JPS59117303A - Polarizer - Google Patents
PolarizerInfo
- Publication number
- JPS59117303A JPS59117303A JP23242182A JP23242182A JPS59117303A JP S59117303 A JPS59117303 A JP S59117303A JP 23242182 A JP23242182 A JP 23242182A JP 23242182 A JP23242182 A JP 23242182A JP S59117303 A JPS59117303 A JP S59117303A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- waveguide
- polarized wave
- band
- frequency band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 32
- 230000008878 coupling Effects 0.000 claims abstract description 19
- 238000010168 coupling process Methods 0.000 claims abstract description 19
- 238000005859 coupling reaction Methods 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 6
- 230000002238 attenuated effect Effects 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 description 11
- 230000010363 phase shift Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 244000007853 Sarothamnus scoparius Species 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は別々の導波管を伝送される異った周波数帯の2
つの信号を、1つの円形等波管を伝送する互いに直交し
た2つの直線偏波信号に変換する偏分波器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for transmitting two different frequency bands through separate waveguides.
The present invention relates to a polarization splitter that converts one signal into two mutually orthogonal linearly polarized signals transmitted through one circular equal wave tube.
衛星通信においては、地球局から衛星に向けて送信する
アップリンクの周波数と衛星からの電波全地球局で受信
するダウンリンクの周波数は、例えば6G[(z帯と4
0FIz帯のごとく離れた周波数帯が用いられている。In satellite communications, the uplink frequency transmitted from the earth station to the satellite and the downlink frequency received by the radio waves from the satellite at the global station are, for example, 6G [(Z band and 4
Separate frequency bands such as the 0FIz band are used.
更に送信と受信との信号の分離を容易にするため、アッ
プリンクとダウンリンクの信号は互いに直交した偏波が
使用され、インテルサット衛星の4 / 60 Flz
帯ではそれぞれ右旋および左旋の円偏波が用いられてい
る。第1図は日偏彼ヲ使用する従来のカセグレンアンテ
ナの一次放射器の一構成例を示す斜視図で、円錐力−−
ン1と90°移相板による円偏波発生器2と偏分波器3
とから構成されている。第1図において、入力端子4に
加えられた送信信号100は偏分波器3の円形導波管部
から垂直偏波信号101 として円偏波発生器2に送ら
れる。円偏波発生器2には板に平行な偏波と垂直な偏狭
とで90°の移相差を生ずる900移相板5が45°傾
斜して設けられており、垂直偏波信号101は左旋円偏
波信号102として円錐ホーン1から放射される。副反
射鏡からの反射波は進行方向が反対の右旋円偏波信号1
03となハ円偏波発生器2を通過すると水平偏波信号1
04となる。受信信号を取9出丁分岐導波管6は送信信
号音反射させるフィルタを含んでおり、更に入力端子4
は水平偏波信号を通過できないので水平偏波信号104
は全反射して再び円偏波発生器2に送られ送信波102
とは逆旋回方向の右旋円偏波成分105となって再放射
される。従つて、円偏波発生器2の特性全改善するだけ
では楕円偏波率を良くすることができないという問題が
ある。受信の場合も同様であって、右旋円偏波の入射波
200け円偏波発生器2によって水平偏波信号201と
なり、分岐導波管6゛のフィルタを通過して出力端子か
ら受信信号202として出力される。一方、入射波20
0と直交する左旋円偏波入力203は円偏波発生器2で
垂直偏波信号204となり、分岐導波管6とは結合がな
(60h帝の導波管は通過できないので、そのまま全反
射して左旋円偏波信号205として再放射され、その一
部が副反射鏡からの反射波206として再受信され、出
力端子に干渉信号207として現れる。Furthermore, to facilitate the separation of transmit and receive signals, the uplink and downlink signals are polarized orthogonally to each other, and the Intelsat satellite's 4/60 Flz
In the band, right-handed and left-handed circularly polarized waves are used, respectively. Figure 1 is a perspective view showing an example of the configuration of the primary radiator of a conventional Cassegrain antenna used in solar radiation.
