[go: up one dir, main page]

JPS59114739A - Rotary anode for x-ray tube - Google Patents

Rotary anode for x-ray tube

Info

Publication number
JPS59114739A
JPS59114739A JP22401582A JP22401582A JPS59114739A JP S59114739 A JPS59114739 A JP S59114739A JP 22401582 A JP22401582 A JP 22401582A JP 22401582 A JP22401582 A JP 22401582A JP S59114739 A JPS59114739 A JP S59114739A
Authority
JP
Japan
Prior art keywords
layer
foil
ray tube
graphite
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22401582A
Other languages
Japanese (ja)
Inventor
Yoshio Fukuhara
福原 由雄
Hideo Koizumi
小泉 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22401582A priority Critical patent/JPS59114739A/en
Publication of JPS59114739A publication Critical patent/JPS59114739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • H01J2235/084Target-substrate interlayers or structures, e.g. to control or prevent diffusion or improve adhesion

Abstract

PURPOSE:To check completely carbon diffusion from a graphite base substance to the target base substance by interposing a three layer carbon diffusion checking layer consisting of an Re layer, carbide and an Re foil en bloc between the graphite base substance and the target base substance in a state of closely contacting of the Re foil with the target base substance. CONSTITUTION:An Re thin layer in thickness of 5-20mum is formed on one side of a graphite disk by making the graphite disk to perform a reaction of gaseous growth in a reactor while making a mixed gas of an ReF6 gas and an H2 gas to flow in. Thereafter, an Mo2C layer in thickness of 10-30mum on the Re thin layer by a gas type solvent method or the like. Next, the Re foil is placed on said Mo2C layer and after laminating the side of an Mo plate of the target base substance further thereon, the whole is united en bloc by impressing pressure from up and down under an atmosphere of inert nitrogen or the like through a compressive medium of boronnitride powder or the like, whereby carbon diffusion can be completely checked.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はXffl1j管用回転陽極に関し、更に詳しく
は、黒鉛基体とターゲット基体の間に新規な炭素拡散抑
止Nを介在せしめたX線管用回転陽極に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a rotating anode for an Xffl1j tube, and more particularly to a rotating anode for an X-ray tube in which a novel carbon diffusion inhibitor N is interposed between a graphite substrate and a target substrate. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

熱容量が太きく高出力のX線を発生する回転陽極は、従
来、高融点で耐熱強度、耐熱衝撃に優れ。
Rotating anodes, which have a large heat capacity and generate high-output X-rays, have traditionally had a high melting point, excellent heat resistance strength, and thermal shock resistance.

安定したxiを効率よく発生するタングステン(5)若
しくはW合金又はこれらの背面に熱吸収体として比較的
厚いモリブデン(Mo)の板を一体的に接合した複合板
形式のターゲット基体として構成されている。
It is constructed as a target base in the form of a composite plate made of tungsten (5) or W alloy that efficiently generates stable xi, or a relatively thick molybdenum (Mo) plate integrally bonded to the back side of these as a heat absorber. .

近時、X線技術の進歩に伴い、連続負荷あるいは瞬間的
な高負荷入力に耐え得るようなさらに熱容量の大きい回
、転陽極が強く求められている。
In recent years, with the advancement of X-ray technology, there has been a strong demand for rotary anodes with larger heat capacities that can withstand continuous loads or instantaneous high load inputs.

熱容量を高めて高出力化全音るためにはターゲット基体
の1董を大きくすればよい。
In order to increase the heat capacity and achieve high output, it is only necessary to increase the size of one piece of the target substrate.

しかしながら、ターゲット基体の重量を大きくすると、
X線管の他の構造部材への負担、とくに回転機構への負
担が過大となるだめ、ターゲット基体の、重量には制約
が生ずる。
However, when the weight of the target substrate is increased,
If the load on other structural members of the X-ray tube, especially the rotation mechanism, becomes excessive, the weight of the target substrate will be restricted.

このため、最近では密度が小さく熱放射能に優れた黒鉛
を基本とし、この黒鉛基体の上に比較的薄いター、ゲン
ト基体を一体的に接合することにより、全体の重量全軽
減せしめた回転陽極が開発されている。
For this reason, recently, rotating anodes have been developed that are based on graphite, which has a low density and excellent thermal radiation, and by integrally bonding a relatively thin tar or gent substrate on top of this graphite substrate, the overall weight of the anode is completely reduced. is being developed.

