JPS59114869A - Non-volatile semiconductor memory device having floating gate of polycrystalline silicon - Google Patents
Non-volatile semiconductor memory device having floating gate of polycrystalline siliconInfo
- Publication number
- JPS59114869A JPS59114869A JP22471182A JP22471182A JPS59114869A JP S59114869 A JPS59114869 A JP S59114869A JP 22471182 A JP22471182 A JP 22471182A JP 22471182 A JP22471182 A JP 22471182A JP S59114869 A JPS59114869 A JP S59114869A
- Authority
- JP
- Japan
- Prior art keywords
- floating gate
- film
- insulating film
- gate
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 21
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 abstract description 13
- 230000003071 parasitic effect Effects 0.000 abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052796 boron Inorganic materials 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 6
- 238000005468 ion implantation Methods 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 2
- 230000007547 defect Effects 0.000 abstract 1
- 238000005530 etching Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- 239000010410 layer Substances 0.000 description 18
- 229920005591 polysilicon Polymers 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- -1 boron ions Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の属する分野
本発明は不揮発性半導体記憶装置に係シ、特に浮遊型ポ
リシリコン層を有する不揮発性半導体記憶装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a nonvolatile semiconductor memory device, and more particularly to a nonvolatile semiconductor memory device having a floating polysilicon layer.
(2)従来の技術の説明
近年、半導体装置はその回路素子の高密度集積化が強く
要求されておシ、ElectricallyProgr
ammable Read 0nly Memory(
EPROM)においても、パターンの微細化あるいはセ
ル構造の変化に伴い記憶容量の大容量化が進められてい
る。このよりなEPROMとして現在最も一般的に採用
されているのは2層ポリシリコン技術を用い、下層のポ
リシリコン層を浮遊型に形成し、これを電荷の蓄積層と
して用いるnMOsタイプノstacked−gate
型EFROMでおる。(2) Description of conventional technology In recent years, there has been a strong demand for high-density integration of circuit elements in semiconductor devices.
ammable Read 0nly Memory (
Even in EPROMs, storage capacity is increasing as patterns become finer or cell structures change. The most commonly used type of EPROM at present is the nMOS type stacked-gate, which uses two-layer polysilicon technology, with the lower polysilicon layer formed in a floating type and used as a charge storage layer.
It is a type EFROM.
これに対し構造的に更にセル面積を縮、小する手法とし
て、上記手法に加えて浮遊ゲートとフィールド絶縁層と
を自己整合的に形成する技術が提案されている。この新
しい手法によるメモリセルの製造方法の概略を第1図乃
至第3図を用いて簡単に述べる。In addition to the above-mentioned method, a technique of forming a floating gate and a field insulating layer in a self-aligned manner has been proposed as a method for structurally further reducing the cell area. An outline of a method for manufacturing a memory cell using this new method will be briefly described with reference to FIGS. 1 to 3.
まず、第1図に示すようにSi単結晶基板1(仮にP型
とする)の表面上に第1の絶縁膜としてSiO2膜2を
形成し、次に浮遊ゲートとしてポリシリコン層3を形成
、更には第2の絶縁膜としてSi、N、膜4を形成する
。この後に、第2図に示すようにソース・ドレイン・チ
ャンネルを形成する領域をフォト・レジスト10で覆い
、プラズマ・エツチング処理等を用いて第2の絶縁膜4
及び浮遊ゲート3を順に選択的かつ自己整合的に除去す
る。このようにして形状決定された第2の絶縁膜4をマ
スクにして、第3図に示すように寄生チャンネル防止の
ためのイオン注入(例えばボロン)11を行なった後に
、選択酸化を行ない、フィールド酸化膜5を形成する。First, as shown in FIG. 1, a SiO2 film 2 is formed as a first insulating film on the surface of a Si single crystal substrate 1 (temporarily assumed to be P type), and then a polysilicon layer 3 is formed as a floating gate. Further, a Si, N, film 4 is formed as a second insulating film. After this, as shown in FIG. 2, the regions where the source, drain, and channel will be formed are covered with a photoresist 10, and a second insulating film 4 is formed using a plasma etching process or the like.
and floating gate 3 are sequentially and selectively and self-aligned removed. Using the second insulating film 4 whose shape has been determined in this way as a mask, as shown in FIG. An oxide film 5 is formed.
