JPS59119096A - multistage compressor - Google Patents
multistage compressorInfo
- Publication number
- JPS59119096A JPS59119096A JP22608482A JP22608482A JPS59119096A JP S59119096 A JPS59119096 A JP S59119096A JP 22608482 A JP22608482 A JP 22608482A JP 22608482 A JP22608482 A JP 22608482A JP S59119096 A JPS59119096 A JP S59119096A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- compressor
- flow rate
- point
- efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0253—Surge control by throttling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は初段圧縮機の入口側に流量制御装置を設けると
共に、各段の圧縮機間に中間冷却器をそれぞれ設けてな
る多段圧縮機に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multi-stage compressor in which a flow rate control device is provided on the inlet side of a first-stage compressor, and an intercooler is provided between each stage of compressors. It is.
各段の間に中間冷却器を設けた圧縮機は、段の吸込温度
を下げるととKよシ軸動力を低減させることを目的とし
、高い効率を要求される場合に使用されておシ、シかも
一点で用いられることは少なく、仕様点よりも小さい流
量で運転される場合が多いため、この減量運転における
効率が重視されることは周知である。A compressor with an intercooler installed between each stage is used when high efficiency is required, with the purpose of lowering the suction temperature of the stage and reducing the shaft power. It is well known that efficiency in this reduction operation is important because it is rarely used at one point and is often operated at a flow rate smaller than the specified point.
上記減量運転を行う手段としては、初段が遠心型および
軸流型の場合には、入ロペーンコントロールおよび静翼
可変ピンチがそれぞれ一般に使用されている。その減量
特性は第1図および第2図に示すとおシで、第1図は横
軸に流量を、縦軸に圧力をそれぞれとって図示したもの
である。第1図の曲線A、Bは仕様状態および任意の減
量運転の状態をそれぞれ表わし、直線Sはプラントの抵
抗ライン(圧縮機の作動ライン)を表わす。実際に、圧
縮機は前記曲線A、Bと直線Bとの交点A、、B、で運
転される。As means for performing the above-mentioned reduction operation, when the first stage is a centrifugal type or an axial flow type, an entry rope control and a stator vane variable pinch are generally used, respectively. The weight loss characteristics are shown in FIGS. 1 and 2, in which the horizontal axis represents the flow rate and the vertical axis represents the pressure. Curves A and B in FIG. 1 represent the specification state and any reduced operation state, respectively, and the straight line S represents the plant resistance line (compressor operating line). In fact, the compressor is operated at the intersections A, B, of the curves A, B and the straight line B.
第2図は横軸に流量を、縦軸に効率をそれぞれとって図
示したもので、曲線C,Dは第1図の曲線A、Bにそれ
ぞれ対応するものであり、また曲線Eは第1図の抵抗ラ
インS上の効率を結んだものである。Figure 2 shows flow rate on the horizontal axis and efficiency on the vertical axis, with curves C and D corresponding to curves A and B in Figure 1, respectively, and curve E representing the first curve. It connects the efficiencies on the resistance line S in the figure.
通常、設計点として前記曲線Aと抵抗ラインSとの交点
Aoが選定され、この点における効率が最高となり、減
量するに伴って効率は低下する。Usually, the intersection point Ao of the curve A and the resistance line S is selected as the design point, and the efficiency at this point is the highest, and the efficiency decreases as the weight is reduced.
この減量時における効率の低下を第3図について説明す
るに、同図は2段以降の段の特性を示したものである。This decrease in efficiency during weight reduction will be explained with reference to FIG. 3, which shows the characteristics of the second and subsequent stages.
すなわち、曲線F、Gは段の流量、効率特性カーブを示
し、点A 21 A 3は第1図の曲線Aと抵抗曲線S
との交点Aoに対応し、また点B2 。That is, curves F and G indicate the flow rate and efficiency characteristic curves of the stage, and point A21 A3 corresponds to curve A and resistance curve S in Fig. 1.
It corresponds to the intersection Ao with the point Ao, and also the point B2.
B3は第1図の曲線Bと抵抗曲線Sとの交点B。B3 is the intersection B of the curve B and the resistance curve S in FIG.