しかしながら、この回転陽極において社、照射される東
予ビー ムによって上記ターゲット基体が。
However, at this rotating anode, the target substrate is irradiated with the Toyo beam.

その表面で約2500〜2600℃に発熱し、したがっ
て該ターゲット基体と黒鉛基体の接合部も高温となる5
、該接合部の温度が1300C以上になると、該黒鉛基
体の炭素が上部のターゲット基体へ拡散し、該接合部に
例えばタングステンカーバイド(WC)、モリブデンカ
ーバイド(M02 C)のような炭化物層が形成される
The surface generates heat of approximately 2500 to 2600°C, and therefore the joint between the target substrate and the graphite substrate also becomes high temperature5.
When the temperature of the joint reaches 1300C or higher, carbon in the graphite base diffuses to the upper target base, and a carbide layer such as tungsten carbide (WC) or molybdenum carbide (MO2C) is formed at the joint. be done.

また□、このような炭化物層は黒鉛基体とターゲット基
体とを熱間圧着によって一体的に接合する際にも生成す
る。
□ Also, such a carbide layer is generated when the graphite substrate and the target substrate are integrally joined by hot press bonding.

上記した炭化反応によって生成した炭化物層は機械的に
脆く1回転陽極の高速回転時の振動等の外的な力によっ
て破損することがある。その結果。
The carbide layer produced by the above-mentioned carbonization reaction is mechanically fragile and may be damaged by external forces such as vibrations during high-speed rotation of the one-turn anode. the result.

ターゲット基体と黒鉛基体の接合部の部分的な剥離ある
いはそれに基づく熱伝導の不均一化と部分的な異常発熱
などの不都合な事態をしばしば招く。
This often leads to inconvenient situations such as partial separation of the joint between the target substrate and the graphite substrate, uneven heat conduction due to this, and local abnormal heat generation.

このため、従来、該黒鉛基体とターゲット基体の間に、
炭素とは炭化物を形成せずかつ炭素のターゲット基体へ
の拡散を抑止する層を介在せしめるという手段が講じら
れている。
For this reason, conventionally, between the graphite base and the target base,
Measures have been taken to interpose a layer that does not form carbides with carbon and prevents carbon from diffusing into the target substrate.

このような炭素拡散抑止層としては、現在までのところ
、レニウム(Re)金属の粉末を適宜なバインダで結着
せしめ黒鉛基体の衣面に塗布した層。
Up to now, such a carbon diffusion inhibiting layer is a layer in which rhenium (Re) metal powder is bound with a suitable binder and coated on the coated surface of a graphite substrate.

CVD法もしくはPVD法で黒鉛基体の表面に沈着形成
した層又は常用の粉末冶金法で加工したReの箔などが
知られている。これらのRetiはあまり薄くてはその
効、果を発揮せず通常50へ・200μm程度の厚みで
ある。
Known are layers deposited on the surface of a graphite substrate by CVD or PVD, or Re foils processed by conventional powder metallurgy. These Reti do not exhibit their effects if they are too thin, and the thickness is usually about 50 to 200 μm.

、 しかしながら、Reは非常に高価な金属でありまた
特性的に熱伝導率の低い金属である。そのため、上記し
た炭素拡散抑止層として厚み200μm程度のRe層の
みを用いた場合、そのコストは非常に高いものとなり、
ガによりも熱伝導係数が低いことによって、ターゲット
基体から黒鉛基体への迅速な熱伝導を低下させ、黒鉛基
体の良好な熱放射能を減殺す、ることになる。
However, Re is a very expensive metal and also has a characteristically low thermal conductivity. Therefore, if only the Re layer with a thickness of about 200 μm is used as the above-mentioned carbon diffusion inhibiting layer, the cost will be extremely high.
The lower thermal conductivity coefficient of moths reduces the rapid heat transfer from the target substrate to the graphite substrate, thereby counteracting the good thermal radiation properties of the graphite substrate.

