JPS59113314A - Dynamic pressure type fluid bearing - Google Patents
Dynamic pressure type fluid bearingInfo
- Publication number
- JPS59113314A JPS59113314A JP22237982A JP22237982A JPS59113314A JP S59113314 A JPS59113314 A JP S59113314A JP 22237982 A JP22237982 A JP 22237982A JP 22237982 A JP22237982 A JP 22237982A JP S59113314 A JPS59113314 A JP S59113314A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- shaft
- bearing
- group
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title 1
- 239000000314 lubricant Substances 0.000 claims abstract description 15
- 239000010687 lubricating oil Substances 0.000 claims description 5
- 230000001050 lubricating effect Effects 0.000 claims 1
- 238000003780 insertion Methods 0.000 abstract 1
- 230000037431 insertion Effects 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/107—Grooves for generating pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は軸の外周に設けられたグループで、ラジアル方
向およびスラスト方向軸受を兼用する動圧型流体軸受装
置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hydrodynamic bearing device which is a group provided on the outer periphery of a shaft and which serves as both a radial direction bearing and a thrust direction bearing.
従来例の構成とその問題点
従来の動圧型流体軸受装置は第1図に具体構成を示すよ
うに、軸受穴2Aを有するスリーブ2に、エツチング等
により加工されたグループ1A、1Bを有する軸1が回
転自在に挿入され、スリーブ2の下端面2Bは、軸受穴
2Aに直角に加工され、そこにスラスト受は部材3が固
定されている。グループ1Aおよびグループ1Bの周辺
一体にはオイルまたはグリースの潤々育14を注油して
いる。Structure of the conventional example and its problems As the specific structure of the conventional hydrodynamic bearing device is shown in FIG. is rotatably inserted, the lower end surface 2B of the sleeve 2 is machined perpendicularly to the bearing hole 2A, and the thrust bearing member 3 is fixed thereto. The entire periphery of Group 1A and Group 1B is lubricated with oil or grease 14.
2Cは2ケ所のグループの間にある空気を大気に開放し
、低圧において、この空気が膨張してグル−プ2Aの潤
滑剤を外部に押し出してしまうことを防止するための通
気孔である。2Dはフランジである。2C is a vent hole for opening the air between the two groups to the atmosphere and preventing this air from expanding at low pressure and pushing out the lubricant in group 2A to the outside. 2D is a flange.
従来のこの動圧型流体軸受装置においては軸まだはスリ
ーブが図示しないモーター等により回転させられると、
グループ1A、1Bのポンピング作用により油膜圧力を
発生し、無接触で回転する。In this conventional hydrodynamic bearing device, when the shaft and sleeve are rotated by a motor (not shown), etc.,
The pumping action of groups 1A and 1B generates oil film pressure and rotates without contact.
尚、この時1AのグループではPla−Pl −Plb
のような、また2BのグループではP2a−P2のよう
な圧力分布になり、この発生圧力が軸1の下端面とスラ
スト受は部材3との間にも伝わりこの圧力P3a 、P
3bによりスラスト方向に01の力が発生し、軸1は図
中01だけ浮上をする。従ってグループ1Bはラジアル
およびスラスト方向の両方の力を発生する動圧型流体軸
受である。軸1の回転中、潤滑剤4は軸1に設けられた
絞り孔1Cと排出孔1Dを通って循環する。しかしなが
ら上記のような構成ではスリーブの下端面2Bとスラス
ト受は部材3の接合部において回転中に圧力が高くなり
(圧カニ P=P2=P3)となり接合部から潤滑油が
時間と共に漏洩し、油切れが生じて焼付くことがあった
。また従来の動圧型流体軸受を構置き姿勢にして使用し
た場合には排出孔1Dから排出した潤滑油がグループ1
Bの方へは循環せず、通気孔2Cから流出し、やはり油
切れが生じるという重大な欠点を有していた。At this time, in the group 1A, Pla-Pl-Plb
In the group 2B, the pressure distribution becomes P2a-P2, and this generated pressure is also transmitted between the lower end surface of the shaft 1 and the thrust bearing member 3, resulting in pressures P3a, P2.
