JPS59113210A - Clearance control system for steam turbine - Google Patents
Clearance control system for steam turbineInfo
- Publication number
- JPS59113210A JPS59113210A JP22186582A JP22186582A JPS59113210A JP S59113210 A JPS59113210 A JP S59113210A JP 22186582 A JP22186582 A JP 22186582A JP 22186582 A JP22186582 A JP 22186582A JP S59113210 A JPS59113210 A JP S59113210A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- gap
- tip
- turbine
- steam turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
- F01D11/24—Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は蒸気タービンの動翼先端の側壁とシールリング
に取付けたチップフィンの間隙の制御に関するもの、蒸
気タービンプラントを構成する高虫圧殺の効率向上に効
果的である。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to the control of the gap between the tip fin attached to the side wall of the rotor blade tip of a steam turbine and the seal ring, and the efficiency of crushing insects constituting a steam turbine plant. It is effective for improvement.
近年の燃料費、建設費の高騰に伴い1発電プラントの効
率向上が強く要請されている。このために、各種の効率
向上策が検討され、一部は実用化されている。特に熱効
率に対して最も大きな影響を持つ蒸気タービンの内部効
率の向上は着実に大きな成果をあげている。内部効率は
現在90〜92%に達するものが多く、今後大きな改善
効果が期待できない状況にある。内部効率を支配する各
種損失の内漏洩損失がかなりの割合を占めている。漏洩
損失を低減するためには、1)漏洩面積の低減、2)フ
ィン枚数の増加、3)動翼先端の側壁やフィンの形状の
最適化などがあり、3)項は直線的に損失を低減する。With the rise in fuel and construction costs in recent years, there is a strong need to improve the efficiency of power generation plants. To this end, various efficiency improvement measures have been studied, and some have been put into practical use. In particular, improvements in the internal efficiency of steam turbines, which have the greatest impact on thermal efficiency, have steadily achieved great results. Internal efficiency currently reaches 90-92% in many cases, and it is difficult to expect much improvement in the future. Internal leakage losses account for a large proportion of the various losses that control internal efficiency. In order to reduce leakage loss, there are 1) reductions in leakage area, 2) increase in the number of fins, 3) optimization of the shape of the side wall and fins at the tip of the rotor blade, etc. Term 3) linearly reduces loss. reduce
しかし、蒸気タービンの高中圧段では、蒸気の比体積が
小さいので、翼長が短かく、相対的に漏洩面積が大きく
なる。However, in the high and intermediate pressure stages of a steam turbine, the specific volume of steam is small, so the blade length is short and the leakage area is relatively large.
動翼先端の側壁とチップフィンの間隙は起動時から運転
点に達するまでに生ずる軸振動や熱変形などを考慮して
両者が接触しないように定めている。The gap between the side wall at the tip of the rotor blade and the tip fin is determined so that the two do not come into contact, taking into account shaft vibration and thermal deformation that occur from startup to the operating point.
従って、間隙は各種の運転条件や蒸気量に対しても十分
な余裕をとるためにかなジ大きくせざるを得す、従来の
無制御方式では間隙を通過する漏洩量の低減には限界が
ある。Therefore, the gap must be made large in order to provide sufficient margin for various operating conditions and steam amounts.With conventional uncontrolled methods, there is a limit to reducing the amount of leakage that passes through the gap. .
本発明の目的は蒸気タービンの#翼先端の側壁とチップ
フィンの間隙を最小限にして漏洩量を低減することによ
シ効率向上を図る間隙制御方式を提供することにおる。An object of the present invention is to provide a gap control system that improves efficiency by minimizing the gap between the side wall of the tip of a steam turbine blade and the tip fin to reduce the amount of leakage.
本発明は上記の目的のために、動翼先端の側壁とチップ
フィンの間隙を供給蒸気または膜構成の一部から分岐し
た蒸気または給水系で冷却した蒸気を用いて動翼に対置
するチップフィンの付いたシールリングを間隙を測定し
ながら加熱または冷却して漏洩量を最小となるように制
御するとともに、使用後の蒸気を排気または給水系に熱
回収するように構成したところにその特徴を有するもの
である。For the above purpose, the present invention provides a tip fin that is opposed to the rotor blade by using supply steam, steam branched from a part of the membrane structure, or steam cooled by a water supply system to fill the gap between the side wall of the tip of the rotor blade and the tip fin. Its unique feature is that it is configured to control the amount of leakage to a minimum by heating or cooling the seal ring with a while measuring the gap, and to recover heat from the steam after use to the exhaust or water supply system. It is something that you have.
以下1本発明の具体的な実施例を第1図乃至第3図を用
いて詳細に説明する。Hereinafter, a specific embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3.