(この第2の絶縁膜4(843N4膜)は単に選択酸化
のマスクとして用いられるだけではなくメモリトランジ
スタの第2のゲート絶縁膜として用いられる。)この上
に制御ゲートとなるポリシリコン層を形成し、その後は
現在一般的に採用されているEFROMの製造方法と同
様に、まず制御ゲートをパターニングし、次に第2のケ
ート絶縁膜及び浮遊ゲートを制御ゲートに対して自己整
合的に除去し、更にはソース・ドレイン領域を形成して
メモリ・トランジスタとする。(This second insulating film 4 (843N4 film) is used not only as a mask for selective oxidation, but also as the second gate insulating film of the memory transistor.) A polysilicon layer that will become a control gate is formed on this second insulating film 4 (843N4 film). After that, the control gate is first patterned, and then the second gate insulating film and the floating gate are removed in a self-aligned manner with respect to the control gate, similar to the currently commonly used EFROM manufacturing method. Furthermore, source/drain regions are formed to form a memory transistor.
以上に述べたように、この新しい手法によるBFROM
では浮遊ゲートをチャンネルの長さ方向に対して制御ゲ
ートに自己整合化するだけでなく、チャンネルの幅方向
に対してもフィールド酸化膜によって自己整合化するこ
とによって、構造的にセル面積を縮小することを可能に
している。ここで、上に述べた工程中、浮遊ゲートとな
るポリシリコン層3に対しては通常導電性を与えるため
にリンの拡散を施している。これは第1のゲート絶縁膜
2であるS i 02中でリンの拡散係数が低く、後の
工程で熱処理を受けても浮遊ゲート中の不純物であるリ
ンがチャンネル部にまで拡散することが防止でき、メモ
リ・トランジスタの閾値電圧を容易に制御できるためで
あった。As mentioned above, BFROM using this new method
In this case, the cell area is structurally reduced by not only self-aligning the floating gate with the control gate in the length direction of the channel, but also self-aligning it in the width direction of the channel with a field oxide film. It makes it possible. Here, during the above-mentioned process, phosphorus is normally diffused into the polysilicon layer 3 which becomes the floating gate in order to impart conductivity. This is because the diffusion coefficient of phosphorus in S i 02, which is the first gate insulating film 2, is low, which prevents phosphorus, which is an impurity in the floating gate, from diffusing into the channel part even if it is subjected to heat treatment in a later process. This is because the threshold voltage of the memory transistor can be easily controlled.
しかるに、上記工程の欠点として、フィールド酸化膜5
を形成する際に、浮遊ゲート中の不純物(リン)が、外
部へ拡散(アウトディフユーズ)するという問題が生じ
る。上述したようにフィールド酸化膜を形成する際には
寄生チャンネル防止のためにボロン等のイオン注入を行
なうが、リンはこれに対して逆型の不純物であるため、
半導体表面あるいは酸化装置内部を汚染することになる
。However, as a drawback of the above process, the field oxide film 5
When forming the floating gate, a problem arises in that the impurity (phosphorous) in the floating gate diffuses to the outside (out-diffuse). As mentioned above, when forming a field oxide film, ions such as boron are implanted to prevent parasitic channels, but phosphorus is an opposite type impurity, so
This will contaminate the semiconductor surface or the inside of the oxidation device.
さらに、上記工程からは次のような問題点が生じる可能
性がある。上記工程では第2図に示すようにソース・ド
レイン・チャンネルを形成する領域をフォト・レジスト
等で覆い、第2の (絶縁膜4及び浮遊ゲート3を自
己整合的に除去した後、第3図のようにフィールド酸化
膜を形成したが、この場合、浮遊ゲート3は端部から酸
化されるため、チャンネル幅が減少してしまい、この減
少量を軽減するためには第2図において第2の絶縁膜4
のみを除去した後にフィールド酸化膜を形成し、除去し
なかった浮遊ゲートはそのまま酸化し、フィールド酸化
膜の一部としてしまう方法が考えられるが、この方法の
場合、浮遊ゲート中の不純物(リン)は、上述のような
アウト・ディフユーズの問題と同時に、フィールド酸化
膜の下へ拡散して寄生MO8)ランジスタの閾値電圧を
低下させてしまうことになる。Furthermore, the following problems may arise from the above steps. In the above process, as shown in FIG. 2, the region where the source, drain, and channel will be formed is covered with photoresist, etc., and the second (insulating film 4 and floating gate 3 are removed in a self-aligned manner) However, in this case, the floating gate 3 is oxidized from the edge, resulting in a decrease in the channel width. Insulating film 4
One possible method is to form a field oxide film after removing only the floating gate, and oxidize the unremoved floating gate as it is, making it part of the field oxide film. However, in this method, impurities (phosphorus) in the floating gate At the same time as the above-described out-diffuse problem, the MOS transistors diffuse under the field oxide film and lower the threshold voltage of the parasitic MO transistor.