3b generates a force of 01 in the thrust direction, and the shaft 1 floats by 01 in the figure. Therefore, Group 1B is a hydrodynamic bearing that generates both radial and thrust forces. During rotation of the shaft 1, the lubricant 4 circulates through the throttle hole 1C and the discharge hole 1D provided in the shaft 1. However, in the above configuration, the pressure increases during rotation at the joint between the lower end surface 2B of the sleeve 2B and the thrust receiver of the member 3 (pressure crab P=P2=P3), and lubricating oil leaks from the joint over time. There were times when the product ran out of oil and burned. In addition, when a conventional hydrodynamic bearing is used in a parked position, the lubricating oil discharged from the discharge hole 1D is in Group 1
The oil did not circulate toward B, but instead flowed out of the vent hole 2C, resulting in a serious problem of oil running out.
発明の目的
本発明は上記欠点に鑑み、潤滑剤の漏洩がなく、構置き
姿勢でも使用できる信頼性の高いラジアル方向およびス
ラスト方向を兼用する動圧型流体軸受装置を提供するも
のである。OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a highly reliable hydrodynamic bearing device that can be used in both the radial and thrust directions without lubricant leakage and can be used even in a parked position.
発明の構成
本発明は、軸受穴を有するスリーブと、この軸受穴に回
転自在に挿入された軸と、前記スリーブ端面に固定され
、前記下端面と当接するスラスト受は部材からなり、前
記軸にはへリングボーン型グループとそのグループの中
央に潤滑剤の導入孔と、その導入孔の周辺に切溝と、切
溝の周辺にグループを有しない絞り部と、前記導入孔か
ら前記下端面の中央に連通ずる給油孔を有し、前記へリ
ングボーン型グループ周辺に潤滑剤を配してなυ、潤滑
剤の漏洩がなく信頼性の高い動圧型軸受装置が得られる
。Structure of the Invention The present invention comprises a sleeve having a bearing hole, a shaft rotatably inserted into the bearing hole, and a thrust bearing fixed to the end surface of the sleeve and in contact with the lower end surface, is a herringbone type group, a lubricant introduction hole in the center of the group, a cut groove around the introduction hole, a constriction part without a group around the cut groove, and a part from the introduction hole to the lower end surface. By having a communicating oil supply hole in the center and disposing a lubricant around the herringbone type group, a highly reliable hydrodynamic bearing device with no lubricant leakage can be obtained.
実施例の説明
以下本発明の実施例について第2〜4図を参照しながら
説明する。第2図は本発明の第1の実施例における動圧
型流体軸受装置の断面図である、第2図におりて11は
軸、12はスリーブで、軸受穴12Aとこの軸受穴に直
角な下端面12Bと通気孔12Cを有している。13は
スラスト受は部材であり、以上は第1図に示す従来例と
同じである。軸1には2つのへリングボーン型グループ
11Aと11B、11Eが設けられ、グループ11Bと
、11Eの間には導入孔11Dとその上下には筒状絞り
部11G、11Hが設けられている。1だ導入孔に連な
って円筒状の切溝11Fが設けられている。軸11の下
面は直角に仕上げられ、中央には絞り孔11Cがあけら
れ、給油孔11Dに慣通している。グループ11Aとグ
ループ11B、11Eの附近一体には潤滑油14が注油
されている。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 2 to 4. FIG. 2 is a cross-sectional view of the hydrodynamic bearing device according to the first embodiment of the present invention. In FIG. It has an end surface 12B and a ventilation hole 12C. Reference numeral 13 designates a thrust receiver, which is the same as the conventional example shown in FIG. Two herringbone-type groups 11A, 11B, and 11E are provided on the shaft 1, and an introduction hole 11D is provided between the groups 11B and 11E, and cylindrical constricted portions 11G, 11H are provided above and below the introduction hole 11D. A cylindrical cut groove 11F is provided continuous with the single-sided introduction hole. The lower surface of the shaft 11 is finished at a right angle, and a throttle hole 11C is drilled in the center, which commonly passes through the oil supply hole 11D. Lubricating oil 14 is applied to the vicinity of the group 11A, groups 11B and 11E.