Circularly polarized wave generator 2 and polarization demultiplexer 3 using a 90° phase shift plate
It is composed of. In FIG. 1, a transmission signal 100 applied to an input terminal 4 is sent from a circular waveguide section of a polarization splitter 3 to a circularly polarized wave generator 2 as a vertically polarized signal 101. The circularly polarized wave generator 2 is provided with a 900 phase shift plate 5 inclined at 45°, which produces a 90° phase shift between polarized waves parallel to the plate and polarized waves perpendicular to the plate, and the vertically polarized wave signal 101 is left-handed. It is radiated from the conical horn 1 as a circularly polarized signal 102. The reflected wave from the sub-reflector is a right-handed circularly polarized wave signal 1 whose traveling direction is opposite.
When passing through the circularly polarized wave generator 2, the horizontally polarized signal 1
It becomes 04. The branching waveguide 6 that takes out the received signal includes a filter that reflects the sound of the transmitted signal, and further includes an input terminal 4.
cannot pass the horizontally polarized signal, so the horizontally polarized signal 104
is totally reflected and sent to the circularly polarized wave generator 2 again as a transmitted wave 102.
It is re-radiated as a right-handed circularly polarized wave component 105 in the opposite rotation direction. Therefore, there is a problem in that it is not possible to improve the elliptically polarized wave index by simply improving the characteristics of the circularly polarized wave generator 2. The same goes for reception, where 200 right-handed circularly polarized incident waves are converted into a horizontally polarized signal 201 by the circularly polarized wave generator 2, which passes through the filter of the branch waveguide 6' and outputs the received signal from the output terminal. It is output as 202. On the other hand, the incident wave 20
A left-handed circularly polarized wave input 203 that is orthogonal to Then, it is re-radiated as a left-handed circularly polarized wave signal 205, a part of which is re-received as a reflected wave 206 from the sub-reflector, and appears as an interference signal 207 at the output terminal.
インテルサットのV外系衛星の4 / 6 G [’(
ZWでは、直交する右旋円偏波と左旋円偏波で別々の情
報を伝送し、周波数を二重に利用する直交偏波による周
波数再利用方式が採用され、この衛星を利用する4/6
GI(z帯の地球局アンテナは、その地球局が直交円偏
波を共に送受する場合はもちろんであるが、例えその地
球局が円偏波を使用せず従来通り単一偏波のみを送受す
る場合でも、楕円偏波率の良好なことが要求される。単
一偏波のみを送受する第1図に示した従来の一次放射器
の楕円偏波率を改善する第1の要点は円偏波発生器の特
性の改善であるが、第1図について上述したように、副
反射鏡などからの反射波によって楕円偏波成分全発生し
、円偏波発生器の特性改善のみでは良好な楕円偏波率を
得ることができない。特に直径の小さいカセグレンアン
テナでは副反射鏡からの反射が大きく、これを抑圧する
有効な手段がない。これを解決する一つの方法は、直交
円偏波送受信用に設計された第2図の直交偏波結合器を
使用し、使用しない偏波の入出力に無反射終端器10.
1σ及び11を接続することである。この場合、6Gn
z帯送慣信箒の副反射鏡からの反射波104は6Gaz
帯直交偏波結合器12の分岐導波管13を経て無反射終
端器11で吸収されて、殆ど反射が無くなるので右旋円
偏狭の放射は無く楕円偏狭率を劣(ヒさせない。又、4
GI(z帯の左旋円偏波入力203による垂直偏波信号
204は、4G口z帯直父偏波結合器14の垂直偏彼分
岐導彼管15、エゴに結合され無反射終端器10.lげ
に?
吸収されて殆ど反射を生じないっ従って、第1図の左旋
円偏波の再放射成分205は微少となり、副反射鏡から
の反射波206は無視でき、干渉信号207は無くなる
。4 G [(z帯の入射波200は水平偏狭分岐導波
管16,1σに結合され、線図で示す導波管1’7.1
7”(r経てハイブリッド18で合成されて出力信号2
08となる。この方法は良好な楕円偏波率が得られるが
4 G Hz帯直交偏波結合器14の構造が複雑で形状
も大きくなる欠点がある。4/6 G ['(
ZW adopts a frequency reuse method using orthogonal polarization, which transmits separate information with orthogonal right-handed circularly polarized waves and left-handed circularly polarized waves, and uses the frequency twice.