に対応するものである。第3図における段の設計点はA
2で、この点A2における効率が最高であシ、この点A
2よシ流量が増加し、または減少しても効率は低下する
。This corresponds to The design point of the stage in Figure 3 is A
2, the efficiency at this point A2 is the highest, and this point A
2. Efficiency decreases as the flow rate increases or decreases.
第4図は初段の特性を示すもので、同図の曲線Fl、F
2およびG+ 、G2は流量、効率特性カーブを示す。Figure 4 shows the characteristics of the first stage, and the curves Fl, F
2 and G+, G2 indicate flow rate and efficiency characteristic curves.
しかも前記曲線F+、G1は第1図の曲線Aに相当する
仕様状態における初段特性を、曲線F2.G2は第1図
の曲線Bに相当する減量運転状態における初段の特性を
それぞれ示している。前記曲線Fl上の設計点であるA
4点では、効率が最大であり、また減量時にはA5点よ
シもB5点の方が効率は低下する。Moreover, the curves F+ and G1 represent the initial stage characteristics in the specification state corresponding to the curve A in FIG. 1, and the curve F2. G2 shows the characteristics of the first stage in the reduced operating state corresponding to curve B in FIG. 1, respectively. A is the design point on the curve Fl
At point 4, the efficiency is maximum, and at the time of weight loss, the efficiency decreases at point B5 than at point A5.
上述したように従来の多段圧縮6機では、減量運転にお
いて各段の効率が低下するから、全体の効率は低下する
。また減量運転の際にも、同量の冷却水を中間冷却器へ
供給しているため、特に水が貴重な地域で使用する場合
には、運転コストの見地から不利である欠点がある。As described above, in the conventional six-stage multi-stage compressor, the efficiency of each stage decreases during the reduction operation, so the overall efficiency decreases. Furthermore, even during reduced operation, the same amount of cooling water is supplied to the intercooler, which has the disadvantage of being disadvantageous from the viewpoint of operating costs, especially when used in areas where water is at a premium.
本発明は上記にかんがみ各段の圧縮機を、できる限シ高
効率点で作動させて全体の効率を向上させると共に、減
量運転時における冷却水量を節減することを目的とする
ものである。In view of the above, it is an object of the present invention to operate the compressors of each stage at the highest efficiency point possible to improve the overall efficiency and to reduce the amount of cooling water during reduced operation.
本発明は上記目的を達成するために、初段圧縮機の入口
側に容量制御装置を設けると共に、各段の圧縮機間に中
間冷却器をそれぞれ設けてなる多段圧縮機において、第
2段以降の任意の圧縮機の吸込側に温度センサを設け、
この温度センサを演算器を介して前記容量制御装置に接
続すると共に、その演算器によシ前記各中間冷却器の冷
却水の入口側または出口側に設けた流量調節弁を操作す
るようにしたことを特徴とするものである。In order to achieve the above object, the present invention provides a multistage compressor in which a capacity control device is provided on the inlet side of the first stage compressor, and an intercooler is provided between the compressors in each stage. Install a temperature sensor on the suction side of any compressor,
The temperature sensor is connected to the capacity control device via a computing unit, and the computing unit operates a flow rate control valve provided at the inlet or outlet side of the cooling water of each intercooler. It is characterized by this.
以下本発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第5図において、1〜3は初段、第2段および第3段の
それぞれの圧縮機、4,5は初段圧縮機との間にそれぞ
れ設置された中間冷却器で、これらの中間冷却器4,5
には、冷却水の循環する配管9,10がそれぞれ貫通し
ている。6は初段圧縮機1の吸込側に設けられた流量制
御装置で、この流量制御装置6には作動ガス吸入管7が
連結されている。前記流量制御装置6としては、圧縮機
1が遠心型の場合には入口ベーンコントロールが用いら
れるが、圧縮機1が軸流型の場合には静翼可変機構が用
いられる。In FIG. 5, 1 to 3 are compressors of the first stage, second stage, and third stage, and 4 and 5 are intercoolers installed between each of the first stage compressors. ,5
Pipes 9 and 10 through which cooling water circulates penetrate through the pipes 9 and 10, respectively. Reference numeral 6 denotes a flow rate control device provided on the suction side of the first stage compressor 1, and a working gas suction pipe 7 is connected to this flow rate control device 6. As the flow rate control device 6, an inlet vane control is used when the compressor 1 is a centrifugal type, but a stator vane variable mechanism is used when the compressor 1 is an axial flow type.