以上のように構成されだ動圧型流体軸受装置について以
下にその動作を説明する。まず軸11まだはスリーブ1
2が図示しないモーター等により回転させられると、例
えば軸11が矢印ω方向に回転するとグループ11A、
11B、11Cのポンピング作用により油膜圧力を発生
し、無接触で回転する。この時、グループ部の圧力分布
はそれぞれ、グループ11AではP 6 a −P 6
− P 6 bのように、そしてグル−フ゛11Bでは
P了a−P9a 、そしてグループ11EではP7b−
P9bのようになる。また筒状絞り部11G、11Hの
圧力は、軸受すきまが充分小さいため圧力の低下は、は
とんどなく、第2図に示すとおり、P8a彎P7a 、
Psb=P’ybであり、導入孔11Dでの圧力はP=
P8a=P8bとなる。このように11G、11Hは、
切溝11Fの周辺にあるグループを有しない軸受面であ
り、圧力の低下を防ぐ圧力絞りの効果をもつ。The operation of the hydrodynamic bearing device configured as described above will be described below. First, the shaft 11 is still the sleeve 1.
2 is rotated by a motor (not shown), for example, when the shaft 11 rotates in the direction of arrow ω, the groups 11A,
The pumping action of 11B and 11C generates oil film pressure and rotates without contact. At this time, the pressure distribution of the group parts is P 6 a - P 6 in group 11A, respectively.
- like P 6 b, and in group 11B as P - a-P9a, and in group 11E as P7b-
It will look like P9b. In addition, the pressure in the cylindrical constricted portions 11G and 11H hardly decreases because the bearing clearance is sufficiently small, and as shown in FIG.
Psb=P'yb, and the pressure at the introduction hole 11D is P=
P8a=P8b. In this way, 11G and 11H are
This is a bearing surface without groups around the kerf 11F, and has the effect of a pressure throttle to prevent a drop in pressure.
この圧力Pは給油孔11Eを通って軸11の下端面に、
はとんど圧力の低下なく伝播され、給油孔11Eの出口
での圧力は第2図のようにP = P10a= P 1
0 b4;P 8 a = P 8 bとなる。この圧
力によりスラスト方向に02の力を発生し、この時C2
だけ(約2〜10ミクロンメータ)浮上した位置で安定
する。この時第4図に示すようにこのスラストの方向発
生力Q2は回転部分の自重W1と駆動モーターのロータ
ーマグネット17がステータ18を吸引することにより
発生するスラスト方向吸引力W2の和に等しくなってバ
ランスするものである。15.16はディスクを固定す
るだめの回転テーブルである。This pressure P passes through the oil supply hole 11E and is applied to the lower end surface of the shaft 11.
is propagated without a drop in pressure, and the pressure at the outlet of the oil supply hole 11E is P = P10a = P 1 as shown in Figure 2.
0 b4; P 8 a = P 8 b. This pressure generates a force of 02 in the thrust direction, and at this time C2
It stabilizes at a floating position (approximately 2 to 10 micrometers). At this time, as shown in FIG. 4, the thrust direction force Q2 is equal to the sum of the weight W1 of the rotating part and the thrust direction attraction force W2 generated when the rotor magnet 17 of the drive motor attracts the stator 18. It's about balance. 15 and 16 are rotary tables for fixing the disk.