このような問題点は、例えばP型Si基板の場合に浮遊
ゲートのドーピングに11形のリンを用いているという
ように、浮遊ゲートのドーピングが半導体基板の不純物
と逆導電型である/ζめに生じていた。Such a problem is caused by the fact that the doping of the floating gate is of the opposite conductivity type to the impurity of the semiconductor substrate, for example, in the case of a P-type Si substrate, type 11 phosphorus is used for doping the floating gate. It was occurring in
3)発明の目的
本発明は浮遊ゲートのドーピングが半導体基板と同型で
かつ低濃度であってもFROMの機能を損なわないとい
う新たなる実験事実に基づき、上述のような従来の方法
の欠点を除去するために、浮遊ゲートへの不純物のドー
ピングを半導体基板と同型にしたもので、このことによ
ってさらに半導体基板への基板と同型の不純物のド−ピ
ングと浮遊ゲートへのドーピングを同一の工程で行なう
ことが可能となシ、工程の短縮化が実現された。3) Purpose of the invention The present invention eliminates the drawbacks of the conventional methods described above, based on the new experimental fact that the doping of the floating gate is the same type as that of the semiconductor substrate and does not impair the function of FROM even if it is at a low concentration. In order to do this, the floating gate is doped with the same type of impurity as the semiconductor substrate, and this allows doping of the semiconductor substrate with the same type of impurity as the substrate and doping of the floating gate in the same process. This made it possible to shorten the process.
(4)発明の構成および作用の説明
以下に第4図乃至第7図に基づいて本発明の二つの具体
的実施例について説明する。なお、説明の都合上nチャ
ンネルポリシリコンセルファライン型について述べるが
、本発明は必ずしもnチャンネル型に限定されるもので
はなく、また、浮遊ゲートが制御ゲートに自己整合的に
形状決定される所謂ポリシリ・セルフ・アライン型であ
る必要もない。(4) Description of structure and operation of the invention Two specific embodiments of the invention will be described below with reference to FIGS. 4 to 7. Although the n-channel polysilicon self-line type will be described for convenience of explanation, the present invention is not necessarily limited to the n-channel type, and may also be applied to the so-called polysilicon self-line type in which the floating gate is shaped in a self-aligned manner with the control gate.・There is no need to be a self-aligning type.
(実施例1)
(1)まず、第4図に示すようにP型Si単結晶基板1
を洗浄し、第1の絶縁膜として5in2膜2を300〜
100OAの厚さに形成し、次に浮遊ゲートとなるポリ
シリコン層13を気相成長法等によシ例えば100OA
の厚さに形成し、さらにメモリ・トランジスタの閾値電
圧を調整するためのボロンのイオン注入12を例えば1
50keyで1.5 X I Q13Cm ’程度性な
う。このイオン注入によシ、浮遊ゲート層13に導電性
が与えられる。(Example 1) (1) First, as shown in FIG.
5in2 film 2 as the first insulating film at 300 ~
A polysilicon layer 13 is formed to a thickness of 100 OA, and then a polysilicon layer 13, which will become a floating gate, is formed to a thickness of 100 OA, for example, by vapor phase growth.
For example, boron ion implantation 12 is performed to adjust the threshold voltage of the memory transistor.
With 50 keys, it will be about 1.5 X I Q13Cm'. This ion implantation gives floating gate layer 13 electrical conductivity.
さに形成した後、第5図に示すように、ソース・ドレイ
ン・チャンネル領域をフォト・レジスト10等で覆い、
例えばCF4+02中でのプラズマ・エツチング処理に
よシ、被エツチング領域の8 i s N4膜4を除去
し、寄生チャンネル防止のためボロンのイオン注入】1
を例えば100 kevでI X 1019cm−2程
度行ナウ。As shown in FIG. 5, the source, drain, and channel regions are covered with photoresist 10 or the like.