GI (Z band earth station antennas are used when the earth station transmits and receives both orthogonal circularly polarized waves, but even if the earth station does not use circular polarization and transmits and receives only a single polarized wave as before) Even when transmitting and receiving only a single polarized wave, a good elliptical polarization is required. Regarding the improvement of the characteristics of the polarized wave generator, as mentioned above with reference to Fig. 1, all elliptical polarized wave components are generated by the reflected waves from the sub-reflector, etc., and it is not possible to improve the characteristics of the circularly polarized wave generator alone. It is not possible to obtain elliptical polarization.Especially in a Cassegrain antenna with a small diameter, the reflection from the sub-reflector is large, and there is no effective means to suppress this.One way to solve this problem is to transmit and receive orthogonal circularly polarized waves. The orthogonal polarization coupler shown in Fig. 2 designed for the above is used, and non-reflection terminators 10.
1σ and 11. In this case, 6Gn
The reflected wave 104 from the sub-reflector of the Z-band transmission conventional broom is 6Gaz.
It passes through the branch waveguide 13 of the band orthogonal polarization coupler 12 and is absorbed by the non-reflection terminator 11, and there is almost no reflection, so there is no right-handed circular narrowing radiation and the elliptic narrowing ratio is not degraded.
A vertically polarized signal 204 from the GI (z-band left-handed circularly polarized wave input 203) is coupled to the vertically polarized branch guide 15 of the 4G z-band direct polarization coupler 14, the ego, and the non-reflection terminator 10. It is absorbed and almost no reflection occurs. Therefore, the re-radiation component 205 of the left-handed circularly polarized wave in FIG. G [(The incident wave 200 in the z-band is coupled into the horizontal narrow branch waveguide 16,1σ, and the waveguide 1'7.1 shown in the diagram is
7” (r, synthesized by hybrid 18 and output signal 2
It becomes 08. Although this method can obtain a good elliptical polarization index, it has the disadvantage that the structure of the 4 GHz band orthogonal polarization coupler 14 is complicated and the shape is large.
本発明の目的は、上述した欠点を除去し、構造が簡単で
使用しない偏波成分を吸収し、副反射鏡等からの反射が
あっても楕円偏波率の良いアンテナ−次放射系を構成す
ることのできる偏分波器を提供することである。The purpose of the present invention is to eliminate the above-mentioned drawbacks, to construct an antenna-order radiation system that has a simple structure, absorbs unused polarization components, and has a good elliptical polarization even when there is reflection from a sub-reflector, etc. The object of the present invention is to provide a polarization demultiplexer that can perform the following steps.
本発明の偏分波器は、高・低2つの周波数帯の信号を伝
送する第1の円形導波管と、この第1の円形導波管の一
端にインピーダンス変成部を介して互いに中心軸が一致
するように接続され前記高周波数帯の信号のみ全伝送す
る第2の円形導波管と、前記インピーダンス変成部に近
い管壁に設けられた管軸方向のスリットによって前記第
1の円形導波管と結合され前記低周波数帯の信号全通過
し前記高周波数帯の信号を反射するフィルタを含み前記
低周波数帯の信号全伝送する方形の分岐導波管と、前記
スリットと反対側の管壁で円周方向の磁界成分による磁
界結合もしくは半径方向の電界成分による電界結合によ
って前記第1の円形導波管と結合され前記低周波数帯の
信号全通過し前記高周波数帯の信号を反射するフィルタ
及び無反射終端器から成る選択性吸収負荷と、前記第2
の円形導波管に接続され前記第2の円形導波管を伝送す
る直交した2つの直線偏波信号の一方全方形導彼管に伝
送し他方を吸収減衰させる変換導波管とを備えることに
よって構成される。The polarization splitter of the present invention includes a first circular waveguide that transmits signals in two high and low frequency bands, and an impedance transformer at one end of the first circular waveguide. a second circular waveguide that is connected so that the signals coincide with each other and transmits all signals in the high frequency band; and a slit in the tube axis direction provided in the tube wall near the impedance transformation section to a rectangular branching waveguide that is coupled to the wave tube and transmits all of the low frequency band signals, including a filter that passes all of the low frequency band signals and reflects the high frequency band signals; and a tube on the opposite side of the slit. The first circular waveguide is coupled to the first circular waveguide by magnetic field coupling due to a circumferential magnetic field component or electric field coupling due to a radial electric field component at the wall, allowing all signals in the low frequency band to pass through and reflecting signals in the high frequency band. a selective absorbing load consisting of a filter and a non-reflection terminator;
a conversion waveguide that is connected to the circular waveguide and transmits two orthogonal linearly polarized signals transmitted through the second circular waveguide to one of the omnidirectional waveguides and absorbs and attenuates the other. Consisted of.