次に第3図に示すようにラジアル方向にW3の荷重がか
かり、軸11が偏心して半径すきまC4>05になった
場合であるが、この場合は半径すきまの小さい側のグル
ープのポンピング作用による圧力が高くなり、即ち、図
3に示すようにP7a)P7c 、P7b)P7dとな
り、これらの圧力差によりW3に対向するラジアル方向
の反発力を発生するわけである。このときは筒状絞り部
11G、11Hは高圧側(P7a 、P7b)の圧力が
低圧側(P7c、P7d)に逃げるのを防ぐ役目をはだ
す。第2図、第3図のいずれの場合も、グループ11E
により昇圧され搬送された潤滑剤は導入孔11Dと給油
孔11Cを通って給油孔11cから圧力(P 二P 1
0 a = P 10 b )で排出され、軸11Bと
スラスト受は部材13との隙間を通過して再びグループ
11Eの方へ向けて循環していく。円筒状の切溝11F
はこの循環する潤滑剤を充分導入孔11Dに導くようそ
の量を確保するだめのものである。Next, as shown in Fig. 3, a load of W3 is applied in the radial direction, and the shaft 11 is eccentric and the radial clearance becomes C4>05. In this case, the pumping action of the group with the smaller radial clearance causes The pressure increases, that is, as shown in FIG. 3, it becomes P7a) P7c, P7b) P7d, and the difference in these pressures generates a repulsive force in the radial direction opposing W3. At this time, the cylindrical constricted portions 11G and 11H serve to prevent the pressure on the high pressure side (P7a, P7b) from escaping to the low pressure side (P7c, P7d). In both cases of Figure 2 and Figure 3, group 11E
The lubricant, which has been pressurized and transported, passes through the introduction hole 11D and the oil supply hole 11C and leaves the oil supply hole 11c under pressure (P 2 P 1
0 a = P 10 b ), the shaft 11B and the thrust receiver pass through the gap with the member 13 and circulate again toward the group 11E. Cylindrical kerf 11F
This is to ensure that the amount of circulating lubricant is sufficiently guided to the introduction hole 11D.
以上のように本発明によればスリーブ12の下端面とス
ラスト受は部材13の接合面の下端面とスラスト受は部
材13の接合面の圧力(P=Psb=P11a=pHb
)がほぼ大気圧と等しくなり、外気との圧力差がないの
で、この接合面から潤滑剤が流出することがないので信
頼性が高い。As described above, according to the present invention, the lower end surface of the sleeve 12 and the thrust receiver are connected to the lower end surface of the joint surface of the member 13 and the thrust receiver is connected to the pressure of the joint surface of the member 13 (P=Psb=P11a=pHb
) is almost equal to atmospheric pressure, and there is no pressure difference with the outside air, so the lubricant does not flow out from this joint surface, so reliability is high.
また本発明の動圧型軸受装置は構置き姿勢で使用しても
、潤滑剤は潤滑剤自身の表面張力によりグループ部に保
持され、外部へ流出することがなく、信頼性が高い0ま
た本発明においては軸の下端面と、スラスト受は部材1
3の間の軸受部にはグループを設けていないので、停止
中にスラスト方向に大きな外力がかかっても、図示しな
いが、スラスト方向の軸受面にグループを設けた他の溝
付き動圧型軸受に比べて、本発明動圧型流体軸受はスラ
スト方向の軸受面、(即ちスラスト受は部材13と、軸
11の下端面から成る軸受面)にはグループを設けてい
ないので、停止中にスラスト方向に大きな外力がかかつ
ても、グループのエッヂにより軸受材料を傷つける心配
がないので、本動圧型流体軸受装置を、信号を記録する
例えばディスクの回転駆動装置に採用した場合、ディス
クの交換時にかかる過大なスラスト力に対しても故障を
おこさない。まだ、スリーブの下端面21Bは軸受穴1
2Aと同時加工し、正確に直角度を出すことができる。Furthermore, even when the hydrodynamic bearing device of the present invention is used in a parked position, the lubricant is retained in the group part by the surface tension of the lubricant itself, and does not flow out to the outside, resulting in high reliability. In this case, the lower end surface of the shaft and the thrust bearing are member 1.
Since there is no group in the bearing section between 3 and 3, even if a large external force is applied in the thrust direction while the bearing is stopped, it will not be affected by other grooved hydrodynamic bearings that have groups in the thrust direction bearing surface (not shown). In comparison, the hydrodynamic bearing of the present invention does not have a group on the bearing surface in the thrust direction (i.e., the thrust bearing consists of the member 13 and the lower end surface of the shaft 11). Even if a large external force is applied, there is no risk of damage to the bearing material due to the edges of the group, so if this hydrodynamic bearing device is used in a rotary drive device for a disk that records signals, for example, the excessive stress required when replacing the disk can be avoided. No failure occurs even under thrust force. The lower end surface 21B of the sleeve is still in the bearing hole 1.
