沈下する現象を利用している。
In the present invention, a high melting point silicide layer is formed on a silicon layer, and when this silicide layer is thermally oxidized, a silicon dioxide (StO2) layer is formed on the silicide layer, and at the same time, the thickness of the silicon layer under the silicide layer is reduced. The phenomenon in which this high melting point silicide layer sinks is essentially utilized.

(6)  発明の実施態様 以下、添付図面を参照して本発明の実施態様例によって
本発明の詳細な説明する。
(6) Embodiments of the invention Hereinafter, the present invention will be described in detail by way of embodiments of the invention with reference to the accompanying drawings.

本発明に係る半導体製造装置の製造方法における配線形
成工程は次のようにして行なわれる。
The wiring forming step in the method of manufacturing a semiconductor manufacturing device according to the present invention is performed as follows.

第1図に示すように半導体基板(シリコンウェハ又はガ
リウム砒素ウェハ)1上に絶縁層(例えば、二酸化シリ
コン、窒化シリコン)2を熱酸化法、化学的気相成長法
(CVD法)などによって形成する。次に、絶縁層2上
にノンドープのl晶シリコン層3を減圧CVD法で厚さ
約200 nmに形成する。この多結晶シリコン層3の
一部を不純物(A8)のドーピングによって配線の導電
体層とするために、配線パターンを有するホトレノスト
層4f:多結晶シリコン層3上に形成しく第1図)、こ
のホトレノスト層4をマスクとしてイオン注入によって
不純物(A8 )を選択的に多結晶シリコン層3内に注
入する。この結果として、第2図に示すような導電体層
5Aおよび5Bが形成され、ノンドープの多結晶シリコ
ン層3が絶縁体部分として導体層5Aと5Bとの間に存
在することに々る。
As shown in FIG. 1, an insulating layer (for example, silicon dioxide, silicon nitride) 2 is formed on a semiconductor substrate (silicon wafer or gallium arsenide wafer) 1 by a thermal oxidation method, chemical vapor deposition method (CVD method), etc. do. Next, a non-doped l-crystalline silicon layer 3 with a thickness of about 200 nm is formed on the insulating layer 2 by low pressure CVD. In order to make a part of this polycrystalline silicon layer 3 a conductive layer for wiring by doping with impurities (A8), a photorenost layer 4f having a wiring pattern is formed on the polycrystalline silicon layer 3 (Fig. 1). Impurities (A8) are selectively implanted into the polycrystalline silicon layer 3 by ion implantation using the photorenost layer 4 as a mask. As a result, conductor layers 5A and 5B as shown in FIG. 2 are formed, and non-doped polycrystalline silicon layer 3 is present as an insulator between conductor layers 5A and 5B.

なお、この状態は平面図的には第3図かられかるように
導電体層5A、5Bを多結晶シリコン層3が取り囲んで
いる。したがって、導電体層5A。
In this state, the polycrystalline silicon layer 3 surrounds the conductive layers 5A and 5B as shown in FIG. 3 in a plan view. Therefore, the conductor layer 5A.

5Bは断線状態にある。5B is in a disconnected state.

ホトレジスト層4’z除去した後に、多結晶シリコン層
3および導体層5A、5Bの上にノンドープの薄い多結
晶シリコン層6を減圧CVD法によって厚さ20nmな
いし30nmで形成する(第2図)。
After removing the photoresist layer 4'z, a thin non-doped polycrystalline silicon layer 6 is formed on the polycrystalline silicon layer 3 and the conductor layers 5A and 5B to a thickness of 20 nm to 30 nm by low pressure CVD (FIG. 2).

この多結晶シリコン層6はノンドープであるので絶縁性
があるが、厚さが20 nmより薄いと耐電圧が問題と
々る。また、厚さが30nm以上となると後工程での酸
化に時間がかかる。
Since this polycrystalline silicon layer 6 is non-doped, it has an insulating property, but if the thickness is thinner than 20 nm, the withstand voltage becomes a problem. Furthermore, if the thickness is 30 nm or more, it will take time to oxidize in the post-process.