次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.
第3図(a)は本発明の第1の実施例の斜視図、第3図
(b)は断面図であり、 4. 60Flz帯を伝送で
きる第1の円形導波管20と、ステップ状のインピータ
ンス変成部21(il−介して接続され5 G Hz帯
のみを通過する第2の円形導波管22と、第1の円形導
波管20に結合され4 G Hz帯の水平偏波を分岐す
る分岐導波管23と、これと反対側に設けられ円周方向
磁界成分Hいによるループ結合により4GHz帝の垂直
偏波を吸収する選択性吸収負荷24と、6GI(z帯の
垂直偏波を方形導波管に伝送し水平偏波を吸収する抵抗
板を備え定変換導波管25とで構成されている。4GH
z帯の水平偏波信号は第1の円形導波管20のインピー
ダンス変成部21に近い下側の管壁に設けられた管軸方
向のスリット26により分岐導波管23に結合され帯域
フィルタ部27を通過して4GHz出力端子28に伝送
される。円形導波管の水平偏波基本モードh、選択性吸
収負荷24の結合ループ29が設けられている円形導波
管の上側の管壁附近では円周方向の磁界成分Hφが無い
ので、水平偏波は選択性吸収負荷24には結合されない
。4GHz帯の垂直偏波信号は下側の管壁では軸方向の
磁界成分が無くスリット26には結合されず、上側管壁
の円周方向磁界成分Hφによって結合ループ29と結合
し、同軸形の低域フィルタ30f、通って無反射終端器
31に吸収される。6GHz入力端子32に加えられた
60Flz帯の垂直偏波は変換導波管25内に水平に挿
入されている抵抗板33の影響を殆ど受けずに円形導波
管22に伝えられる。垂直偏波は上側管壁に円周方向低
界成分Hφ全有するので結合ループ29に電圧を誘起す
るが低域フィルタ30が遮断域のため結合せず、又、下
側管壁には軸方向R界成分Hzが無いためスリット26
に影響されずにそのまま円形導波管端子34に伝えられ
る。円形導波管端子34から入力された6GHz帝の水
平偏波は同様に分岐導波管23及び選択性吸収負荷24
のいずれにも結合されずに第2の円形導波管22に入り
抵抗板33に吸収される。4. FIG. 3(a) is a perspective view of the first embodiment of the present invention, and FIG. 3(b) is a sectional view. A first circular waveguide 20 that can transmit the 60Flz band, a second circular waveguide 22 that is connected via a stepped impedance transformation section 21 (il-) and that transmits only the 5GHz band, and a first A branching waveguide 23 is coupled to a circular waveguide 20 to branch horizontally polarized waves in the 4 GHz band, and a branching waveguide 23 is provided on the opposite side to split horizontally polarized waves in the 4 GHz band. It is composed of a selective absorption load 24 that absorbs waves, and a constant conversion waveguide 25 equipped with a resistive plate that transmits vertically polarized waves in the 6GI (z band) to a rectangular waveguide and absorbs horizontally polarized waves. 4GH
The z-band horizontally polarized signal is coupled to the branching waveguide 23 through a slit 26 in the tube axis direction provided in the lower tube wall near the impedance transformation section 21 of the first circular waveguide 20, and then passed through the bandpass filter section. 27 and is transmitted to the 4 GHz output terminal 28. There is no magnetic field component Hφ in the circumferential direction near the upper tube wall of the circular waveguide where the horizontally polarized fundamental mode h of the circular waveguide and the coupling loop 29 of the selective absorption load 24 are provided. The waves are not coupled to the selective absorption load 24. The 4 GHz band vertically polarized signal has no axial magnetic field component on the lower tube wall and is not coupled to the slit 26, but is coupled to the coupling loop 29 by the circumferential magnetic field component Hφ of the upper tube wall, and is connected to the coaxial type. It passes through the low-pass filter 30f and is absorbed