[go: up one dir, main page]

JPS59114604A - Acceleration and deceleration controlling system of industrial robot - Google Patents

Acceleration and deceleration controlling system of industrial robot

Info

Publication number
JPS59114604A
JPS59114604A JP22394282A JP22394282A JPS59114604A JP S59114604 A JPS59114604 A JP S59114604A JP 22394282 A JP22394282 A JP 22394282A JP 22394282 A JP22394282 A JP 22394282A JP S59114604 A JPS59114604 A JP S59114604A
Authority
JP
Japan
Prior art keywords
axis
acceleration
pulse
teaching point
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22394282A
Other languages
Japanese (ja)
Other versions
JPH0561650B2 (en
Inventor
Shigeru Futami
茂 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP22394282A priority Critical patent/JPS59114604A/en
Publication of JPS59114604A publication Critical patent/JPS59114604A/en
Publication of JPH0561650B2 publication Critical patent/JPH0561650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To change smoothly a speed by executing a control by an operation of a pulse moving extent which moves between two point of a teaching point train, and an operation of a weighted moving mean of these continuous time series data of a prescribed number. CONSTITUTION:A pulse moving extent, etc. of X-Z axes are operated through a PTP operating circuit 2, etc. basing on a data of a pulse number, etc. between teaching points stored in a teaching point data memory 1, by an industrial robot of an orthogonal coordinate type, and an acceleration and deceleration control of digital servo-systems 6-8 of each axis is executed. As for this operation, the pulse moving extent is operated from the number of clocks and the number of increment pulses stored in the memory 1 by a PTP operating circuit 2, and also a weighted moving mean of the pulse moving extent of each axis is operated 3-5. This mean is provided as a pulse moving extent at a time tn, to the servo-systems 6-8 of each axis.

Description

【発明の詳細な説明】 本発明は、離散的なティーチング点データが与えられ、
このティーチング点データから一定周期毎に各軸のパル
ス移動量が演算される産業用ロボットの加減速制御方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides discrete teaching point data,
The present invention relates to an acceleration/deceleration control method for industrial robots in which the pulse movement amount of each axis is calculated at regular intervals from this teaching point data.

産業用ロボットのノー加・・減速制御は、従来、P↑P
方式における断続軌道制御の、すなわち各ティーチング
点毎に停止する、例えばスポット溶接ロボットの位置決
めに対してのみ行なわれている。第1図はティーチング
点列を一般的に示すもので、時刻tn−1,tn、tn
+1において、それぞれティーチング点Pn−1,Pn
、Pn+1に位置決めされる。
Conventionally, no-acceleration/deceleration control of industrial robots is based on P↑P.
Intermittent trajectory control in this system, that is, stopping at each teaching point, is performed only for positioning, for example, a spot welding robot. Figure 1 generally shows the teaching point sequence, and shows the teaching point sequence at times tn-1, tn, tn.
+1, teaching points Pn-1 and Pn, respectively
, Pn+1.

第2図は直交座標型産業用ロボットに対する上記の加減
速制御の例で、ある軸の時刻毎の各X、Y。
FIG. 2 is an example of the above-mentioned acceleration/deceleration control for a Cartesian coordinate type industrial robot, and shows each X and Y of a certain axis at each time.