したがって、厚みができるだけ薄く、黒鉛基体からター
ゲット基体への炭素の拡散を完全VC遮へいする抑止層
の開発は強く望まれていることである。
Therefore, there is a strong desire to develop an inhibition layer that is as thin as possible and completely blocks VC from diffusion of carbon from the graphite substrate to the target substrate.

〔発明の目的」 本発明は、黒鉛基体からターゲット基体へ拡散する炭素
倉はぼ完全に遮へいし、しかもその厚み、が薄い新規な
炭素拡散抑止層ケ備えたX#管用回転陽極の提供全目的
とする。
[Object of the invention] The object of the present invention is to provide a rotating anode for an X# tube that is equipped with a novel carbon diffusion inhibiting layer that almost completely shields the carbon chamber that diffuses from the graphite substrate to the target substrate and has a thin thickness. shall be.

(発明の概要」 本発明のX線管用回転陽極においては、炭素拡散抑止層
がReの単一層で構成されるのではなく。
(Summary of the Invention) In the rotating anode for an X-ray tube of the present invention, the carbon diffusion inhibiting layer is not composed of a single layer of Re.

黒鉛基体とターゲット基体にそれぞれ接合する部分はR
eであるが、その中間には炭化物の層が存在する三層構
造である。すなわち、本発明のX線管用回転降極は、 
Re薄層と炭化物層とRe箔とから成る三階の炭素拡散
抑止層が、黒鉛基体とターゲット基体の間に、該Re箔
と該ターゲット基体とが当接する状態で一体的に介在さ
れてρる(ん造であることを特徴とする。
The parts connected to the graphite base and target base are R.
e, but it has a three-layer structure with a carbide layer in the middle. That is, the rotary depolarization for an X-ray tube of the present invention is
A three-story carbon diffusion inhibiting layer consisting of a Re thin layer, a carbide layer, and a Re foil is integrally interposed between the graphite substrate and the target substrate with the Re foil and the target substrate in contact with each other. It is characterized by being made of

まず、本発明にかかるRe薄層は、黒鉛基体の衣面すな
わちターゲット基体との接合面に緻密かつ密着して形成
すれる層である。黒鉛基体から拡散してくる炭素はまず
このRe薄層で避へいされる。
First, the Re thin layer according to the present invention is a layer that is formed in close and intimate contact with the coating surface of the graphite substrate, that is, the bonding surface with the target substrate. Carbon diffused from the graphite substrate is first avoided by this Re thin layer.

該薄j脅會形成するためには1、基体でおる黒鉛が多孔
構造であり実質的表面積が大きいので1両者の密着性を
高めるという点からして、真空蒸着法、スパッタ法など
のPVD法(Physical Vapor Depo
−sition )又はCVD法(Chemical 
−Vaper Deposition)のような真壁薄
膜形成法を適用することが好ましい。
In order to form the thin J-threat, 1. Since the graphite that is the substrate has a porous structure and a substantial surface area, 1. PVD methods such as vacuum evaporation method and sputtering method are used from the viewpoint of increasing the adhesion between the two. (Physical Vapor Depo
-sition) or CVD method (Chemical
- It is preferable to apply a true wall thin film forming method such as Vaper Deposition.

形成するRe薄層の厚みは通常5〜20μmが好ましく
、5μm未満では炭素拡散抑止の効果が発揮されずまた
20μmf超えても効果の顕著な同上は認められず徒ら
に不経済となるばがりである。
The thickness of the Re thin layer to be formed is usually preferably 5 to 20 μm; if it is less than 5 μm, the effect of suppressing carbon diffusion will not be exhibited, and if it exceeds 20 μm, the effect will not be noticeable and it will be uneconomical. It is.