by the non-reflection terminator 31. The vertically polarized wave of the 60 Flz band applied to the 6 GHz input terminal 32 is transmitted to the circular waveguide 22 almost unaffected by the resistance plate 33 inserted horizontally into the conversion waveguide 25 . Since the vertically polarized wave has all the circumferential low-field components Hφ on the upper tube wall, it induces a voltage in the coupling loop 29, but the low-pass filter 30 does not couple because it is in the cut-off region, and the lower tube wall has a low-field component Hφ in the axial direction. Slit 26 because there is no R field component Hz
The signal is transmitted as it is to the circular waveguide terminal 34 without being affected by the signal. The 6 GHz horizontally polarized wave inputted from the circular waveguide terminal 34 is similarly sent to the branch waveguide 23 and the selective absorption load 24.
It enters the second circular waveguide 22 without being coupled to any of them and is absorbed by the resistance plate 33.
以上の説明から明らかなように第3図の偏分波器を第1
図の従来の偏分波器3の代りに使用して一次放射器全構
成すると、5GHz帯の副反射鏡からの反射1104は
抵抗板33で吸収されるので右旋円偏波の再放射trt
105が無くなり、4GHz帯の左旋円偏波による垂直
偏波信号204は選択性吸収負荷24に吸収されるので
干渉信号207が無くなって、送受共楕円偏波率の良い
アンテナ全構成することができろう
第4図は本発明の第2の実施例の斜視図であって、選択
性吸収負荷35が分岐導波管と同様な帯域フィルタを含
む導波管型で、円周方向のスリットによる磁界結合を用
い、” 6 G [(z帯の変換導波管36が第2図の
6 G [(z帝直交偏彼結合器12の分岐導波管13
に無反射終端器を組み込んだものとなっている。この構
成は第1の実施例よりは形状がやや大きくなるが60F
lz帯の大電力送信に耐え、第゛2図の直交偏波結合器
を用いる従来例よりは構成が簡単で小形となる効果があ
る。第5図は第3図の選択性吸収負荷24をループ結合
でなく円形導波管内に半径方向に挿入されたアンテナに
よる電界結合としたものであって、円周方向の磁界成分
による磁界結合と同様に垂直偏波のみに結合し同様な効
果が得られる。円周方向磁界成分にょる電界結合が第1
の円形導波管の端末部において強い結合が得られるに対
し、電界結合の場合は端末よりやや離れた所(管内波長
の約1/4)で強い結合が得られる。As is clear from the above explanation, the polarization splitter shown in Fig. 3 is
When the primary radiator is completely configured by using it in place of the conventional polarization splitter 3 shown in the figure, the reflection 1104 from the sub-reflector in the 5 GHz band is absorbed by the resistor plate 33, so the right-handed circularly polarized wave is re-radiated trt
105 is eliminated, and the vertically polarized signal 204 due to left-handed circularly polarized waves in the 4 GHz band is absorbed by the selective absorption load 24, so the interference signal 207 is eliminated, and the entire antenna can be configured with good elliptical polarization for both transmitting and receiving. FIG. 4 is a perspective view of a second embodiment of the present invention, in which the selective absorption load 35 is of a waveguide type including a bandpass filter similar to a branch waveguide, and the magnetic field is generated by a circumferential slit. Using coupling, "6 G [(z-band conversion waveguide 36
It incorporates a non-reflection terminator. Although this configuration is slightly larger than the first embodiment, it is 60F.