で移動してきてティーチング点pnの近傍に近づくと直
線的に減速されて時Mtnにおいてパルスパルス移動量
は零となりティーチング点Pr+に停止する。そして時
刻tn’から直線的に加速されて、ある時刻に・一定速
度に達し、次のティーチング点pn+1に向かって移動
する。ティーチングPn+1の近傍でも、同様に、直線
的な加減速制御が行なわれる。産業用ロボットは、一般
に多軸であるので、上記の加減速制御は複雑なものとな
る。そして、各軸の定速時の速度が異なる場合でも、全
ての軸゛の速度パターンが相似形、つまり一定の比例関
係になるように加減速制御が行なわれる。この最も単純
な直線゛加減速制御においても、定速度時のパルス移動
量の計算、加減速時の一次差分パルス移動量の計算、加
速→定速1.切・替判定演算、定速→減速切替判定演算
を必要とした。
When it approaches the vicinity of the teaching point pn, it is linearly decelerated, and at time Mtn, the pulse pulse movement amount becomes zero and stops at the teaching point Pr+. Then, it is linearly accelerated from time tn', reaches a constant speed at a certain time, and moves toward the next teaching point pn+1. In the vicinity of teaching Pn+1, linear acceleration/deceleration control is similarly performed. Since industrial robots generally have multiple axes, the acceleration/deceleration control described above is complicated. Even if the speeds of the respective axes at constant speed are different, acceleration/deceleration control is performed so that the speed patterns of all the axes are similar, that is, have a constant proportional relationship. Even in this simplest linear acceleration/deceleration control, calculation of pulse movement amount at constant speed, calculation of first-order difference pulse movement amount during acceleration/deceleration, acceleration → constant speed 1. A switching/switching determination calculation and a constant speed → deceleration switching determination calculation were required.

以上のPTP方式における断続軌道制御に対して、各テ
ィーチング点では停止せずに速度が変化する、PTP方
式における連続軌道制御がある。
In contrast to the intermittent trajectory control in the PTP method described above, there is continuous trajectory control in the PTP method in which the speed changes without stopping at each teaching point.

この連続軌道制御が行なわれる産業用ロボットと−して
、例えばアーク溶接ロボットが有る。このような産業用
ロボットではティーチング点毎に各軸の速度変化が発生
し、これらの速度変化は各軸、全く独立で、加速軸も有
れば減速軸も有り、速度変化がない軸も有るというよう
にばらばらであるため、上記の直線加減速制御を行し・
ながら、同時に各ティーチング点毎に全軸のパルス分配
が完了するようにすることはオンライン的には演算速度
の制限で事実上、不可能であった。第3図(a)(b)
(c)は、それぞれこのような連続軌道制御産業用ロボ
ットのある軸のX軸、Y軸、Z軸に関するるぐルス移動
量の時間的変化の例を示している。図から明らかなよう
に、ティーチング点の前後での速゛度変化は、第2図の
断続軌道制御の場合と異なり、ステップ状に行なわれ振
動の原因となっていた。
An example of an industrial robot that performs this continuous trajectory control is an arc welding robot. In such industrial robots, speed changes occur on each axis at each teaching point, and these speed changes are completely independent of each axis, with some axes accelerating, some axes decelerating, and some axes having no speed change. Since the results are disjointed, the linear acceleration/deceleration control described above is performed.
However, it is virtually impossible to complete pulse distribution for all axes at the same time for each teaching point online due to limitations in calculation speed. Figure 3(a)(b)
(c) shows an example of a temporal change in the amount of movement of the gururus with respect to the X, Y, and Z axes of such a continuous trajectory control industrial robot. As is clear from the figure, the velocity change before and after the teaching point was different from the case of the intermittent orbit control shown in FIG. 2, and was performed in steps, causing vibrations.

すなわち、この連続軌道制御を行なう多軸の産業用ロボ
ットにおいては、ティーチング点における速度変化を滑
5かに制御する方法は未解決のままであった。
That is, in a multi-axis industrial robot that performs continuous trajectory control, a method for smoothly controlling speed changes at the teaching point has remained unresolved.

本発明は上述の問題点に鑑み提案されたもので、連続軌
道制御を行なう多軸の産業用ロボットは勿論、断続軌道
制御を行なう多軸の産業用ロボットに適用可能で、速度
変化を滑らかに制御する、産業用ロボッ、トの加減速制
御方式を提供することを目的とする。
The present invention was proposed in view of the above-mentioned problems, and is applicable not only to multi-axis industrial robots that perform continuous trajectory control, but also to multi-axis industrial robots that perform intermittent trajectory control, and can smoothly change speed. The purpose of this invention is to provide an acceleration/deceleration control method for industrial robots.