本発明にかかる炭化物層は、上記したRe薄層の上に積
層して形成される。該炭化物層は、 Re薄層で完全に
遮へいされず該薄層を透過して拡散してくる炭素を捕捉
する機能を果す。該炭化物層としては炭化モリブデン(
MO2C) 、炭IF=タングステン(WC)、炭化タ
ンタル(TaC)、炭化チタン(Tic)の層などをあ
げることができる。これらのうち、とくにM020層は
有用である。炭化物層の厚みは通常10〜30μmであ
る。該厚みが10μm未満の場合は、上記した炭素の捕
捉効果が小さく。
The carbide layer according to the present invention is formed by laminating on the above-mentioned Re thin layer. The carbide layer functions to capture carbon that is not completely blocked by the Re thin layer and diffuses through the thin layer. The carbide layer is molybdenum carbide (
Examples include layers of MO2C), carbon IF = tungsten (WC), tantalum carbide (TaC), and titanium carbide (Tic). Among these, the M020 layer is particularly useful. The thickness of the carbide layer is usually 10 to 30 μm. When the thickness is less than 10 μm, the carbon trapping effect described above is small.

また30μmを超えると捕捉する炭素の量が多すぎて層
が跪くなり機械的強度が低下してしまう。
Moreover, if the thickness exceeds 30 μm, the amount of carbon trapped will be too large, causing the layer to collapse, resulting in a decrease in mechanical strength.

この炭化物層全形成するためには、溶射法、CVD法、
PVD法などの方法を適用できるが、 Re 薄層との
密着性がよいこと、形成が簡単であること。
In order to form this entire carbide layer, thermal spraying, CVD,
Although methods such as PVD can be applied, it should have good adhesion to the Re thin layer and be easy to form.

などの理由によって溶射法を適用することが好ましい。For these reasons, it is preferable to apply the thermal spraying method.

この炭化物層の上に積層されるRe箔は下層の炭化物層
の分解によって生成しかつ上層へ拡散してくる炭素を最
終的に遮気−する機能?果す。そのために、Re箔は組
織構造が緻密であることが必要である。具体的には、 
Re粉末を粉末冶金法で焼結した焼結1*に所足の加工
方法で加工して各結晶粒界を複雑にからみ合せた緻密質
の箔である。この加工の際1通常、加工率を50〜90
%で加工すれば本発明の目的に合致したRe箔を得るこ
とができる。
Does the Re foil laminated on top of this carbide layer function as a final barrier to the carbon that is generated by the decomposition of the lower carbide layer and diffuses into the upper layer? fulfill For this purpose, the Re foil needs to have a dense structure. in particular,
It is a dense foil made by processing sintered 1*, which is made by sintering Re powder using a powder metallurgy method, using the required processing method, so that each grain boundary is intricately intertwined. During this processing, the processing rate is usually 50 to 90.
%, it is possible to obtain Re foil that meets the purpose of the present invention.

このRe箔の厚みは50〜100μmであることが好ま
しく、50μm未満になると炭素の拡散を完全には抑止
できず、また100μmf超えると炭素の拡散抑止効果
は顕著に向上しないはかりかかえって迅速な熱伝導が悪
化するという事態を招いて不都合である。
The thickness of this Re foil is preferably 50 to 100 μm; if it is less than 50 μm, carbon diffusion cannot be completely inhibited, and if it exceeds 100 μm, the carbon diffusion inhibiting effect will not be significantly improved, but on the contrary, it will cause rapid heat generation. This is inconvenient because it leads to a situation where conduction deteriorates.

本発明の回転陽極は次のようにして製造することができ
る。
The rotating anode of the present invention can be manufactured as follows.

すなわち、ま、ず予め加工した黒鉛基体を真空薄膜、形
成装置の中にセットし、該黒鉛基体の表面に所に所定厚
みのRe箔を重ね、更にその上に予め加工しであるター
ゲット基体を載せて全体管ホットプレス装置の中にセン
トし真空下で熱圧プレスして全体管一体的に接合すると
いう方法である。
That is, first, a pre-processed graphite substrate is set in a vacuum thin film forming apparatus, a Re foil of a predetermined thickness is overlaid on the surface of the graphite substrate, and a pre-processed target substrate is placed on top of it. In this method, the entire tube is placed in a hot-pressing device, and the entire tube is integrally joined by hot pressure pressing under vacuum.