It can be processed simultaneously with 2A to produce accurate squareness.
この面にスラスト受け12Bを固定するので軸11の下
端面との間の隙間を精度よく保ち安定性の優れた軸受が
得られる。Since the thrust receiver 12B is fixed to this surface, the gap between the thrust receiver 12B and the lower end surface of the shaft 11 can be maintained with high accuracy, and a bearing with excellent stability can be obtained.
以下本発明の第2の実施例について第5図を参照しなが
ら説明する。軸21には21B、21Eが設けられ、そ
れらの中間には筒状絞り部21Gが設けられ、軸21の
円筒状切り溝11Fの機能を第5図の座グリ溝21Fか
はだすので部品加工が容易になる021Dは導入孔、2
1Cは給油孔である。A second embodiment of the present invention will be described below with reference to FIG. The shaft 21 is provided with 21B and 21E, and a cylindrical constriction portion 21G is provided between them, and the function of the cylindrical cut groove 11F of the shaft 21 is exposed to the counterbore groove 21F shown in Fig. 5, so that parts processing is possible. 021D is the introduction hole, 2
1C is an oil supply hole.
第6図に第3の実施例を示すOこの場合軸31の座グリ
穴31Fと導入孔31Dの周囲に略丸形状の絞り部31
Gがあり、この絞り部31Gが第3図の筒状絞り部11
G、11Hと同じ機能をはだす。この第3の実施例の場
合、ヘリングボーン型グループ31 B 、31 Hの
面積を大きくし、軸受の負荷容量を大きくできる。31
Gは給油孔である。A third embodiment is shown in FIG.
G, and this constriction part 31G is the cylindrical constriction part 11 in FIG.
It has the same function as G and 11H. In the case of this third embodiment, the area of the herringbone type groups 31 B and 31 H can be increased, and the load capacity of the bearing can be increased. 31
G is an oil supply hole.
第7図に第4の実施例を示す0この場合、筒状絞り部は
軸41の導入孔41Dの上側にのみ筒状絞り部41Gを
設けている。この場合、軸方向の長さ寸法をわずかであ
るが、短かくし、軸受の小型化がはかれる。41Fは円
筒状切溝、41Cは給油孔、41B、41Eはへリング
ボーン型グループである。A fourth embodiment is shown in FIG. 7. In this case, a cylindrical constriction part 41G is provided only above the introduction hole 41D of the shaft 41. In this case, the length in the axial direction is slightly shortened, and the bearing can be made smaller. 41F is a cylindrical kerf, 41C is an oil supply hole, and 41B and 41E are herringbone type groups.
第8図に第5の実施例を示す。この場合軸51の給油孔
51Cに連なって軸61の下面に多孔質材料からなる給
油部材65を取付けたものであり、これにより、給油孔
51Cの直径のバラツキが、軸受性能に与える影響がな
くなり、軸受性能の安定化がはかれる・51B、61E
はへリングボーン型グループ、51Fは円筒状切溝、5
1Dは導入孔、らIG、51Hは絞り部である。FIG. 8 shows a fifth embodiment. In this case, an oil supply member 65 made of a porous material is attached to the lower surface of the shaft 61 so as to be connected to the oil supply hole 51C of the shaft 51. This eliminates the influence of variations in the diameter of the oil supply hole 51C on bearing performance. , stabilization of bearing performance is achieved ・51B, 61E
is a herringbone type group, 51F is a cylindrical kerf, 5
1D is an introduction hole, IG and 51H are a constriction part.
第2図に示す第1の実施例において円筒状切溝11Fは
軸11に設けず、スリーブ12の軸受穴12Aの内面の
導入孔11Dの対向面に設けてもよい。In the first embodiment shown in FIG. 2, the cylindrical groove 11F may not be provided on the shaft 11, but may be provided on the inner surface of the bearing hole 12A of the sleeve 12, on the surface facing the introduction hole 11D.