本発明の産業用ロボットの加減速制御方式は、各軸につ
いて、 (1)ティーチング点列の隣接する2点を定速で移ると
き、時刻tn、より以前の(N、−1)周期間のN、個
のパルス移動量5n−j (j=N−1、N−2−−1
、O)の重み付き移動平均 を演算し、この重み付き移動平均Snを時刻tnにおけ
るパルス移動量として加減速制御を行なうものである。
The acceleration/deceleration control method for the industrial robot of the present invention is as follows: (1) For each axis, when moving between two adjacent points in the teaching point sequence at a constant speed, N, pulse movement amount 5n-j (j=N-1, N-2--1
, O), and performs acceleration/deceleration control using this weighted moving average Sn as the pulse movement amount at time tn.

以上の本発明の原理を具体的に説明する。第7図(a)
はパルス移動量S=2の定速でティーチング点間を移動
して、時刻t3であるティーチング点に到達し、以後、
次のティーチング点までパルス移動量5−12の定速で
移動する軸に対して本発明の方法を適用したものである
。本例では、N=4Wo =0.’l 、 Wl =0
.3 、 W2 =02 、 Wl =θ/である。
The above principle of the present invention will be specifically explained. Figure 7(a)
moves between teaching points at a constant speed with a pulse movement amount S=2, reaches the teaching point at time t3, and thereafter,
The method of the present invention is applied to an axis that moves at a constant speed with a pulse movement amount of 5-12 until the next teaching point. In this example, N=4Wo=0. 'l, Wl = 0
.. 3, W2 =02, Wl =θ/.

以下、各時刻t3 y t4 v t5 r t6 p
 t7におけるパルス移動量外S3.s4.s5.s6
.S7の重み付き(i)t=t3ノとき S3 =S2
 =S1 =s□ =2 テア6 カら   S3 =
2 (ii) t = t、 ノとき  S4=/j、53
=S2=3□−2であルカら 34 =O,ll×/2
+0.3x2+0.2×2+0./X2=乙 (iii)t=t5(7) トキ55=S4=/2 、
53=S2=2”?:あるから s5=θl×72+0
3x/2+0.2×2+0./×2=9 (IV)t=j6(7)とき 56−85−84−12
,53−2であるから   56=O,ll×/2+0
3×/2+0.2X/2十〇、lX2=//。
Below, each time t3 y t4 v t5 r t6 p
S3 outside the pulse movement amount at t7. s4. s5. s6
.. S7 weighted (i) when t=t3 S3 = S2
=S1 =s□ =2 Thea 6 Kara S3 =
2 (ii) t = t, when S4=/j, 53
=S2=3□-2 and Luka 34 =O,ll×/2
+0.3x2+0.2x2+0. /X2=Otsu(iii)t=t5(7) Toki55=S4=/2,
53=S2=2”?: Because there is s5=θl×72+0
3x/2+0.2x2+0. /×2=9 (IV) When t=j6(7) 56-85-84-12
, 53-2, so 56=O,ll×/2+0
3×/2+0.2X/2〇, lX2=//.

(v)t=t7 のとき 57=S6=S5”’S4−
/jであるがら       S7  =O,’l×/
2+Q、3×/2+’0.2X/2+0./×/2=I
2 となる。これを図示すると、第を図(a)のようなステ
ップ状となり、周期は小さいので近似曲番こ図のような
曲線となる。第を図(b)はティーチング点間でパルス
移動量の変化がない軸の場合で、勿論、パルス移動量の
重み付き移動平均は実際の% /レス移動量と同じであ
る。
(v) When t=t7 57=S6=S5"'S4-
/j while S7 =O,'l×/
2+Q, 3×/2+'0.2X/2+0. /×/2=I
It becomes 2. If this is illustrated, the curve will be in a step shape as shown in Figure (a), and since the period is small, it will be a curve similar to the approximate curve diagram. Fig. 5(b) shows the case of an axis where the pulse movement amount does not change between teaching points, and the weighted moving average of the pulse movement amount is, of course, the same as the actual %/res movement amount.

w6=o、os、同図(b) ハN = 7 、 Wo
 =Wl =W2 =O,,2。
w6=o, os, same figure (b) HaN=7, Wo
=Wl =W2 =O,,2.