第1図、第2図および第3図は本発明による蒸気タービ
ンの間隙制御方法の実施列のシヌテムを示したものであ
る。すなわち、ボイラl、高圧タービン2.中圧タービ
ン3.低圧タービン49発電機5および榎水器6などか
らなる蒸気タービンプラントにおいて、主蒸気14から
の分岐蒸気系統19を設けて間隙制御に用いる。また1
間隙側(1gIvc用いた戻り蒸気系統20を配設し、
これを熱回収するために、中圧タービン3の排気系統に
連通ずる連絡管17に戻すように構成する。FIGS. 1, 2 and 3 show a schematic diagram of a method for controlling a gap in a steam turbine according to the present invention. That is, boiler 1, high pressure turbine 2. Medium pressure turbine 3. In a steam turbine plant consisting of a low pressure turbine 49, a generator 5, a water pump 6, etc., a branch steam system 19 from the main steam 14 is provided and used for gap control. Also 1
Gap side (a return steam system 20 using 1gIvc is installed,
In order to recover this heat, it is configured to be returned to a connecting pipe 17 that communicates with the exhaust system of the intermediate pressure turbine 3.
なP、第1図の実施例において、蒸気の取出し口をボイ
ラlの直後の主蒸気から取シ1間隙制御に用いた蒸気の
戻り先を中圧タービンの排気系統に導いた例を示してい
るが、これは限定された意味を有するものでなく、高圧
タービン2の構造物の温度や熱負荷および制御段数など
によっては。In the embodiment shown in Fig. 1, the steam outlet is connected to the main steam immediately after the boiler 1, and the return destination of the steam used for gap control in the boiler 1 is guided to the exhaust system of the intermediate pressure turbine. However, this does not have a limited meaning, and depends on the temperature and heat load of the structure of the high-pressure turbine 2, the number of control stages, etc.
例えば第2図に示すごとく、蒸気の取出し口を高圧ター
ビン20段落間からの抽気口とすることができ、また間
隙制御に低温の蒸気が必要な場合には、第3図に示すご
とく1分岐蒸気19を高圧給水加熱器13に導いて冷却
した蒸気を間隙制御に用いることができ、また熱回収に
ついても第3図に示すごとく、高圧給水加熱器12に戻
すことができ、間隙制御条件を考慮したプラントの熱サ
イクルの最適条件から決定されるものである。For example, as shown in Fig. 2, the steam outlet can be a bleed port from between 20 stages of the high-pressure turbine, and if low-temperature steam is required for gap control, one branch is shown in Fig. 3. The steam 19 is guided to the high pressure feed water heater 13 and the cooled steam can be used for gap control, and as for heat recovery, it can be returned to the high pressure feed water heater 12 as shown in FIG. It is determined from the optimum conditions of the considered plant thermal cycle.
以上のような蒸気発生システムを構成することによって
高圧タービン2の動翼先端の側壁とチップフィンの間隙
制御を可能とする蒸気を発生することができる。By configuring the steam generation system as described above, it is possible to generate steam that makes it possible to control the gap between the side wall of the tip of the rotor blade of the high-pressure turbine 2 and the tip fin.
さて、このような蒸気発生システムを利用し。Now, using such a steam generation system.
高圧タービン2の動翼先端の側壁とチップフィンの間隙
を制御する方法の実施例として第4図を用いて説明する
。An embodiment of a method for controlling the gap between the tip fin and the side wall of the rotor blade of the high-pressure turbine 2 will be described with reference to FIG.
第4図は、高圧タービンの動翼先端の側壁22とチップ
フィン23との間隙27を制御するための詳細な構成を
示す。FIG. 4 shows a detailed configuration for controlling the gap 27 between the side wall 22 and the tip fin 23 at the tip of the rotor blade of the high-pressure turbine.
動翼先端の側壁22とこれに対置したシールリング24
に壜付けられたチップフィン23とシールリング24に
蒸気を均一に吹付ける作用を持ち、周方向に複数個配置
された分配器25および蒸気の出入口を有するケーシン
グ31よ多構成される。Side wall 22 at the tip of the rotor blade and a seal ring 24 opposed to it
The casing 31 has a function of uniformly spraying steam onto the tip fins 23 and the seal ring 24 attached to the bottle, and includes a plurality of distributors 25 arranged in the circumferential direction and a casing 31 having steam inlets and outlets.
本図では主蒸気19を切換弁29を通して流入口32に
導びかれ、分配管25よりシールリング24に吹付けら
れた後、流出口33よ多流用する。In this figure, the main steam 19 is led to the inlet 32 through the switching valve 29, is blown onto the seal ring 24 from the distribution pipe 25, and is then used for multiple flows through the outlet 33.
