JPS59113123A - Production of ultra-hard extra-thin cold rolled steel sheet - Google Patents
Production of ultra-hard extra-thin cold rolled steel sheetInfo
- Publication number
- JPS59113123A JPS59113123A JP22155082A JP22155082A JPS59113123A JP S59113123 A JPS59113123 A JP S59113123A JP 22155082 A JP22155082 A JP 22155082A JP 22155082 A JP22155082 A JP 22155082A JP S59113123 A JPS59113123 A JP S59113123A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel sheet
- cold
- rolled steel
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000005097 cold rolling Methods 0.000 claims abstract description 38
- 238000005096 rolling process Methods 0.000 claims abstract description 27
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 24
- 239000010959 steel Substances 0.000 claims abstract description 24
- 238000000137 annealing Methods 0.000 claims abstract description 12
- 238000001953 recrystallisation Methods 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 26
- 230000009467 reduction Effects 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 7
- 238000005554 pickling Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910001208 Crucible steel Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract 2
- 239000000463 material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 5
- 210000005069 ears Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000005029 tin-free steel Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000287531 Psittacidae Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】 不発明は超硬質極薄冷延鋼板の製造方法に係り。[Detailed description of the invention] The non-invention relates to a method for manufacturing ultra-hard, ultra-thin cold-rolled steel sheets.
特に面内異方性の小づい罐用冷延鋼板の製造方法に関す
る。In particular, the present invention relates to a method for manufacturing a cold-rolled steel sheet for small cans with in-plane anisotropy.
従来、ぶりき、ティンフリー鋳板等の極薄鋼板用原板は
次の2種類の方法で製造これてぃろ。Conventionally, base sheets for ultra-thin steel sheets such as tinplate and tin-free casting sheets have been manufactured using the following two methods.
(イ)熱間圧延終了後酸洗し冷間圧延したる後、再結晶
焼鈍し、その後3%以下の軽度の圧下率にて調質圧延を
行って仕上げる方法。(a) A method of pickling after hot rolling, cold rolling, recrystallization annealing, and then finishing by skin pass rolling at a slight rolling reduction of 3% or less.
(ロ)第1回の冷間圧延終了後再結晶焼鈍を行った後、
再度50%以下の高圧下率で第2回の冷間圧延を行って
仕上げる方法。この方法による材料は通常D R(Do
uble Reduce )材と称されテいる。(b) After performing recrystallization annealing after the first cold rolling,
A method of finishing by performing a second cold rolling again at a high reduction rate of 50% or less. Materials produced by this method are usually D R (Do
It is called a material that can be used as a material.
これらの方法で製造される罐用冷延鋼板に従来要求され
て来た材料特性について説明する。食鑵は古くから胴部
、大部、地部の3部から成るいわゆる3ピース罐が主体
であり、一部にはプレス成形により胴部と地部を一体に
成形したものに大部を接合するいわゆる2ピース罐があ
る。(、がし。The material properties conventionally required for cold-rolled steel sheets for cans produced by these methods will be explained. Since ancient times, food containers have mainly been made of so-called three-piece cans, consisting of three parts: a body, a main part, and a base. There is a so-called two-piece can. (, Gashi.
かかる2ピース罐には、従来軟質材で板厚0.2〜0.
4部厚のものが使わね、ているので、板厚の厚いことに
より製造コストが高く々るという欠点があるものの、一
方2ピース罐は罐の機能がすぐれていることと、製鑵能
率が窩いという利点があるため近年この製鑵法が見直1
れて来た。2ピース罐の中でも特にDI罐(Drawn
anti Wall Ironed Can)やDR
D罐11)rawn and Redrawn Can
)においては、その製造技術が急速に進歩して来た。Conventionally, such two-piece cans are made of soft material with a thickness of 0.2 to 0.
Since a 4-piece thick can is used, it has the disadvantage of high manufacturing costs due to the thick plate, but on the other hand, a 2-piece can has excellent can functionality and high ironmaking efficiency. In recent years, this iron making method has been revised due to the advantage of having holes1.
It came. Among the two-piece cans, the DI can (Drawn)
anti-Wall Ironed Can) and DR
D Can 11) raw and Redrawn Can
), the manufacturing technology has progressed rapidly.
これらの2ピース罐に使用する材料については、例えば
DRD罐には従来板厚0.2〜0.3 tm程度のもの
が使用でれていたが、最近では経済性を考慮し板厚を薄
くシ、それによる強度不足を原板の硬度を大とすること
によって補なう方法がとられている。Regarding the materials used for these two-piece cans, for example, DRD cans were traditionally made with a plate thickness of about 0.2 to 0.3 tm, but recently, in consideration of economic efficiency, the plate thickness has been reduced. A method has been taken to compensate for the lack of strength due to this by increasing the hardness of the original plate.