けが等しい場合である。したがって、各場合心こおける
パルス移動量の重み付き移動平均は図のようなステップ
状になり、曲線((C)の場−合は直線)で近似される
This is a case where the injuries are equal. Therefore, in each case, the weighted moving average of the pulse movement amount takes a step shape as shown in the figure, and is approximated by a curve (a straight line in the case of (C)).

以上のように、パルス移動量の周期の数(N−/)と各
重み付けの値Wj (j =0.N−/)を適宜定める
ことにより、各ティーチング点において、任意の、例え
ば、直線、S字曲線、指数関数状曲線、折線等の加減速
度のパターンを選択することが可能となる。− 次に本発明の産業用ロボットの加減速制御方式を適用し
た実施例として直交座標型産業用ロボットの要部ブロッ
ク図を第6図に示す。ティーチング点データメモIJ 
lにはティーチング点間の移動に要するクロック数M、
X、Y、Z各軸のティーチング点間のインクリメントパ
ルス数LX、Ly、LZ等のティーチングデータが記憶
されている。
As described above, by appropriately determining the number of cycles of the pulse movement amount (N-/) and the weighting value Wj (j = 0.N-/), any arbitrary, for example, straight line, It is possible to select acceleration/deceleration patterns such as an S-shaped curve, an exponential curve, and a broken line. - Next, FIG. 6 shows a block diagram of the main parts of an orthogonal coordinate type industrial robot as an embodiment to which the industrial robot acceleration/deceleration control method of the present invention is applied. Teaching point data memo IJ
l is the number of clocks M required to move between teaching points,
Teaching data such as the number of increment pulses LX, Ly, and LZ between teaching points on each of the X, Y, and Z axes is stored.

FTP演I!回路−ではティーチング点データメモリ1
に記憶されたクロック数M1インクリメンドパ/l/ 
ス数” XT L’/ r L zのデータからX、Y
、Z各軸のパルス移動量5xn=Lx/M、5yn=L
V/M+5zn=Lz/Mが演算されるo 3.’l、
sはそれぞれFTP演算演算回路波算したX軸パルス移
動量3XnY軸パルス移動量syn、z軸パルス移動量
Sinの重み付き移動平均SXn、Syn、Sznを演
算するX軸パルス移動量重み付き移動平均演算回路、Y
軸パルス移動貴重み付き移動平均演算回路、2軸パルス
移動量重み付き移動平均演算回路である。X軸パルス移
動量重み付き移動平均演算回路3の動作ニついて、第7
図のフロートチャートに基づいて説明する。各時刻tn
(n’70.l、2・・・・・・、n)のX軸パルス移
動量SX’n ’(n==o 、 l 、 2・・・・
・・、n)は一定の周期でFTP演算回路2から直列に
入力される。
FTP Performance I! In circuit -, teaching point data memory 1
The number of clocks M1 incremented by /l/
From the data of "X L'/ r L z"
, pulse movement amount of each Z axis 5xn=Lx/M, 5yn=L
V/M+5zn=Lz/M is calculated o 3. 'l,
s is a weighted moving average of the X-axis pulse movement amount 3Xn, the Y-axis pulse movement amount syn, and the Z-axis pulse movement amount Sin calculated by the FTP arithmetic operation circuit, SXn, Syn, and Szn. Arithmetic circuit, Y
These are a moving average calculation circuit with axis pulse movement weighting, and a moving average calculation circuit with weighting of two-axis pulse movement amount. Regarding the operation of the X-axis pulse movement amount weighted moving average calculation circuit 3, see the seventh section.
The explanation will be based on the flowchart shown in the figure. Each time tn
X-axis pulse movement amount SX'n' (n==o, l, 2..., n) of (n'70.l, 2..., n)
. . , n) are input in series from the FTP calculation circuit 2 at a constant cycle.