次に、高融点金属シリサイド層7をスパッタ法又はCV
D法によって薄い多結晶シリコン層6上で導電体層5A
と5Bとの間の多結晶シリコン3およびこれに隣接する
導電体層部分の対応領域に形成する。この状態を第2図
および第3図に示す。
Next, the high melting point metal silicide layer 7 is formed by sputtering or CV
Conductive layer 5A is formed on thin polycrystalline silicon layer 6 by method D.
and 5B in the corresponding region of the polycrystalline silicon 3 and the adjacent conductor layer portion. This state is shown in FIGS. 2 and 3.

高融点金属シリサイド層7をMo S i 2又は岡1
2で作り、そして第2図および第3図に示した形状にす
るには、ホトレジストを利用したりフトオフ法で形成す
るのが好ましい。なお、高融点金属シリサイド層7の厚
さは薄いと抵抗値が大きいので200nm以上が好まし
い。
The high melting point metal silicide layer 7 is made of MoSi 2 or Oka 1
2 and to form the shape shown in FIGS. 2 and 3, it is preferable to use photoresist or to form by a foot-off method. Note that the thickness of the high melting point metal silicide layer 7 is preferably 200 nm or more, since the resistance value is large if it is thin.

次に、酸化性雰囲気中で、すなわち、酸素を流している
状態で、高融点金属シリサイド層7およびその近傍にエ
ネルギ線(例えば、アルゴンレーザ又はYaGレーザ)
8を照射して加熱する。この結果として、高融点シリサ
イド層7が酸化されて表面に二酸化珪素層9が形成され
(第4図)、このとき高融点金属シリサイド層中のシリ
コンが酸化されて抜けて下の薄い多結晶シリコ/層のシ
リコンを吸収するためにこのシリサイド層7の下の薄い
多結晶シリコン層6がなくなる。このようにして、第4
図に示すように高融点金属シリサイド層7が導電体層5
Aおよび5Bと接触状態になり、導′α体層5Aと5B
とが電気的に接続される。薄い多結晶シリコン層6でも
レーデの当ったところは酸化される(第4図)。多数の
高融点金属シリサイド層のうち必要なところだけをエネ
ルギ線照射すればそこが断線状態から通電可能状態とな
り所定の回路構成ができる。
Next, in an oxidizing atmosphere, that is, in a state where oxygen is flowing, an energy beam (for example, argon laser or YaG laser) is applied to the high melting point metal silicide layer 7 and its vicinity.
8 and heat it. As a result, the high melting point silicide layer 7 is oxidized and a silicon dioxide layer 9 is formed on the surface (FIG. 4), and at this time, the silicon in the high melting point metal silicide layer is oxidized and comes out, forming the thin polycrystalline silicon layer below. The thin polycrystalline silicon layer 6 under this silicide layer 7 disappears in order to absorb the silicon of the / layer. In this way, the fourth
As shown in the figure, the high melting point metal silicide layer 7 is connected to the conductor layer 5.
A and 5B are in contact with each other, and the α-conducting layers 5A and 5B are in contact with each other.
are electrically connected. Even the thin polycrystalline silicon layer 6 is oxidized where it is hit by the radar (FIG. 4). By irradiating only the necessary portions of the large number of high-melting point metal silicide layers with energy beams, those portions change from a disconnected state to a state in which current can be applied, and a predetermined circuit configuration is completed.

上述の実施態様例では、半導体基板を使用しているがサ
ファイヤ、ガラスを基板とすることができ、この場合に
は絶縁層を形成する必要がない・さらに、金属を基板と
することも可能であり、このときは絶縁層が必要である
。導電体層をドープされた多結晶シリコンの代シにMo
又はWの高融点金属で作ってもよく、絶縁体部分をノン
ドープの多結晶シリコンの代シにSiO2又はS i 
、N4 で作ってもよい。これらの材料を利用するとき
には、上述した形成工程とは異なる適正な工程でもって
形成する必要がある。
In the above embodiment example, a semiconductor substrate is used, but sapphire or glass can be used as the substrate, and in this case there is no need to form an insulating layer.Furthermore, it is also possible to use metal as the substrate. Yes, in this case an insulating layer is required. Mo is used instead of doped polycrystalline silicon for the conductor layer.
Alternatively, it may be made of a high melting point metal such as W, and the insulator portion may be made of SiO2 or Si in place of non-doped polycrystalline silicon.
, N4 may be used. When using these materials, it is necessary to form them using an appropriate process different from the above-mentioned forming process.