It can withstand high power transmission in the lz band, and has the advantage of being simpler and smaller in size than the conventional example using the orthogonal polarization coupler shown in FIG. In FIG. 5, the selective absorption load 24 in FIG. 3 is not loop-coupled but has electric field coupling by an antenna inserted in the radial direction within a circular waveguide. Similarly, a similar effect can be obtained by coupling only vertically polarized waves. The electric field coupling due to the circumferential magnetic field component is the first
Strong coupling is obtained at the end of the circular waveguide, whereas in the case of electric field coupling, strong coupling is obtained at a location slightly away from the end (approximately 1/4 of the wavelength within the tube).
以上実施例の説明において、選択性吸収負荷は水平偏波
に対して結合がないことを説明したが、水平偏波が第3
図の軸方向スリット26に結合し、そこに発生した電気
モーメントにより円形導波管内で局所的に誘起される高
次モードについても、上記選択性吸収負荷に結合するよ
うな電低界は発生17ないので水平・垂直画偏波の結合
を生じることもない。In the above description of the embodiment, it has been explained that the selective absorption load has no coupling for horizontally polarized waves, but horizontally polarized waves
Even for higher-order modes that are coupled to the axial slit 26 in the figure and locally induced within the circular waveguide by the electric moment generated there, an electric low field that couples to the selective absorption load 17 is generated. Therefore, there is no possibility of coupling of horizontal and vertical image polarizations.
上述の実施例の説明において、40h帯の分岐導波管の
フィルタは帯域フィルタとしたが低域フィルタ又は帯域
阻市フィルタ金用いて構成することもできる。選択性吸
収負荷のフィルタについても同様であり、結合ループの
形状など図示のものに限らない。又、6GIlz帝の変
換導波管の構成も実施例の物に限定されず、第1及び第
2の円形導波管のインピーダンス変成部も実施例のステ
ップ構造以外のものでもよく、第2の円形導波管の長さ
に制約はない。更に、各構成部は一体構造で作られても
よく、7ランジ等で結合されてもよい。In the above description of the embodiment, the filter of the branch waveguide for the 40h band is a bandpass filter, but it can also be constructed using a lowpass filter or a bandpass filter. The same applies to the selective absorption load filter, and the shape of the coupling loop is not limited to that shown in the drawings. Furthermore, the configuration of the 6GIlz conversion waveguide is not limited to that of the embodiment, and the impedance transformation portions of the first and second circular waveguides may also be of a structure other than the step structure of the embodiment. There are no restrictions on the length of the circular waveguide. Furthermore, each component may be made of a monolithic structure, and may be joined by seven flange or the like.
以上詳細に説明したごとく、本発明の偏分波器によれば
簡単な構造で、高・低各周彼数帯の使用しない偏波成分
を吸収することができ、副反射鏡からの反射が多い小形
カセグレンアンテナの一次放射器を簡単な構成で実現で
きる効果がある。As explained in detail above, the polarization splitter of the present invention has a simple structure and can absorb unused polarization components in high and low frequency bands, thereby reducing the reflection from the sub-reflector. This has the effect of realizing the primary radiator of many small Cassegrain antennas with a simple configuration.
第1図は円偏波を使用する従来のカセグレンアンテナの
一次放射器の斜視図、第2図は直交偏波を利用する直交
偏波結合器の斜視図、第3図(a)け本発明の偏分波器
の第1の実施例の斜視図、第3図(b)は本発明の第1
の実症例の断面図、第4図は本発明の第2の実施例の斜
視図、第5図は本発明の第3の実施例の斜視図である。
工・・・・・・円錐ホーン、2・・・・・・円偏波発生
器、3・・・、・・偏分波器、4.32・・団・入力端
子、訃・・・・・9゜移相板、6. 13. 15.