尚、第2図に示す第1の実施例においてへす/グボーン
型グループ11A、11B、11Eは軸11に設けずス
リーブ12の軸受穴12Aの内面に設けても同じである
。In the first embodiment shown in FIG. 2, the hess/gone type groups 11A, 11B, 11E may be provided on the inner surface of the bearing hole 12A of the sleeve 12 instead of on the shaft 11.
発明の効果
以上のように本発明は軸に設けられたヘリングボーン型
グループの中央部に、軸に略直角な導入孔とその周辺に
切溝と、その溝の周辺に絞り部を設けることにより潤滑
油の漏洩がなく、信頼性の高い動圧型流体軸受装置を得
ることができ、その実用効果は大なるものがある。Effects of the Invention As described above, the present invention provides an introduction hole substantially perpendicular to the axis, a cut groove around the groove, and a constriction part around the groove in the center of the herringbone type group provided on the shaft. It is possible to obtain a highly reliable hydrodynamic bearing device without leakage of lubricating oil, and its practical effects are significant.
第1図(イ)は従来の動圧型流体軸受装置の断面図、第
1図(ロ)、(ハ)はそれぞれ圧力分布の説明図、第2
図(イ)は本発明の一実施例における動圧型流体軸受装
置の断面図、第2図(ロ)、(ハ)はそれぞれ圧力分布
の説明図、第3図(イ)は流体軸受装置の要部断面図、
第3図(ロ)、(ハ)、に)は圧力分布の説明図、第4
図は同動圧型流体軸受の断面図、第5図は本発明の第2
の実施例の軸の斜視図、第6図は第3の実施例る0
11.21.31.41.51・・・・・・軸、12・
・・・・・スリーブ、13・・・・・・スラスト受は部
材、14・・・・・・潤滑剤、11B、11E・・・・
・・ヘリングボーン型グループ、11C・・・・・・給
油孔、11D・・・・・・導入孔、11F・・・・・・
切溝、11G、11H・・・・・・絞り部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
(イン
第 7 図
5、
1
.4ft。
、17/r)
4fF
IC
夕19
り1c
ダFigure 1 (a) is a cross-sectional view of a conventional hydrodynamic bearing device, Figures 1 (b) and (c) are illustrations of pressure distribution, and Figure 2
Figure (A) is a sectional view of a hydrodynamic bearing device according to an embodiment of the present invention, Figures 2 (B) and (C) are explanatory diagrams of pressure distribution, respectively, and Figure 3 (A) is a cross-sectional view of a hydrodynamic bearing device according to an embodiment of the present invention. Main part sectional view,
Figures 3 (b), (c), and 2) are explanatory diagrams of pressure distribution.
The figure is a sectional view of the hydrodynamic bearing, and Figure 5 is the second embodiment of the present invention.
Fig. 6 is a perspective view of the shaft of the third embodiment.
... Sleeve, 13 ... Thrust receiver is a member, 14 ... Lubricant, 11B, 11E ...
...Herringbone type group, 11C... Oil supply hole, 11D... Introduction hole, 11F...