実施例 シリコンウェハ1を熱酸化することによってリコ/層3
(厚さ200nm)を形成した。ホトレジスト層4をマ
スクとしてA8イオンをイオン注入してドーグされた多
結晶シリコンの導電体層5A。
Example silicon wafer 1 is thermally oxidized to form a silicon wafer 3
(thickness: 200 nm). A conductor layer 5A of polycrystalline silicon doped by ion-implanting A8 ions using the photoresist layer 4 as a mask.

5Bを形成した(イオン注入エネルギ150keV。5B (ion implantation energy: 150 keV).

ドーズ量5 X 10 ’ ”7cm2)。ホトレジス
ト層4を除去した後で、全面に薄いノンドープの多結晶
シリコン層6(厚さ20nm)を減圧CVD法によって
形成した。この薄い多結晶シリコン層6上にホトレゾス
トを塗布し露光現像してホトレジスト層(図示せず)を
形成し、MOターダソトとStメタ−ットの2つを同時
にスパッタしてMo S 12の高融点シリサイド層を
全面に形成し、そしてホトレジスト層とその上のMo5
t層とを除去して導電体層5Aと5Bとの間の上方にλ
10S1層7を残す。シリコンウェハ1を450℃に保
持して、このMo 812層7に酸素雰囲気下でアルゴ
ンレーデ8(5W、1秒間)を照射した。Mo5t層7
上に8102層9(厚さ40nm)が形成され、一方、
MO8i2層7下では薄い多結晶シリコン層6がなくな
ってMo8層7が導電体層5Aと5Bとに接触してこれ
ら導電体5A、5Bを接続した。
After removing the photoresist layer 4, a thin non-doped polycrystalline silicon layer 6 (20 nm thick) was formed on the entire surface by low pressure CVD. A photoresist layer (not shown) is formed by applying a photoresist to the surface and developing it to form a photoresist layer (not shown), and a high melting point silicide layer of MoS 12 is formed on the entire surface by sputtering two types of MO tardasotho and Stmetat at the same time. and a photoresist layer and Mo5 on it
t layer is removed and a layer λ is formed above between the conductor layers 5A and 5B
10S1 layer 7 is left. The silicon wafer 1 was held at 450° C., and the Mo 812 layer 7 was irradiated with argon radar 8 (5 W, 1 second) in an oxygen atmosphere. Mo5t layer 7
An 8102 layer 9 (40 nm thick) is formed on top, while
Under the MO8i2 layer 7, the thin polycrystalline silicon layer 6 was removed, and the Mo8 layer 7 came into contact with the conductor layers 5A and 5B to connect these conductors 5A and 5B.