そしてこれらのX軸パルス移動量のうち(N−/)周期
間のN個のX軸パルス移動量Sxn、5X(nl)S 
X (n−2) 、=−・−8X(n−N+1) (n
=o 、 l 、 2 、・・−p)がメモリに常時記
憶される。そして、上記Nの値と共に予め設定されて他
のメモリに記憶されたN個の重み付けW Or W 1
・・・・・・WN−1の値と上記のメモリに記憶された
N個のX軸パルス移動量3Xn。
Of these X-axis pulse movement amounts, N X-axis pulse movement amounts Sxn, 5X(nl)S during (N-/) periods
X (n-2) , =-・-8X(n-N+1) (n
=o, l, 2,...-p) are always stored in the memory. Then, N weights W Or W 1 which are set in advance together with the value of N and stored in another memory are
. . . Value of WN-1 and N X-axis pulse movement amounts 3Xn stored in the above memory.

5X(n−1)、5X(n−2)−、・曲・、5x(n
二N+1)の値から、時刻tnにおけるX軸パルス移動
量の重み付き移動平均SXnが演算され、デジタル量と
してX軸デジタルサーボ系乙の制御装置乙′に回転位置
検出器PGXで検出した回転モータMXの回転位置の信
号Xと共に出力される。Y軸パルス移動貴重み付き移動
平均演算回路グ、X軸パルス移動量重み付き移動平均演
算回路jも同様にしてそれぞれY軸パルス移動貴重み付
き移動平均syn。
5X(n-1), 5X(n-2)-,・Song・, 5X(n
2N+1), the weighted moving average SXn of the X-axis pulse movement amount at time tn is calculated, and as a digital value, the rotation motor detected by the rotational position detector PGX is sent to the control device O' of the X-axis digital servo system A. It is output together with the signal X indicating the rotational position of MX. Similarly, the Y-axis pulse movement weighted moving average arithmetic circuit and the X-axis pulse movement amount weighted moving average arithmetic circuit j are respectively syn.

ジタルサーボ、系にの制御装置g′に出力する。なおX
My、PGy、VはそれぞれY軸の回転モータ、転変位
である。
The digital servo is output to the system control device g'. Furthermore, X
My, PGy, and V are the rotary motor and rolling displacement of the Y axis, respectively.

本発明はティーチング点列の2点間を定速で移動するパ
ルス移動量の演算およびこれらパルス移動量の連続する
所定数の時系列データの重み付は移動平均という非常に
容易な演算だけで、任意のパターンの加減速制御を実現
できる。そして、この加減速制御は速度変化がある軸に
対してのみ自動的に行なわれること、および従来は各テ
ィーチング点で停止する場合にしか行なうことができな
かった加減速制御が、任意の2速度間でも可能となるこ
七等、従来の加減速制御にない好ましい機能を有してい
るので、産業用ロボットの軌道制御をスムーズに行なう
ことができ、その結果、産業用ロボットを高速に動作さ
せることが可能となる。
In the present invention, the calculation of the amount of pulse movement that moves at a constant speed between two points in the teaching point sequence and the weighting of a predetermined number of consecutive time series data of these pulse movement amounts are performed using only a very simple calculation called a moving average. Any pattern of acceleration/deceleration control can be realized. Furthermore, this acceleration/deceleration control is automatically performed only for axes with speed changes, and acceleration/deceleration control that could previously only be performed when stopping at each teaching point has been changed from Since it has desirable functions not found in conventional acceleration/deceleration control, such as being able to control the speed even when the robot is in the becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はティーチンーブ点列を一般的に示す図、第2図
は断続軌道制御の産業用ロボットの加減速制御の例を示
す図、第3図は従来の連続軌道制御の産業用ロボットの
パルス移動量の変化を示す図、第を図、第jは本発明の
パルス移動量の重み付き平均の計算例を示す図、第を図
は本発明の産業用ロボットの加減速制御方式を適用した
産業用ロボットの/実施例の要部ブロック図、第7図は
第3図のX軸パルス移動量重み付き移動平均演算回路の
動作を示すフロートチャートである。 /・・・ティーチングメモリ1 2・・・PTP演算回跳 3・・・X軸パルス移動量重み付き移動平均演算回路為 t・・・Y軸パルス移動量型み付き移動平均演算回路1 5・−!rz軸パルス移動量重み付き移動平均演算回路
、 乙・・・X軸デジタルサーボ系、 7・・・Y軸デジタルサーボ系、 g・・・2軸デジタルサーボ系。 第  3  図 第  2  図 第  4  図 手続補正書(方式) 昭和58年 4月 5日 特許庁長官 殿 1、事件の表示 昭和57年 特許願 第223942
号2、発明の名称 産業用ロボットの加減速制御方式 3、補正をする者 事件との関係   出願人 株式会社安川電機製作所 4、代理人 住所  東京都港区赤坂1丁目9番20号5、補正命令
の日付 (1)  IIA細書第11頁第6行作句を作5匈と補
正する。
Fig. 1 is a diagram generally showing a teaching point sequence, Fig. 2 is a diagram showing an example of acceleration/deceleration control of an industrial robot with intermittent trajectory control, and Fig. 3 is a diagram showing the pulse of a conventional industrial robot with continuous trajectory control. Figure 1 shows changes in the amount of movement, Figure 1 is a diagram showing an example of calculating the weighted average of the amount of pulse movement according to the present invention, Figure 1 is a diagram showing an example of calculating the weighted average of the amount of pulse movement according to the present invention, and Figure 1 is a diagram in which the acceleration/deceleration control method of an industrial robot according to the present invention is applied. FIG. 7, which is a block diagram of the main part of the industrial robot/embodiment, is a flow chart showing the operation of the X-axis pulse movement amount weighted moving average calculation circuit of FIG. 3. /...Teaching memory 1 2...PTP calculation rotation 3...X-axis pulse movement amount weighted moving average calculation circuit t...Y-axis pulse movement amount typed moving average calculation circuit 1 5. -! rz-axis pulse movement weighted moving average calculation circuit, B...X-axis digital servo system, 7...Y-axis digital servo system, g...2-axis digital servo system. Figure 3 Figure 2 Figure 4 Figure Procedural Amendment (Method) April 5, 1980 Commissioner of the Patent Office Sir 1, Indication of Case 1981 Patent Application No. 223942
No. 2, Name of the invention Acceleration/deceleration control method for industrial robots 3, Person making the amendment Relationship to the case Applicant: Yaskawa Electric Manufacturing Co., Ltd. 4, Agent address: 1-9-20-5 Akasaka, Minato-ku, Tokyo, Amendment Date of Order (1) IIA Specifications, page 11, line 6, saku is corrected to saku 5.