8は最終段(図では3段)の圧縮機3の吐出側に接続さ
れた吐出管、11は中間冷却器4と第2段圧縮機2との
間の糸路に付設された温度センサ、12は前記流量制御
装置6、温度センサ11および電磁弁13.14に接続
された演算器で、その電磁弁13.14は中間冷却器4
,5をそれぞれ貫通する冷却水管9,1oの入口側(ま
たは出口側)にそれぞれ設けられている。8 is a discharge pipe connected to the discharge side of the compressor 3 in the final stage (3rd stage in the figure); 11 is a temperature sensor attached to the thread path between the intercooler 4 and the second stage compressor 2; 12 is a computing unit connected to the flow rate control device 6, temperature sensor 11 and solenoid valve 13.14, and the solenoid valve 13.14 is connected to the intercooler 4.
, 5, respectively, are provided on the inlet side (or outlet side) of the cooling water pipes 9, 1o that penetrate through the tubes 9, 5, respectively.
本実施例は上記のような構成からなり、作動ガスは吸入
管7および流量制御装置6を経て初段圧縮機1に流入し
て昇圧され、ついで中間冷却器4を経て第2段圧縮機2
に流入してさらに昇圧された後、中間冷却器5を経て最
終段圧縮機3に流入してさらに昇圧され、その後に吐出
管8よシ所定部署へ給送される。The present embodiment has the above-mentioned configuration, in which the working gas flows into the first stage compressor 1 through the suction pipe 7 and the flow rate control device 6, is pressurized, and then passes through the intercooler 4 to the second stage compressor 2.
After passing through the intercooler 5, the air flows into the final stage compressor 3, where the pressure is further increased, and is then fed to a predetermined section through the discharge pipe 8.
この場合、各段の圧縮機の特性が判明していれば、減量
運転において2段以降の圧縮機の吸込温度を何度に設定
すればよいかを計算にょシ求めることが可能である。こ
れらの関係、すなわち2段吸込温度と流量制御装置の開
度との関係は第6図に示すとおりである。In this case, if the characteristics of the compressor in each stage are known, it is possible to calculate to what temperature the suction temperature of the compressor in the second and subsequent stages should be set during the reduction operation. The relationship between these, ie, the relationship between the second-stage suction temperature and the opening degree of the flow rate control device, is as shown in FIG.
前述した本実施例(第5図)では、演算器12に第6図
の関係を設定しておき、流量制御袋1置6の開度信号か
ら第2段圧縮機2の吸込温度を求め、との吸込温度にな
るように電磁弁13を介して中間冷却器4内の冷却管9
を流通する冷却水量を調節する。このような動作は中間
冷却器5および第3段圧縮機3においても同様に行われ
る。In the above-mentioned embodiment (FIG. 5), the relationship shown in FIG. 6 is set in the calculator 12, and the suction temperature of the second stage compressor 2 is determined from the opening signal of the flow control bag 1 and 6. The cooling pipe 9 in the intercooler 4 is connected via the solenoid valve 13 to the suction temperature of
Adjusts the amount of cooling water flowing through. Such operations are similarly performed in the intercooler 5 and the third stage compressor 3.
すなわち演算器12において、温度センサ11からの信
号値と目標温度との差を求め、この差が正の値であると
きには電磁弁13.14を開き、前記差が負の値である
ときには電磁弁13.14を閉じる。このような演算器
12における一連の処理手順をブロック図で示すと第9
図のようになる。この場合、第2段圧縮機の実際の吸込
温度Tsを目標吸込温度Tsに一致させることは困難で
あるので、ある範囲内に入ったならば制御終了とする。That is, the computing unit 12 calculates the difference between the signal value from the temperature sensor 11 and the target temperature, and when this difference is a positive value, the solenoid valves 13 and 14 are opened, and when the difference is a negative value, the solenoid valves 13 and 14 are opened. Close 13.14. A series of processing procedures in the arithmetic unit 12 as described above is shown in block diagram No. 9.
It will look like the figure. In this case, since it is difficult to make the actual suction temperature Ts of the second stage compressor match the target suction temperature Ts, the control is terminated once the actual suction temperature Ts falls within a certain range.
本実施例における第2段圧縮機および第3段圧縮機2.
3の特性は第7図に示すとおシであシ、同図のF、G、
、へ2 + As t B2 + B3などの符号は第
3図の符号と同一であるから説明を省略する。Second stage compressor and third stage compressor in this embodiment 2.