IFj、 16. 1σ、23・・・・・・分岐S
波管、10,1σ、11.31・・・・・・無反射終端
器、12.14・・・・・・直交偏波結合器。
17.17・・・・・・導波管、18・・・・・・ハイ
ブリッド、20.22・・・・・・円形4波管、21・
・・・・・インピーダンス変成部、24.35・・・・
・・選択性吸収負荷、25.35・・・・・・変換導波
管、26・・・・・・スリット、27・・・・・・帯域
フィルタ、28・・・・・・出力端子、29・・・・・
・結合ループ、30・・・・・・低域フィルタ、33・
・・・・・抵抗板、34・・・・・・円形導波管端子。
辛 1 図
囁 4
塾 ′3 図Figure 1 is a perspective view of a conventional primary radiator of a Cassegrain antenna that uses circular polarization, Figure 2 is a perspective view of an orthogonal polarization coupler that uses orthogonal polarization, and Figure 3 (a) is a perspective view of the present invention. FIG. 3(b) is a perspective view of the first embodiment of the polarization splitter of the present invention.
FIG. 4 is a perspective view of the second embodiment of the present invention, and FIG. 5 is a perspective view of the third embodiment of the present invention. Engineering...Conical horn, 2...Circular polarization generator, 3...Polarization splitter, 4.32...Group input terminal, End...・9° phase shift plate, 6. 13. 15.
IFj, 16. 1σ, 23...branch S
Wave tube, 10,1σ, 11.31... Non-reflection terminator, 12.14... Orthogonal polarization coupler. 17.17...Waveguide, 18...Hybrid, 20.22...Circular 4-wave tube, 21.
...Impedance transformation section, 24.35...
... Selective absorption load, 25.35 ... Conversion waveguide, 26 ... Slit, 27 ... Bandpass filter, 28 ... Output terminal, 29...
・Coupling loop, 30...Low pass filter, 33・
...Resistance plate, 34...Circular waveguide terminal. Shin 1 Diagram 4 Juku '3 Diagram
Claims (1)
管と、この第1の円形導波管の一端にインピーダンス変
成部を介して互いに中心軸が一致するように接続され前
記高周波数帯の信号のみを伝送する第2の円形導波管と
、前記インピーダンス変成部に近い管壁に設けられた管
軸方向のスリットによって前記第1の円形導波管と結合
され前記低周波数帯の信号を通過し前記高周波数帯の信
号を反射するフィルタを含み前記低周波数帯の信号を伝
送する方形の分岐導波管と、前記スリットと反対側の管
壁で円周方向の磁界成分による磁界結合もしくは半径方
向の電界成分による電界結合によって前記第1の円形導
波管と結合され前記低周波数帯の信号を通過し前記高周
波数帯の信号を反射するフィルタ及び無反射終端器から
成る選択性吸収負荷と、前記第2の円形等波管に接続さ
れ前記第2の円形等波管を伝送する@交した2つの直線
偏波信号の一方を方形専政管に伝送し他方を吸収減衰さ
せる変換導波管とを備えたことを特徴とする偏分波器。A first circular waveguide that transmits signals in two frequency bands, high and low; a second circular waveguide that transmits only signals in the frequency band; and a second circular waveguide that is coupled to the first circular waveguide by a slit in the tube axis direction provided in the tube wall near the impedance transformation section to transmit signals in the low frequency band. a rectangular branch waveguide that transmits the low frequency band signal and includes a filter that passes the signal of the high frequency band and reflects the signal of the high frequency band, and a magnetic field component in the circumferential direction on the tube wall on the opposite side to the slit. a filter coupled to said first circular waveguide by magnetic field coupling or electric field coupling with a radial electric field component to pass said low frequency band signals and reflect said high frequency band signals; and a non-reflection terminator. One of the two intersecting linearly polarized signals connected to the second circular equal wave tube and transmitted through the second circular equal wave tube is transmitted to the rectangular exclusive tube, and the other is absorbed and attenuated. What is claimed is: 1. A polarization demultiplexer comprising a conversion waveguide for
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23242182A JPS59117303A (en) | 1982-12-23 | 1982-12-23 | Polarizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23242182A JPS59117303A (en) | 1982-12-23 | 1982-12-23 | Polarizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59117303A true JPS59117303A (en) | 1984-07-06 |