流出した蒸気は出口制御弁28を通して流量制御した後
排気系または給水系に熱回収される。出口制御弁28は
間隙センサー26によ多間隙27を測定して間隙が最小
値となるように制御器30によシ制御される。なお、設
計条件により低温蒸気が必要な場合には切換弁29の切
換えにより分配器25に低温蒸気を導びくこともできる
。The flow rate of the outflowing steam is controlled through the outlet control valve 28, and then heat is recovered to the exhaust system or the water supply system. The outlet control valve 28 is controlled by the controller 30 so that the gap 27 is measured by the gap sensor 26 and the gap is at a minimum value. Note that if low-temperature steam is required due to design conditions, the low-temperature steam can be guided to the distributor 25 by switching the switching valve 29.
第4図に示す実施例では単段の間隙制御方法を示したが
、多段の場合にはこの実施例の構成を各段に採用し、蒸
気系統を直列または並列に配設することによシ容易に拡
張できる。また、蒸気条件や熱負荷の変動が少なく動翼
先端の側壁やシールリングの熱変形などが推定できる場
合には、切換弁、制御器および間隙測定器を省略するこ
とができる。The embodiment shown in Fig. 4 shows a single-stage gap control method, but in the case of multiple stages, the configuration of this embodiment can be adopted for each stage, and the steam system can be arranged in series or parallel. Easily expandable. Furthermore, if there are few fluctuations in steam conditions or heat loads and thermal deformation of the side wall or seal ring at the tip of the rotor blade can be estimated, the switching valve, controller, and gap measuring device can be omitted.
本実施例では高圧タービンへの適用について述べたが1
本間隙制御方法は中圧タービン、低圧タービ/のいずれ
にも適用可能で蒸気の取り入れ。In this example, application to a high-pressure turbine was described.
This gap control method can be applied to both medium-pressure turbines and low-pressure turbines for steam intake.
取シ出す系統がそれぞれの場合に応じて異なる。The extraction system differs depending on each case.
以上述べた本発明による間隙制御方法を蒸気タービンに
採用すれば、蒸気争件−′P熱負荷の変化に応じて常に
間隙を最小に保つことができて側壁とフィンの接触など
の信頼性を落すことなく、段落間の漏洩量を低減できて
性能向上を図ることができる。本方法の構造は簡単で可
動部分がないので。If the above-described gap control method according to the present invention is applied to a steam turbine, the gap can always be kept at a minimum in response to changes in the steam heat load, thereby improving the reliability of the contact between the side wall and the fin. It is possible to reduce the amount of leakage between paragraphs without dropping the container, thereby improving performance. The structure of this method is simple and there are no moving parts.
信頼性も高く1価格も安い、間隙制御に使用した蒸気を
排気系または給水系に戻して蒸気または水を加熱するの
に利用しているため、プラント効率の劣化を最小限にし
ている。It is highly reliable and inexpensive, and because the steam used for gap control is returned to the exhaust system or water supply system and used to heat steam or water, deterioration in plant efficiency is minimized.
I!JJIL先端の側壁やシールリングの熱変形を予測
できる場合には間隙測定器子制御器などを省略できて安
価なシステムができ、きわめて経済的で実用性が高い。I! If the thermal deformation of the side wall or seal ring at the tip of JJIL can be predicted, a gap measuring device controller etc. can be omitted and an inexpensive system can be created, which is extremely economical and highly practical.
第1図、第2図および第3図は本発明の実施例の高圧タ
ービンに適用した蒸気タービンプラントの系統図、第4
図は同じく部分詳細説明図である。
2・・・高圧タービン、19・・・分岐蒸気、20・・
・戻わ蒸気、21・・・動翼、22・・・動翼先端側壁
、23・・・チンプフィン、24・・・シールリング、
25・・・分配器、26・・・間隙測定器、28・・・
出口制御弁、29・・・切換弁、30・・・制御器、3
1・・・ケーシング。
゛セヴ1, 2, and 3 are system diagrams of a steam turbine plant applied to a high-pressure turbine according to an embodiment of the present invention;
The figure is also a partially detailed explanatory diagram. 2...High pressure turbine, 19... Branch steam, 20...
・Return steam, 21... Moving blade, 22... Moving blade tip side wall, 23... Chimp fin, 24... Seal ring,
25... Distributor, 26... Gap measuring device, 28...