(7)発明の効果 本発明に係る製造方法によってヒユーズ切断型ROMあ
るいは冗畏回路のちるRAMでのヒユーズに代るものを
形成することができる。また、ゲートアレイ上に通常の
配線/’Pター/形成の工程(マスクの製作、A/=デ
ヂ、フォトリン工程)なしに、同様の機能を達成できる
(7) Effects of the Invention By the manufacturing method according to the present invention, it is possible to form an alternative to a fuse in a fuse-cut type ROM or a RAM with a redundant circuit. Further, the same function can be achieved without the usual wiring/'Pter/forming process (mask fabrication, A/=digital, photorin process) on the gate array.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第4図は、本発明に係る半導体装
置の製造方法での配線形成工程を説明する半導体装置の
概略部分断面図であり、第3図は第2図の平面図である
。 1・・・基板、2・・・絶縁層、3・・・ノンドーグの
多結晶シリコン層、5A、5B・・・導電体層、6・・
・ノンドープの薄い多結晶シリコン層、7・・・高融点
金属シリサイド層、8・・・エネルギ線、9・・・酸化
物層。 特許出願人 富士通株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士  内 1)幸 男 弁理士  山 口 昭 之
1, 2, and 4 are schematic partial sectional views of a semiconductor device illustrating a wiring formation process in a method for manufacturing a semiconductor device according to the present invention, and FIG. 3 is a plan view of FIG. 2. It is. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Insulating layer, 3...Non-doped polycrystalline silicon layer, 5A, 5B...Conductor layer, 6...
- Non-doped thin polycrystalline silicon layer, 7... High melting point metal silicide layer, 8... Energy line, 9... Oxide layer. Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、半導体装置の配線形成工程が下記(イ)〜に):(
イ)電気的に絶縁された第11第2の導電体層を基体上
に形成し、(イ)該第1.第2の導電体層にまたがって
ノンドーグの多結晶シリコ/層を形成し、秒)この多結
晶シリコン層上で前記第1.第2の導電体層にまたがる
部分に対応する領域に高融点金属シリサイド層を形成し
、およびに)この高融点金属シリサイド層の表面を酸化
性雰囲気中でエネルヤ線により加熱酸化して酸化物層全
形成しかつ前記=高融点金属シリサイド層が前記第1.
第2の導電体層を接続する、ことを含んでなることを特
徴とする半導体装置の製造方法。
1. The wiring formation process of a semiconductor device is as follows (a) ~): (
b) forming an electrically insulated eleventh second conductor layer on the substrate; A non-doped polycrystalline silicon layer is formed over the second conductor layer, and the first conductor layer is formed on the polycrystalline silicon layer. A high melting point metal silicide layer is formed in a region corresponding to the portion spanning the second conductive layer, and a) the surface of this high melting point metal silicide layer is heated and oxidized with an energy beam in an oxidizing atmosphere to form an oxide layer. The high melting point metal silicide layer is completely formed and the high melting point metal silicide layer is formed in the first.
A method of manufacturing a semiconductor device, comprising: connecting a second conductor layer.
JP57226514A 1982-12-25 1982-12-25 Manufacture of semiconductor device Granted JPS59119742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226514A JPS59119742A (en) 1982-12-25 1982-12-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226514A JPS59119742A (en) 1982-12-25 1982-12-25 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59119742A true JPS59119742A (en) 1984-07-11
JPH0418700B2 JPH0418700B2 (en) 1992-03-27

Family

ID=16846315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226514A Granted JPS59119742A (en) 1982-12-25 1982-12-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59119742A (en)

Also Published As

Publication number Publication date
JPH0418700B2 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
US6410367B2 (en) Fuse for use in a semiconductor device, and semiconductor devices including the fuse
US8278155B2 (en) Reprogrammable fuse structure and method
US4853758A (en) Laser-blown links
JP3095811B2 (en) Electrically programmable non-fusible element, semiconductor device including the element, and method of forming the element
US4617723A (en) Method and device for creating an activatable conducting link in a semiconductor device
US6335228B1 (en) Method for making an anti-fuse
US4960729A (en) Integrated circuits and a method for manufacture thereof
JPH04226067A (en) Formation method of antifuse element provided with substantially reduced capacitance
TW200941690A (en) Electrical fuse structure
US3898603A (en) Integrated circuit wafers containing links that are electrically programmable without joule-heating melting, and methods of making and programming the same
EP0445317B1 (en) Semiconductor device with a fusible link and method of making a fusible link on a semiconductor substrate
CN1291791A (en) Metal wire fused wire structure possessing cavity body
US6597013B2 (en) Low current blow trim fuse
JP4621319B2 (en) Fuse structure and manufacturing method thereof
US7425472B2 (en) Semiconductor fuses and semiconductor devices containing the same
JPS59119742A (en) Manufacture of semiconductor device
JPS59154038A (en) semiconductor equipment
US6210995B1 (en) Method for manufacturing fusible links in a semiconductor device
KR100508889B1 (en) Method for producing an antifuse and antifuse for allowing selective electrical connection of neighbouring conductive zones
JP2719751B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0344062A (en) Integrated circuit having improved soluble link
JPS60261154A (en) Method for manufacturing semiconductor integrated circuit device
US20070190751A1 (en) Semiconductor fuses and methods for fabricating and programming the same
JPS6084838A (en) Manufacture of semiconductor device
JPS5814567A (en) Semiconductor device and manufacture thereof