〔発明の実施例〕[Embodiments of the invention]

υ タ、−ゲント基体の製造 常法により作製した直径130m+s厚み2.5111
1のタングステン板と直径13011B厚み15°語の
モリブデン板を用意した。該モリブデン板の上に該タン
グステン板を載置し、水素雰囲気中で1600C,25
0Kf/−で熱圧プレスした。タングステン板とモリブ
デン板が一体的に接合した後、モリブデン板の下面捧平
滑化加工を施こして複合ターゲット基体とした。
υ Diameter 130m + s Thickness 2.5111 manufactured by the usual method of manufacturing Ghent substrates
A tungsten plate with a diameter of 13011B and a molybdenum plate with a thickness of 15 degrees were prepared. The tungsten plate was placed on the molybdenum plate and heated at 1600C, 25°C in a hydrogen atmosphere.
Hot pressure pressing was carried out at 0 Kf/-. After the tungsten plate and molybdenum plate were integrally joined, the bottom surface of the molybdenum plate was smoothed to form a composite target base.

2)  Re箔の調製 粒径l〜3μmのRe粉末を室温下で金型内に充填し、
 1.5torVc+4で圧縮予備成形した後、得られ
た圧粉体k 2 ton/Jで等力圧縮成形した。この
成形体をlXl0  Torrの真空炉中で22000
の温度で焼き固めた。縦10 Q wb 、幅5 Q 
wtv、厚み2mの焼結体が得られた。
2) Preparation of Re foil Fill a mold with Re powder having a particle size of 1 to 3 μm at room temperature,
After pre-compression molding at 1.5 torVc+4, the obtained green compact was subjected to isostatic compression molding at k 2 ton/J. This molded body was heated in a vacuum furnace at lXl0 Torr at 22,000 Torr.
Baked at a temperature of Height: 10 Q wb, Width: 5 Q
A sintered body with wtv and a thickness of 2 m was obtained.

これを1700〜1900Cの温度下で熱間鍛造し。This is hot forged at a temperature of 1700 to 1900C.

更に1700Cで熱間圧延した後冷間圧延して加工率8
0%(厚み0.4m)のRe箔とした。
Furthermore, after hot rolling at 1700C, cold rolling was performed to obtain a processing rate of 8.
0% (thickness: 0.4 m) Re foil.

3)回転陽極の製造 直径130■シ厚み301Bの黒鉛円板’kcVD装置
の反応炉中にセントし、ここVc、ReFs  ガス及
びルガスの混合ガスを流入して気相成長反応を行なわせ
、黒鉛円板の片面を厚み10μmのRe薄層で被aじた
3) Manufacture of rotating anode A graphite disk with a diameter of 130 mm and a thickness of 301 mm is placed in the reactor of a kcVD apparatus, and a mixed gas of Vc, ReFs gas, and ReFs gas is introduced into the reactor to perform a vapor phase growth reaction, and graphite is One side of the disk was coated with a thin layer of Re with a thickness of 10 μm.

その後、黒鉛円板會装酸から取出し、Rei’1層の上
にガス式溶射法で厚み1511BのM020層を形成し
た。
Thereafter, the graphite disc was taken out from the acidic acid, and an M020 layer having a thickness of 1511B was formed on the Rei'1 layer by gas spraying.

ついで、このMotC層の上に2)で調製したRe箔を
載せ更にその上に1)で製造したターゲット基体のMo
板の側全重ねた後、全体を1500C1窒素(不活性)
雰囲気下でボロンナイトライド粉末全圧縮媒体として、
上下方向から約250 Ky/−の圧力を印加し、約1
時間その状態を保持した。その結果全体が一体的に接合
されていることを確認した。
Next, the Re foil prepared in 2) was placed on this MotC layer, and the Mo of the target substrate prepared in 1) was placed on top of it.
After overlapping all sides of the board, the whole was treated with 1500C1 nitrogen (inert).
Boron nitride powder as a whole compressed medium under atmosphere,
Approximately 250 Ky/- pressure is applied from the top and bottom, and approximately 1
It remained in that state for an hour. As a result, it was confirmed that the entire structure was integrally joined.

なお、比較のために、黒鉛基体の上に平均粒径1〜3μ
mのレニウムの粉末20F(10st/)に有機バイン
ダ0.29 k加えて成るスラリーを厚み約500μm
に均一に塗布し、バインダケ加熱除去後その上に同様に
複合ターゲツト板を接合した回転陽極ケ、作製した。
For comparison, particles with an average particle size of 1 to 3 μm were placed on a graphite substrate.
A slurry made by adding 0.29 k of organic binder to 20 F (10 st/) of rhenium powder to a thickness of about 500 μm
After the binder was heated and removed, a rotating anode was fabricated by similarly bonding a composite target plate thereon.