The characteristics of 3 are shown in Figure 7.
, H2 + As t B2 + B3, etc. are the same as those in FIG. 3, so their explanation will be omitted.
すなわち曲線F、Gは第5段および第3段の各圧縮機の
各特性をそれぞれ示しておシ、圧縮機全体の作動点が同
一であったとしても各段の圧力上昇の配分は変化するた
め、第2段および第3段の各圧縮機の性能も点B2から
点B′へ移行する。In other words, curves F and G show the characteristics of the 5th and 3rd stage compressors, respectively, and even if the operating point of the entire compressor is the same, the distribution of pressure rise in each stage will change. Therefore, the performance of each of the second and third stage compressors also shifts from point B2 to point B'.
このような状態になっても圧縮機の流量および吐出量は
変化せず、第2段および第3段の各圧縮機の変化分は初
段圧縮機の容量制御でカバーすることができる。Even in such a state, the flow rate and discharge amount of the compressor do not change, and the changes in the second and third stage compressors can be covered by capacity control of the first stage compressor.
いま、冷却水量が減少すると吸込温度は上昇[1,。Now, when the amount of cooling water decreases, the suction temperature increases [1,.
吸込流量(体積流量)が増加するので、第2段および第
3段の各圧縮機の作動点はB2から82′およびB3か
ら83′にそれぞれ移行するから、第3段圧縮機の効率
も作動点B3′で示すように作動点B3よシも高くなる
。このように作動点が移動すると、作動点B2 + B
3/の比較から明らかなように、第2段および第3段の
各圧縮機における圧力が不足する。したがって、最終吐
出圧を同一にするためには、初段圧縮機の吐出圧力を高
めねばならない。Since the suction flow rate (volume flow rate) increases, the operating points of the second and third stage compressors shift from B2 to 82' and from B3 to 83', respectively, so the efficiency of the third stage compressor also increases. As shown by point B3', the operating point B3 is also higher. When the operating point moves in this way, the operating point B2 + B
As is clear from the comparison of 3/, the pressure in each of the second and third stage compressors is insufficient. Therefore, in order to make the final discharge pressure the same, the discharge pressure of the first stage compressor must be increased.
そこで第8図に示すように、初段圧縮機の作動を示す特
性曲線はF2からF2′へ移行し、作動点もB4からB
4/へ移行する。このとき、効率特性曲線よシ、初段圧
縮機の効率もB5がらB 5/へ僅ずかに上昇すること
が明らかである。Therefore, as shown in Fig. 8, the characteristic curve showing the operation of the first stage compressor shifts from F2 to F2', and the operating point also changes from B4 to B.
Move to 4/. At this time, it is clear from the efficiency characteristic curve that the efficiency of the first stage compressor also increases slightly from B5 to B5/.
上述したように本実施例によれば、減量運転時に冷却水
量を減少することにょシ、各膜圧縮機の効率を向上させ
ることができる。同時に圧縮機の長期的な運転状況を考
慮した場合、減量運転時の冷却水を節約することにょシ
、平均的な冷却水量を大幅に減少させることが可能であ
る。As described above, according to this embodiment, the efficiency of each membrane compressor can be improved by reducing the amount of cooling water during the reduction operation. At the same time, when considering the long-term operating conditions of the compressor, it is possible to significantly reduce the average amount of cooling water by saving cooling water during reduced operation.
以上説明したように本発明によれば、多段圧縮機の効率
をよシ一層に向上させると共に、冷却水量を節減するこ
とができるので、運転コストを大幅に軽減することが可
能である。As explained above, according to the present invention, the efficiency of the multistage compressor can be further improved and the amount of cooling water can be reduced, so that the operating cost can be significantly reduced.
第1図〜第3図は従来の多段圧縮機の圧力特性、効率特
性および2段以降の各膜圧縮機特性をそれぞれ示す図、
第4図は流量制御装置を備えた初段圧縮機の特性を示す
図、第5図は本発明の多段圧縮機の一実施例を示す系統
図、第6図は同実施例機の特性を示す図、第9図は同実
施例の演算器の処理内容を示すブロック図である。
1・・・初段圧縮機、2・・・第2段圧縮機、3・・・
第3段圧縮機、4,5・・・中間冷却器、6・・・容量
制御装置、11・・・温度センサ、12・・・演算器、
13.14・・・電磁弁。
■ 1 図
1
軍 Z 図
5亀!