JPH0430201B2 JPH0430201B2 (en) | 1992-05-21 |
Family
ID=16938990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23242182A Granted JPS59117303A (en) | 1982-12-23 | 1982-12-23 | Polarizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59117303A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0327601A (en) * | 1989-06-23 | 1991-02-06 | Nec Corp | Polarization coupler |
CN104143695A (en) * | 2014-07-24 | 2014-11-12 | 郴州希典科技有限公司 | Dual-circularly-polarized waveguide array antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153435A (en) * | 1974-09-10 | 1976-05-11 | Licentia Gmbh | 2 tsunonijunihenpasaretashuhasutaiikiojusurushingoobunrisurubunpasochi |
JPS5528676A (en) * | 1978-08-22 | 1980-02-29 | Mitsubishi Electric Corp | Branch unit |
JPS5753103A (en) * | 1980-07-31 | 1982-03-30 | Thomson Csf | Antenna transducer |
DE3111106A1 (en) * | 1981-03-20 | 1982-09-30 | Siemens AG, 1000 Berlin und 8000 München | Polarisation filter |
-
1982
- 1982-12-23 JP JP23242182A patent/JPS59117303A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153435A (en) * | 1974-09-10 | 1976-05-11 | Licentia Gmbh | 2 tsunonijunihenpasaretashuhasutaiikiojusurushingoobunrisurubunpasochi |
JPS5528676A (en) * | 1978-08-22 | 1980-02-29 | Mitsubishi Electric Corp | Branch unit |
JPS5753103A (en) * | 1980-07-31 | 1982-03-30 | Thomson Csf | Antenna transducer |
DE3111106A1 (en) * | 1981-03-20 | 1982-09-30 | Siemens AG, 1000 Berlin und 8000 München | Polarisation filter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0327601A (en) * | 1989-06-23 | 1991-02-06 | Nec Corp | Polarization coupler |
CN104143695A (en) * | 2014-07-24 | 2014-11-12 | 郴州希典科技有限公司 | Dual-circularly-polarized waveguide array antenna |
CN104143695B (en) * | 2014-07-24 | 2016-08-31 | 郴州希典科技有限公司 | Double-circle polarization waveguide array antenna |
Also Published As
Publication number | Publication date |
---|---|
JPH0430201B2 (en) | 1992-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4343005A (en) | Microwave antenna system having enhanced band width and reduced cross-polarization | |
US4847574A (en) | Wide bandwidth multiband feed system with polarization diversity | |
US3668567A (en) | Dual mode rotary microwave coupler | |
US4410866A (en) | Antenna transducer for a transmission-reception antenna | |
JPH0818331A (en) | Multiple band folding type antenna | |
US4728960A (en) | Multifunctional microstrip antennas | |
US6329957B1 (en) | Method and apparatus for transmitting and receiving multiple frequency bands simultaneously | |
US4630059A (en) | Four-port network coupling arrangement for microwave antennas employing monopulse tracking | |
JPH0327601A (en) | Polarization coupler | |
US20050104686A1 (en) | High frequency module and antenna device | |
JPS59117303A (en) | Polarizer | |
JPH11112201A (en) | Branching filter | |
KR930008836B1 (en) | Polarization converter having two converting devices therein | |
US3646589A (en) | Multimode tracking system utilizing a circular waveguide having slots angularly oriented with respect to the waveguide axis | |
JPS6014501A (en) | Polarization coupler | |
JPS6251801A (en) | Orthogonal polarizer | |
JP2000349535A (en) | Primary radiator | |
JPS6340487B2 (en) | ||
Yeh | The received power of a receiving antenna and the criteria for its design | |
JP2626098B2 (en) | Polarizer | |
JPH0918206A (en) | Circularly polarized waveguide-microstrip line converter | |
RU2292098C1 (en) | Multifrequency feed system of reflector-type orthogonal polarization division antenna | |
JPS6216040Y2 (en) | ||
JPS5892104A (en) | Antenna device | |
JPS6053481B2 (en) | Waveguide frequency converter |