Claims (1)

【特許請求の範囲】 離散的なティーチング点データが与えられ、これらティ
ーチング点データから一定周期毎に各軸のパルス移動量
が演算され、これらパルス[11量が対応する各軸のデ
ジタルサーボ系に大刀されて、これらのデジタルサーボ
系により駆動される産業用ロボットにおいて、 各軸について、ティーチング点列の隣接する2き、時刻
tηより以前の(N−1)周期間(7)N個のパルス移
動量3n−j’ (j=IJ−1、N−2、・・出−、
l 、 O)の重み付き移動平均 おけるパルス移動量として加減速制御を行なうことを特
徴とする産業用ロボットの加減速制御方式0
[Claims] Discrete teaching point data is given, and the pulse movement amount of each axis is calculated from the teaching point data at regular intervals. In an industrial robot driven by these digital servo systems, for each axis, N pulses are generated during the (N-1) cycle period (7) before time tη in the second adjacent teaching point sequence. Movement amount 3n-j' (j=IJ-1, N-2,... Out-,
An acceleration/deceleration control method for an industrial robot characterized by performing acceleration/deceleration control as a pulse movement amount in a weighted moving average of l, O)
JP22394282A 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot Granted JPS59114604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22394282A JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22394282A JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Publications (2)

Publication Number Publication Date
JPS59114604A true JPS59114604A (en) 1984-07-02
JPH0561650B2 JPH0561650B2 (en) 1993-09-06

Family

ID=16806113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22394282A Granted JPS59114604A (en) 1982-12-22 1982-12-22 Acceleration and deceleration controlling system of industrial robot

Country Status (1)