For example, by plasma etching in CF4+02, the 8 is N4 film 4 in the etched region is removed, and boron ions are implanted to prevent parasitic channels.
For example, at 100 kev I x 1019cm-2 or so.
(3) フォト・レジスト10を適尚な方法で除去し
た後、例えば1000℃の)lt−02雰囲気中で5〜
10時間の熱酸化を行ない第6図に示すように0.7〜
1.5μm程度のフィールド8i0z膜5を形成する。(3) After removing the photoresist 10 by a suitable method, for example, in a lt-02 atmosphere (at 1000°C),
After 10 hours of thermal oxidation, the
A field 8i0z film 5 of about 1.5 μm is formed.
このとき、選択酸化のマスクとなる8 13 N4膜4
0表面は100〜300八程度酸化されて8i0z膜9
が形成される。また、(2)で、フォト・レジスト10
で覆われていなかった部分のポリシリコン層13は選択
酸化の間に酸化され、フィールド酸化膜5の一部となる
。At this time, the 8 13 N4 film 4 serves as a mask for selective oxidation.
0 surface is oxidized to about 100~3008 to form 8i0z film 9
is formed. Also, in (2), photoresist 10
The portions of the polysilicon layer 13 that are not covered by the polysilicon layer 13 are oxidized during selective oxidation and become part of the field oxide film 5.
(4) S l s N4膜表面の8i02膜9を除
去した後、現在一般的に採用されているEPROMの製
造方法と同様にして第7図のような構造のメモリ・トラ
ンジスタを得る。すなわち、制御ゲートとなるポリシリ
コン層6を例えば5000Aの厚さに形成し、チャンネ
ル領域及びポリシリコン配線領域をフォト・レジスト等
で覆い、プラズマ・エツチング処理等によシ、制御ゲー
ト6、第2のゲート5i3N4膜4、浮遊ケート13、
第1のゲート5IQz 膜2を順次、自己整合的に除去
し、露出された基板面に例えばリンのイオン注入を行な
い、ソー系領域22、及びドレイン領域23を形成し、
さらには層間絶縁膜7の形成後、コンタクト孔21をあ
け、アルミ配線8を施して第7図に到る。(4) After removing the 8i02 film 9 on the surface of the S l s N4 film, a memory transistor having a structure as shown in FIG. 7 is obtained in the same manner as the EPROM manufacturing method generally employed at present. That is, the polysilicon layer 6 that will become the control gate is formed to a thickness of, for example, 5000 Å, the channel region and the polysilicon wiring region are covered with photoresist, etc., and the control gate 6 and the second gate 5i3N4 film 4, floating gate 13,
The first gate 5IQz film 2 is sequentially removed in a self-aligned manner, and ions of, for example, phosphorus are implanted into the exposed substrate surface to form a source region 22 and a drain region 23.
Furthermore, after forming the interlayer insulating film 7, a contact hole 21 is made and an aluminum wiring 8 is provided, resulting in the process shown in FIG.
(実施例2)
(1)まず、第3図に示すように、P型Si単結晶基板
1にメモリ・トランジスタの閾値電圧を調整するだめの
ボロンのイオン注入12を例えば70keVで1.5
X I Q13crrr−2程度行ない、第1の絶縁膜
として5i02膜2を300〜1000Aの厚さに形成
し、その上に浮遊ケートとなるポリシリコン層14を例
えば100OAの厚さに形成する(ここではまだポリシ
リコン層14に導電性が与えられていない)。(Example 2) (1) First, as shown in FIG. 3, boron ions 12 are implanted into a P-type Si single crystal substrate 1 at a voltage of, for example, 70 keV to adjust the threshold voltage of the memory transistor.
A 5i02 film 2 is formed as a first insulating film to a thickness of 300 to 1000 Å, and a polysilicon layer 14, which will become a floating gate, is formed to a thickness of 100 OA, for example. (The polysilicon layer 14 is not yet made conductive.)