Outlet control valve, 29... switching valve, 30... controller, 3
1...Casing.゛Sev
Claims (1)
加熱器等からなる蒸気タービンプラントにおいて、供給
蒸気の一部または膜構成の二部から分岐した蒸気または
給水系で冷却した蒸気を用いて動翼に対置するクールリ
ングを加熱または冷却して間隙を測定しながら、蒸気条
件ヤ蒸気量の変化に応じて漏洩量を最小となるように制
御するとともに加熱または冷却した後の蒸気を排気系に
熱回収することを特徴とする蒸気タービンの間隙制御方
式。L In a steam turbine plant consisting of a boiler, turbine, condenser, feedwater pump, feedwater heater, etc., a part of the supplied steam, steam branched from two parts of the membrane structure, or steam cooled in the feedwater system is used to cool the rotor blades. While measuring the gap by heating or cooling the cooling ring placed opposite to the cooling ring, the system controls the leakage amount to the minimum according to changes in steam conditions and steam amount, and also directs the heated or cooled steam to the exhaust system. A gap control method for a steam turbine characterized by recovery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22186582A JPS59113210A (en) | 1982-12-20 | 1982-12-20 | Clearance control system for steam turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22186582A JPS59113210A (en) | 1982-12-20 | 1982-12-20 | Clearance control system for steam turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59113210A true JPS59113210A (en) | 1984-06-29 |
Family
ID=16773392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22186582A Pending JPS59113210A (en) | 1982-12-20 | 1982-12-20 | Clearance control system for steam turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59113210A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62111104A (en) * | 1985-11-08 | 1987-05-22 | Hitachi Ltd | Gas turbine clearance adjustment system |
JP2009052547A (en) * | 2007-08-23 | 2009-03-12 | General Electric Co <Ge> | Apparatus and method for reducing eccentricity and increasing roundness in turbine |
US7596954B2 (en) | 2004-07-09 | 2009-10-06 | United Technologies Corporation | Blade clearance control |
KR100962128B1 (en) * | 2008-12-10 | 2010-06-10 | 한전케이피에스 주식회사 | Method for measuring distance between turbine axis and its sealing packing |
US9039346B2 (en) | 2011-10-17 | 2015-05-26 | General Electric Company | Rotor support thermal control system |
-
1982
- 1982-12-20 JP JP22186582A patent/JPS59113210A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62111104A (en) * | 1985-11-08 | 1987-05-22 | Hitachi Ltd | Gas turbine clearance adjustment system |
US7596954B2 (en) | 2004-07-09 | 2009-10-06 | United Technologies Corporation | Blade clearance control |
JP2009052547A (en) * | 2007-08-23 | 2009-03-12 | General Electric Co <Ge> | Apparatus and method for reducing eccentricity and increasing roundness in turbine |
KR100962128B1 (en) * | 2008-12-10 | 2010-06-10 | 한전케이피에스 주식회사 | Method for measuring distance between turbine axis and its sealing packing |
US9039346B2 (en) | 2011-10-17 | 2015-05-26 | General Electric Company | Rotor support thermal control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6295803B1 (en) | Gas turbine cooling system | |
CN102966385B (en) | Steam turbine plant and operation method therefor | |
US5799481A (en) | Method of operating a gas-turbine group combined with a waste-heat steam generator and a steam consumer | |
EP1179664B1 (en) | Steam cooled gas turbine system | |
EP1752617A2 (en) | Combined cycle power plant | |
US4961311A (en) | Deaerator heat exchanger for combined cycle power plant | |
US6082110A (en) | Auto-reheat turbine system | |
CN102713168A (en) | Direct evaporator system and method for organic rankine cycle systems | |
JPH0339166B2 (en) | ||
GB1407531A (en) | Steam power stations | |
EP3289216B1 (en) | A system for generating electrical power from low temperature steam | |
JPS59113210A (en) | Clearance control system for steam turbine | |
GB1601832A (en) | Internal combustion engine plant | |
CN110953069A (en) | Multi-energy coupling power generation system of gas turbine power station | |
CN216077238U (en) | Energy-saving steam turbine power generation device | |
US20150121871A1 (en) | Forced cooling in steam turbine plants | |
JPS5951105A (en) | Gap control method of steam turbine | |
KR100446991B1 (en) | The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating | |
SU373442A1 (en) | BIOLIO "1'D''A | |
CN214660396U (en) | Coupling peak shaving system based on middle row and cooling of middle row among units | |
Keller | Closed-Cycle Gas Turbine: Escher Wyss—AK Development, 1945–1950 | |
KR970044623A (en) | Merge Cycle Power Plant | |
SU800396A1 (en) | Thermal power plant | |
CN211822326U (en) | Waste heat power generation thermal deaerator condensate system | |
SU523998A1 (en) | Steam and gas installation |