4)炭素の拡散に対する抑止効果 このようにして得られた2個の回転陽極を。4) Deterrent effect on carbon diffusion Two rotating anodes obtained in this way.

I X 10−’Torrの真空炉中で約14000の
温度下で10時間放置した。冷却後1回転陽極を取り出
し、それぞれを垂直方向に切断して接合面を露出せしめ
た。
It was left for 10 hours at a temperature of about 14,000° C. in a vacuum oven at I.times.10-'Torr. After cooling, the one-rotation anodes were taken out and each was cut vertically to expose the bonding surface.

該切断面を顕微鏡観察し、ターゲット基体のM。The cut surface was observed under a microscope to determine the M of the target substrate.

板に形成された炭化物層の有無?r調べた。Is there a carbide layer formed on the board? I looked into it.

その結果1本発明の回転陽極の場合にはMo板には炭化
物層が全く形成されてぃなかった。これに反し、比較例
の回転陽極では約100μmの炭化物の層が不均一に形
成されていることが確認された。
As a result, in the case of the rotating anode of the present invention, no carbide layer was formed on the Mo plate. On the other hand, in the rotating anode of the comparative example, it was confirmed that a carbide layer of about 100 μm was formed non-uniformly.

〔発明の効果〕〔Effect of the invention〕

本発明の回転陽極では、黒鉛基体とターゲット基体との
間の炭素拡散抑止層が薄いにもがかわらず、炭素の拡散
をほぼ完全に抑止することができる。 Re層が薄いの
で安価でありターゲット基体から黒鉛基体への熱伝導も
迅速に進行する。その結果、熱容量が大きくなり高出力
可能となる。などの効果を奏しその工業的価値は大であ
る。
In the rotating anode of the present invention, carbon diffusion can be almost completely inhibited even though the carbon diffusion inhibiting layer between the graphite base and the target base is thin. Since the Re layer is thin, it is inexpensive and heat conduction from the target substrate to the graphite substrate proceeds quickly. As a result, the heat capacity increases and high output becomes possible. It has the following effects and has great industrial value.

Claims (1)

【特許請求の範囲】 1、 レニウム薄層と炭化物層とレニウム箔とから成る
三層の炭素拡散抑止層が、黒鉛基体とターゲット基体の
間に、#レニウム箔と該ターゲット基体とが当接する状
態で一体的に介在されている構造であることを特徴とす
るX線管用回転陽極。 2、該レニウム薄層の厚みが5〜20μmである特許請
求の範囲第1項記載のX線管用回転陽極。 3、 該レニウム薄層が真空薄膜形成法で形成された薄
層である特許請求の範囲1項又は第2項記載のX線管用
回転陽極。 4、該炭化物層の厚みが10〜30μmである特許請求
の範囲第1項記載のX線管用回転陽極。 5、該炭化物層が溶射法で形成された層である特許請求
の範囲第1項又祉第4項記載のX線管用回転陽極。 6、該炭化物層が炭化モリブデンの層である特許請求の
範囲第1項、第4項、第5項のいずれかに記載のX線管
用回転陽極。 7、 該レニウム箔の厚みが50〜100μm である
特許請求の範囲第1項記載のX線管用回転陽極。 8、 該レニウム箔が粉末焼結体を加工した箔である特
許請求の範囲第1項又は第7項記載のX線管用回転陽極
[Claims] 1. A state in which a three-layer carbon diffusion inhibiting layer consisting of a thin rhenium layer, a carbide layer, and a rhenium foil is placed between a graphite base and a target base, and the #rhenium foil and the target base are in contact with each other. A rotating anode for an X-ray tube, characterized in that it has a structure in which the anode is integrally interposed with the anode. 2. The rotating anode for an X-ray tube according to claim 1, wherein the thin rhenium layer has a thickness of 5 to 20 μm. 3. The rotating anode for an X-ray tube according to claim 1 or 2, wherein the rhenium thin layer is a thin layer formed by a vacuum thin film forming method. 4. The rotating anode for an X-ray tube according to claim 1, wherein the carbide layer has a thickness of 10 to 30 μm. 5. The rotating anode for an X-ray tube according to claim 1 or claim 4, wherein the carbide layer is a layer formed by a thermal spraying method. 6. The rotating anode for an X-ray tube according to any one of claims 1, 4, and 5, wherein the carbide layer is a layer of molybdenum carbide. 7. The rotating anode for an X-ray tube according to claim 1, wherein the rhenium foil has a thickness of 50 to 100 μm. 8. The rotating anode for an X-ray tube according to claim 1 or 7, wherein the rhenium foil is a foil obtained by processing a powder sintered body.
JP22401582A 1982-12-22 1982-12-22 Rotary anode for x-ray tube Pending JPS59114739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22401582A JPS59114739A (en) 1982-12-22 1982-12-22 Rotary anode for x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22401582A JPS59114739A (en) 1982-12-22 1982-12-22 Rotary anode for x-ray tube