(2)次にこのポリシリコン層14の上に第二絶縁膜と
して51gN4膜4を500〜100OAの厚さに形成
した後、第4図に示すように、ソース・ドレイン・チャ
ンネル領域をフォト・レジスト10等で覆い、被エツチ
ング領域のSi、N、膜4を除去し、寄生チャンネル防
止のためのボロンのイオン注入11を例えば、100k
ev で1xto+icm−”程i行りう。;c;cで
、イオン注入に されたポリシリコン層14にはボロン
がドーピングされ、後の熱処理(フィールド酸化)の際
に、ポリシリコン層3内にある程度拡散され、浮遊ケー
ト14は低濃度ながらドーピングされて導電性を持つ。(2) Next, after forming a 51 g N4 film 4 as a second insulating film on this polysilicon layer 14 to a thickness of 500 to 100 OA, the source, drain, and channel regions are photo-etched as shown in FIG. Cover with a resist 10 or the like, remove Si, N, and film 4 in the region to be etched, and perform boron ion implantation 11 at, for example, 100K to prevent parasitic channels.
The ion-implanted polysilicon layer 14 is doped with boron to a certain extent during the subsequent heat treatment (field oxidation). The floating cathode 14 is doped with a low concentration and has conductivity.
(3)これ以降は(実施例1)の(3)以降と全く同様
である。(3) The subsequent steps are exactly the same as (3) and subsequent steps in (Embodiment 1).
(5)効果の説明
以上の実施例から明らかなように、本発明を用いた場合
、フィールド酸化膜形成の際に浮遊ゲート中の不純物が
外部へアウト・ディフユーズし、半導体表面や酸化装置
内部を汚染したシ、あるいはフィールド酸化膜の下に拡
散して寄生MOSトランジスタの閾値電圧を低下させる
というような欠点を防止することが可能となシ、また、
浮遊ケートへの不純物のドーピングを半導体基板内部へ
の基板と同型の不純物のドーピング(メモリ・トランジ
スタの閾値電圧調整、あるいは寄生MO8)ランジスタ
の閾値電圧調整)と同一工程で行なうことが可能となる
ために、製造工程が安定化されると同時に短縮され、(5) Description of Effects As is clear from the above examples, when the present invention is used, impurities in the floating gate diffuse out to the outside during field oxide film formation, damaging the semiconductor surface and the inside of the oxidation device. It is possible to prevent drawbacks such as contamination or diffusion under the field oxide film and lowering the threshold voltage of the parasitic MOS transistor;
This makes it possible to dope impurities into the floating gate in the same process as doping the inside of the semiconductor substrate with impurities of the same type as the substrate (adjusting the threshold voltage of memory transistors or adjusting the threshold voltage of parasitic MO8 transistors). The manufacturing process is stabilized and shortened at the same time.
第1図乃至第3図は9、浮遊ケートが全ての方向につい
て自己整合的゛に形成されているEPROMを製造する
際の主要工程における断面構造の変化を工程順に示すも
のである。第4図乃至第9図は、本発明の実施例の主要
工程における断面構造を工程順に示すものである。
なお図において、1・・・・・・半導体基板、2・・・
・・・第1のケート絶縁膜、3.13.14・・・・・
・浮遊ケート、4・・^・・第2のゲート絶縁膜、5・
・・・・・フィールド絶縁膜、6・・・・・・制御ケー
ト、7・・・・・・層間絶縁膜、8・・・・・・金属配
線、9・・・・・・Si3N4膜表面の5tO2膜、1
0・・・・・・フォトレジスト、11・・・・・・寄生
チャンネル防止のための不純物注入部分、12・・曲メ
モリトランジスタの閾値電圧調整のための不純物注入部
分、21・・曲コンタクト孔、22・・四ソース領域、
23・・・・・・ドレイン領域、である。
啼7縄
第2図
集3図
単4.凹
/、ノFIGS. 1 to 3 show, in order of process, changes in the cross-sectional structure in the main steps in manufacturing an EPROM in which the floating cathode is formed in a self-aligned manner in all directions. FIG. 4 to FIG. 9 show the cross-sectional structure of the main steps of the embodiment of the present invention in the order of the steps. In the figure, 1... semiconductor substrate, 2...
...First Kate insulating film, 3.13.14...
・Floating gate, 4... ^... Second gate insulating film, 5.