Cut groove, 11G, 11H... Drawing part. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Fig. 2 Fig. 3 (in Fig. 7, 1.4ft., 17/r) 4fF IC evening 19 ri 1c da
Claims (1)
入された軸と、前記スリーブ端面に固定され、前記軸下
端面と当接するスラスト受は部材からなり、前記軸には
へリングボーン型グループと、このヘリングボーン型グ
ループの中心に潤滑油の導入孔と、この導入孔の周辺に
設けられた切溝と、この切溝の周辺にグループを有しな
い圧力の絞り部と、前記導入孔から前記下端面の中央に
連絡する給油孔とを有し、前記へリングボーン型グルー
プの周辺に潤滑剤を配してなる動圧型流体軸受装置。A sleeve having a bearing hole, a shaft rotatably inserted into the bearing hole, and a thrust bearing fixed to the end surface of the sleeve and in contact with the lower end surface of the shaft are made up of members, and the shaft has a herringbone type group. , a lubricating oil introduction hole in the center of this herringbone type group, a cut groove provided around this introduction hole, a pressure constriction part with no group around this cut groove, and A hydrodynamic bearing device comprising: a lubricating hole communicating with the center of the lower end surface; and a lubricant disposed around the herringbone group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22237982A JPS59113314A (en) | 1982-12-17 | 1982-12-17 | Dynamic pressure type fluid bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22237982A JPS59113314A (en) | 1982-12-17 | 1982-12-17 | Dynamic pressure type fluid bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59113314A true JPS59113314A (en) | 1984-06-30 |
JPS626158B2 JPS626158B2 (en) | 1987-02-09 |
Family
ID=16781429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22237982A Granted JPS59113314A (en) | 1982-12-17 | 1982-12-17 | Dynamic pressure type fluid bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59113314A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63180720U (en) * | 1987-05-14 | 1988-11-22 | ||
US5120139A (en) * | 1990-04-18 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Dynamic pressure gas bearing |
US5273368A (en) * | 1990-11-13 | 1993-12-28 | Matsushita Electric Industrial Co., Ltd. | Hydrodynamic gas bearing |
JPH0979263A (en) * | 1995-09-20 | 1997-03-25 | Hitachi Ltd | Bearing device and spindle motor equipped with the same |
JP2012237438A (en) * | 2011-05-09 | 2012-12-06 | Samsung Electro-Mechanics Co Ltd | Hydrodynamic pressure bearing assembly and motor having the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501759U (en) * | 1973-05-04 | 1975-01-09 |
-
1982
- 1982-12-17 JP JP22237982A patent/JPS59113314A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501759U (en) * | 1973-05-04 | 1975-01-09 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63180720U (en) * | 1987-05-14 | 1988-11-22 | ||
US5120139A (en) * | 1990-04-18 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Dynamic pressure gas bearing |
US5273368A (en) * | 1990-11-13 | 1993-12-28 | Matsushita Electric Industrial Co., Ltd. | Hydrodynamic gas bearing |
US5370463A (en) * | 1990-11-13 | 1994-12-06 | Matsushita Electric Industrial Co., Ltd. | Hydrodynamic gas bearing |
JPH0979263A (en) * | 1995-09-20 | 1997-03-25 | Hitachi Ltd | Bearing device and spindle motor equipped with the same |
JP2012237438A (en) * | 2011-05-09 | 2012-12-06 | Samsung Electro-Mechanics Co Ltd | Hydrodynamic pressure bearing assembly and motor having the same |
Also Published As
Publication number | Publication date |
---|---|
JPS626158B2 (en) | 1987-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5834870A (en) | Oil impregnated porous bearing units and motors provided with same | |
US5634724A (en) | Hydrodynamic bearing for spindle motor having high inertial load | |
US5427456A (en) | Fluid bearing with asymmetrical groove pattern | |
JP2870057B2 (en) | Dynamic pressure bearing device | |
KR940002802B1 (en) | Sintered Bearing | |
US5645355A (en) | Bearing unit | |
JPS59113314A (en) | Dynamic pressure type fluid bearing | |
US3841720A (en) | Thrust bearing assembly | |
JPH1182487A (en) | Porous bearing | |
US5839833A (en) | Hydrodynamic bearing having lubricant particle traps | |
JPS59159416A (en) | Dynamic pressure type fluid bearing device | |
JP2976631B2 (en) | Bearing device | |
US3834773A (en) | Unit bearing motor | |
JP3301670B2 (en) | Thrust bearing | |
JP2502674B2 (en) | Hydrodynamic bearing device | |
JP2000035041A (en) | Dynamic pressure type sintered and oil retaining bearing unit | |
JPS6165905A (en) | Dynamic pressure bearing system | |
SU907278A1 (en) | Turbomachine sliding-contact support bearings | |
JPS6360246B2 (en) | ||
JPS6435115A (en) | Bearing device | |
JPS59198849A (en) | Motor unit with dynamic pressure slot | |
JPH0135208B2 (en) | ||
JPH1122722A (en) | Dynamic pressure bearing | |
JPS6311384Y2 (en) | ||
JPS59138796A (en) | Canned motor pump |