Publications (1)

Publication Number Publication Date
JPS59114739A true JPS59114739A (en) 1984-07-02

Family

ID=16807246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22401582A Pending JPS59114739A (en) 1982-12-22 1982-12-22 Rotary anode for x-ray tube

Country Status (1)

Country Link
JP (1) JPS59114739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007260A1 (en) * 1987-03-18 1988-09-22 Hitachi, Ltd. Target for x-ray tube, a process for producing the same, and an x-ray tube
US5122422A (en) * 1989-05-26 1992-06-16 Schwarzkopf Technologies Corporation Composite body made of graphite and high-melting metal
WO1996029445A1 (en) * 1995-03-22 1996-09-26 Alliedsignal Inc. Chemical vapor deposition of rhenium on carbon substrates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007260A1 (en) * 1987-03-18 1988-09-22 Hitachi, Ltd. Target for x-ray tube, a process for producing the same, and an x-ray tube
US5122422A (en) * 1989-05-26 1992-06-16 Schwarzkopf Technologies Corporation Composite body made of graphite and high-melting metal
WO1996029445A1 (en) * 1995-03-22 1996-09-26 Alliedsignal Inc. Chemical vapor deposition of rhenium on carbon substrates

Similar Documents

Publication Publication Date Title
EP2316595B1 (en) Methods of making molybdenum titanium sputtering target and sputtering target
TW573036B (en) Method of making high density sputtering targets
US7851055B2 (en) High-thermal-conductivity graphite-particles-dispersed-composite and its production method
US4838935A (en) Method for making tungsten-titanium sputtering targets and product
KR100331494B1 (en) Laminated Structures and Manufacturing Method Thereof
US6089444A (en) Process of bonding copper and tungsten
JP3040132B2 (en) Composite composed of graphite and refractory metal
JPH06507674A (en) Method for manufacturing tungsten-titanium sputtering targets and targets manufactured thereby
JP2009538984A (en) Cold compressed sputter target
US3836807A (en) Rotary anode for x-ray tubes
EP0037956B1 (en) A rotary anode for an x-ray tube and a method for manufacturing the same
US20120228131A1 (en) Method for consolidating and diffusion-bonding powder metallurgy sputtering target
US20070196563A1 (en) Three-dimensional pvd targets, and methods of forming three-dimensional pvd targets
EP0305547B1 (en) Target for x-ray tube, a process for producing the same, and an x-ray tube
JPS59114739A (en) Rotary anode for x-ray tube
US5580658A (en) Copper-carbon composite material with graded function and method for manufacturing the same
JP4689011B2 (en) Low oxygen high density Cu / Cr sputtering target manufacturing method
JP2002329470A (en) Rotating anode for X-ray tube and method for producing the same
JPS597182B2 (en) Rotating anode for X-ray tube
JP2000260369A (en) Target for x-ray tube and x-ray tube using it
JPS608575B2 (en) Manufacturing method of rotating anode for X-ray tube
JP3465567B2 (en) Sputtering target material for forming tantalum silicon nitride thin film
KR20230164796A (en) Composite and heat dissipation parts
JPS5918820B2 (en) Method for manufacturing targets for X-ray tubes
JPH10321776A (en) Radiator member for semiconductor element