Country Link
JP (1) JPS59114604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142008A (en) * 1984-08-03 1986-02-28 Sankyo Seiki Mfg Co Ltd Robot course controller
JPS61245209A (en) * 1985-04-23 1986-10-31 Fanuc Ltd Acceleration and deceleration control system
JPS63235557A (en) * 1987-03-24 1988-09-30 株式会社豊田自動織機製作所 Method for controlling operation of machine device apparatus in loom
JPH0452704A (en) * 1990-06-15 1992-02-20 Hitachi Ltd Evaluation method, control method, and control device for redundant use to improve robot operating ability
JP2006043839A (en) * 2004-08-06 2006-02-16 Kobe Steel Ltd Industrial robot
JP2019166622A (en) * 2018-03-26 2019-10-03 日本電産株式会社 Robot control device, robot control method, and program
JP2019166623A (en) * 2018-03-26 2019-10-03 日本電産株式会社 Robot control device, robot control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014101A (en) * 1973-06-11 1975-02-14
JPS5059680A (en) * 1973-09-27 1975-05-23
JPS55112607A (en) * 1979-02-21 1980-08-30 Toshiba Corp Numeral control unit
JPS5633703A (en) * 1979-08-25 1981-04-04 Fanuc Ltd Signal converting circuit
JPS5990107A (en) * 1982-11-13 1984-05-24 Fanuc Ltd Accelerating and decelerating circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014101A (en) * 1973-06-11 1975-02-14
JPS5059680A (en) * 1973-09-27 1975-05-23
JPS55112607A (en) * 1979-02-21 1980-08-30 Toshiba Corp Numeral control unit
JPS5633703A (en) * 1979-08-25 1981-04-04 Fanuc Ltd Signal converting circuit
JPS5990107A (en) * 1982-11-13 1984-05-24 Fanuc Ltd Accelerating and decelerating circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142008A (en) * 1984-08-03 1986-02-28 Sankyo Seiki Mfg Co Ltd Robot course controller
JPS61245209A (en) * 1985-04-23 1986-10-31 Fanuc Ltd Acceleration and deceleration control system
JPS63235557A (en) * 1987-03-24 1988-09-30 株式会社豊田自動織機製作所 Method for controlling operation of machine device apparatus in loom
JPH0452704A (en) * 1990-06-15 1992-02-20 Hitachi Ltd Evaluation method, control method, and control device for redundant use to improve robot operating ability
JP2006043839A (en) * 2004-08-06 2006-02-16 Kobe Steel Ltd Industrial robot
JP2019166622A (en) * 2018-03-26 2019-10-03 日本電産株式会社 Robot control device, robot control method, and program
JP2019166623A (en) * 2018-03-26 2019-10-03 日本電産株式会社 Robot control device, robot control method, and program

Also Published As

Publication number Publication date
JPH0561650B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
Sundar et al. Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation
Kanade et al. Real-time control of CMU direct-drive arm II using customized inverse dynamics
EP0060563B1 (en) Industrial articulated robot linear interpolation control device
JPS6223322B2 (en)
EP0187864A1 (en) Acceleration/deceleration control system
GB2119965A (en) Manipulator with adaptive velocity controlled path motion
EP0177060A1 (en) Digital servo-control system
CN103197673A (en) Robot motion track locating method and robot motion track locating device
KR880001647B1 (en) Robot control apparatus
EP0357778B1 (en) Method of speed control for servomotor
JPS59114604A (en) Acceleration and deceleration controlling system of industrial robot
JPH06214630A (en) Robot drive path control method
US4914363A (en) Method for controlling the motion of a machine element
US5025362A (en) Coordinate positioning system
JPH0677910B2 (en) Control method for industrial robot
JP2601433B2 (en) Interpolation control method and apparatus for industrial robot
KR100235191B1 (en) Method for minimum time velocity control of industrial robot
JPS63157209A (en) Method and device for feed control of numerically controlled machine tool
Leonhard Trajectory control of a multi-axes robot with electrical servo drives
JPH11198072A (en) Minimum time speed controller for robot
KR100405718B1 (en) A method for controlling position of a material and a system thereof
JP3077145B2 (en) Multi-axis machine where each axis is composed of servo mechanism
JPS58221673A (en) Weaving teaching system of welding robot
JPS6228872A (en) Trigonometric function generating processor
JPS61210888A (en) How to control multiple motors