罰 4 図
5
第5図
Z z 図
第7図
第 7 図Figures 1 to 3 are diagrams showing the pressure characteristics and efficiency characteristics of a conventional multistage compressor, and the characteristics of each membrane compressor from the second stage onward, respectively.
Fig. 4 is a diagram showing the characteristics of a first stage compressor equipped with a flow rate control device, Fig. 5 is a system diagram showing an embodiment of the multistage compressor of the present invention, and Fig. 6 is a diagram showing the characteristics of the same embodiment. 9 are block diagrams showing the processing contents of the arithmetic unit of the same embodiment. 1... First stage compressor, 2... Second stage compressor, 3...
3rd stage compressor, 4, 5... Intercooler, 6... Capacity control device, 11... Temperature sensor, 12... Arithmetic unit,
13.14...Solenoid valve. ■ 1 Figure 1 Army Z Figure 5 Turtle! Punishment 4 Figure 5 Figure 5 Z z Figure 7 Figure 7
Claims (1)
段の圧縮機間に中間冷却器をそれぞれ設けてなる多段圧
縮機において、第2段以降の任意の圧縮機の吸込側に温
度センサを設け、この温度センサを演算器を介して前記
流量制御装置に接続すると共に、その演算器にょシ前記
各中間冷却器の冷却水の入口側または出口側に設けた流
量調節弁を操作するようにしたことを特徴とする多段圧
縮機。In a multistage compressor in which a capacity control device is provided on the inlet side of the first stage compressor and an intercooler is provided between the compressors in each stage, a temperature sensor is installed on the suction side of any compressor from the second stage onwards. The temperature sensor is connected to the flow rate control device via a computing unit, and the computing unit is configured to operate a flow rate control valve provided at the inlet side or outlet side of the cooling water of each of the intercoolers. A multi-stage compressor characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22608482A JPS59119096A (en) | 1982-12-24 | 1982-12-24 | multistage compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22608482A JPS59119096A (en) | 1982-12-24 | 1982-12-24 | multistage compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59119096A true JPS59119096A (en) | 1984-07-10 |
Family
ID=16839569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22608482A Pending JPS59119096A (en) | 1982-12-24 | 1982-12-24 | multistage compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59119096A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010156497A (en) * | 2008-12-26 | 2010-07-15 | Daikin Ind Ltd | Refrigerating device |
-
1982
- 1982-12-24 JP JP22608482A patent/JPS59119096A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010156497A (en) * | 2008-12-26 | 2010-07-15 | Daikin Ind Ltd | Refrigerating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104428537B (en) | Compressor control device, compressor assembly and compressor control method | |
CN111322265B (en) | Anti-surge system of centrifugal compressor and control method | |
US4288198A (en) | Method of controlling multistage centrifugal compressor equipment | |
JPS6165020A (en) | Supercharged air pressure control device of turbosupercharger | |
CN216407219U (en) | Compressor equipment | |
JPS59119096A (en) | multistage compressor | |
US2933236A (en) | Rotary dynamic compressors | |
JP2762395B2 (en) | Twin exhaust turbine turbocharger | |
JP3469178B2 (en) | Optimal load control system for compressor | |
CN111256381B (en) | Compressor anti-surge air supply system, control method and air conditioning equipment | |
US4344735A (en) | Method of controlling two-stage hydraulic pump-turbines | |
JPH11201094A (en) | Turbo compressor | |
JP2655431B2 (en) | Constant flow control device for centrifugal compressor | |
CN215370159U (en) | Anti-surge system of refrigeration centrifugal compressor and refrigeration system | |
JP2977406B2 (en) | Compressor control device | |
JPH0739840B2 (en) | Control method of multi-stage centrifugal compressor | |
SU973940A1 (en) | Method of sourge protecting of compressor | |
JP2948421B2 (en) | Compressor control device | |
JP2757426B2 (en) | Operation control method of centrifugal compressor | |
JPS60184996A (en) | Capacity regulator for multistage hydraulic machine | |
JPS59138891A (en) | Control of vacuum degree of condenser | |
JPH062693A (en) | Multistage compressor | |
JPH0261640B2 (en) | ||
JPH01257793A (en) | Multistage turbo compressor | |
JPH0125907B2 (en) |