...Field insulating film, 6...Control gate, 7...Interlayer insulating film, 8...Metal wiring, 9...Si3N4 film surface 5tO2 membrane, 1
0... Photoresist, 11... Impurity implanted portion for preventing parasitic channels, 12... Impurity implanted portion for adjusting threshold voltage of curved memory transistor, 21... Curved contact hole , 22...four source regions,
23...Drain region. Nai 7 Rope 2nd Figure Collection 3 Single 4. Concave /, ノ
Claims (1)
上に第1の絶縁膜を介して形成された多結晶シリコンの
浮遊ゲートと、該浮遊ゲート上に第2の絶縁膜を介して
形成された制御ゲートと、前記半導体基板の非活性領域
に形成されたフィールド絶縁層とを具備し、前記浮遊ゲ
ートが前記フィールド絶縁層とオーバーラツプしないよ
うに形成されておシ、かつ前記浮遊ゲートが前記半導体
基板と同一導電型であることを特徴とする不揮発性半導
体記憶装置。A semiconductor substrate having a source/drain region, a polycrystalline silicon floating gate formed on this substrate via a first insulating film, and a control layer formed on the floating gate via a second insulating film. a gate, and a field insulating layer formed in a non-active region of the semiconductor substrate, the floating gate being formed so as not to overlap the field insulating layer, and the floating gate being formed in a non-active region of the semiconductor substrate. A nonvolatile semiconductor memory device characterized by having the same conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22471182A JPS59114869A (en) | 1982-12-21 | 1982-12-21 | Non-volatile semiconductor memory device having floating gate of polycrystalline silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22471182A JPS59114869A (en) | 1982-12-21 | 1982-12-21 | Non-volatile semiconductor memory device having floating gate of polycrystalline silicon |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59114869A true JPS59114869A (en) | 1984-07-03 |
Family
ID=16818045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22471182A Pending JPS59114869A (en) | 1982-12-21 | 1982-12-21 | Non-volatile semiconductor memory device having floating gate of polycrystalline silicon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59114869A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100303061B1 (en) * | 1993-10-15 | 2001-11-22 | 이데이 노부유끼 | Nonvolatile memory device and manufacturing method thereof |
KR100476025B1 (en) * | 1999-11-12 | 2005-03-10 | 마이크로칩 테크놀로지 인코포레이티드 | Apparatus and method for independent threshold voltage control of memory cell and select gate in a split-gate eeprom |
-
1982
- 1982-12-21 JP JP22471182A patent/JPS59114869A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100303061B1 (en) * | 1993-10-15 | 2001-11-22 | 이데이 노부유끼 | Nonvolatile memory device and manufacturing method thereof |
KR100476025B1 (en) * | 1999-11-12 | 2005-03-10 | 마이크로칩 테크놀로지 인코포레이티드 | Apparatus and method for independent threshold voltage control of memory cell and select gate in a split-gate eeprom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4268321A (en) | Method of fabricating a semiconductor device having channel stoppers | |
US5998849A (en) | Semiconductor device having highly-doped source/drain regions with interior edges in a dislocation-free state | |
US5518944A (en) | MOS transistor and its fabricating method | |
US20020022325A1 (en) | Method of making ultra thin oxide formation using selective etchback technique integrated with thin nitride layer for high performance mosfet | |
JPS5843912B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
KR100246691B1 (en) | Semiconductor device manufacturing method | |
US20040169224A1 (en) | Semiconductor device and manufacturing method therefor | |
JPH0370139A (en) | Optical recording and reproducing method | |
JPS59114869A (en) | Non-volatile semiconductor memory device having floating gate of polycrystalline silicon | |
JPH05206454A (en) | Manufacture of mis-type semiconductor device | |
KR0170436B1 (en) | Method of manufacturing mosfet | |
JPH04715A (en) | Manufacture of semiconductor device | |
JPH07297275A (en) | Manufacture of semiconductor device | |
US4409727A (en) | Methods of making narrow channel field effect transistors | |
JPS63275181A (en) | Manufacture of semiconductor device | |
JPH0481327B2 (en) | ||
JP2005317645A (en) | Semiconductor device and its fabrication process | |
JPH06188259A (en) | Manufacture of semiconductor device | |
JPS6039868A (en) | Manufacturing method of semiconductor device | |
JPS61239671A (en) | Manufacture of semiconductor memory device | |
KR930001290B1 (en) | Mos transistor with high junction voltage and its manufacturing method | |
JPH04302170A (en) | Manufacture of semiconductor device | |
JPH0555232A (en) | Manufacture of semiconductor device | |
JPH07106443A (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
JPH09205085A (en) | Fabrication of semiconductor device |