この強度を向上させる方法として第1回目の冷間圧延終
了後再結晶焼鈍を行った後、更に第2回目の冷間圧延を
行々う方法がとられているが、未だ十分満足すべき効果
が得られていない。以下これらの問題点について説明す
る。A method to improve this strength is to perform recrystallization annealing after the first cold rolling, and then perform a second cold rolling, but the effect is still satisfactory. is not obtained. These problems will be explained below.
一般に絞り罐、DRD罐およびDI罐等の如く絞り加工
によって製鑵される素材として使用される極薄鋼板の絞
り加工性は、自動車の車体がどに用いられる絞り加工用
冷延鋼板と同様に一般的にはr値が大きいことが望まし
いときれている。しかじ製鑵素材の如く大きい深絞り加
工を必要とする極薄鋼板では、たとえr値が非常に高く
ても鋼板が薄いために絞り加工において「しわ」が発生
し易く、高度の深絞り加工は困難である。従って深い罐
を製作する場合には再絞り、しごき加工を利用すること
んとが併用はれるので、実際にll−jあまり太きfx
r値は要求されず、むしろトリミング化を小さくして材
料歩留を向上させるために容器フランジ部の「耳」発生
の少い、いわゆるr値の面内異方性△rの小ζい極薄鋼
板が要求される。The drawability of ultra-thin steel sheets, which are generally used as raw materials for drawing cans, DRD cans, DI cans, etc., is similar to that of cold-rolled steel sheets for drawing used for automobile body parts. It is generally accepted that a large r value is desirable. For ultra-thin steel sheets that require large deep drawing processes, such as those made from Shikaji steel, even if the r-value is very high, wrinkles are likely to occur during the drawing process due to the thinness of the steel plate, and advanced deep drawing processes are required. It is difficult. Therefore, when producing deep cans, re-drawing and ironing are used in combination, so in reality ll-j is too thick fx.
The r value is not required, but rather the in-plane anisotropy △r of the so-called r value is small in order to reduce the amount of trimming and improve the material yield. Thin steel plate is required.
r値は引張試験における厚さ方向の歪に対する幅方向の
歪の比で表わされるが、このr値は引張試験片の採取方
向によって異なる。この異方性の程度は鋼板の製造方法
により異なる。The r value is expressed as the ratio of the strain in the width direction to the strain in the thickness direction in a tensile test, and this r value varies depending on the direction in which the tensile test piece is taken. The degree of this anisotropy varies depending on the manufacturing method of the steel sheet.
一方、絞り加工後の罐のフランジ部は、円周方向の板厚
分布と高さに異方性が現われるが、かがる現象はr値の
面内異方性のために生ずる。す々わちr値の大きい方向
に罐の耳が高く々って山部を形成し、r値の小さい方向
に罐の耳が低くなって谷部を形成する。かかるr値およ
び△r値は結晶の集合組織と密接な関係があり、素材の
製造過程における次の因子により太きく変化することが
知られている。すなわち、
(イ)冷間圧延の圧下率
(ロ)冷延前の熱間圧延温度
(ハ) AtN fiどの析出物の再結晶過程における
析出挙動およびその分散状況
かくの如く、冷延後の再結晶焼鈍状態におけるr値、△
r値および集合組織については古くから議論これでおり
、多くの製造方法が提示されている。On the other hand, the flange portion of the can after drawing shows anisotropy in the thickness distribution and height in the circumferential direction, but the sagging phenomenon occurs due to the in-plane anisotropy of the r value. In other words, the edges of the can rise higher in the direction of the larger r value, forming a peak, and the edges of the can become lower in the direction of the smaller r value, forming a valley. It is known that the r value and the Δr value are closely related to the texture of the crystal, and vary greatly depending on the following factors in the manufacturing process of the material. That is, (a) the rolling reduction ratio of cold rolling, (b) the hot rolling temperature before cold rolling, and (c) the precipitation behavior and dispersion of AtN fi precipitates during the recrystallization process. r value in crystal annealed state, △
The r value and texture have been discussed for a long time, and many manufacturing methods have been proposed.
しかし1本発明の対象としている2回目の冷間圧延した
ままの状態で使用されるDR材の製造方法に関しては未
だ効果的力裂造方法の開示されたものは乞い。本発明者
らは深絞り時における耳の小さいDR材の製造方法に関
して鋭意研究を重ねた結果、先に特願昭57−3307
5にてこれを開示し、一応の目的を達成することができ
た。However, regarding the manufacturing method of DR material used in the second cold-rolled state, which is the object of the present invention, there is still no disclosure of an effective force tearing method. As a result of extensive research into the manufacturing method of DR material with small selvage during deep drawing, the inventors of the present invention have previously filed a Japanese patent application No. 57-3307.
We disclosed this in Section 5 and were able to achieve our objective.
本発明の目的は1本発明者らが開示した特願昭57−3
3075を更に改善し、より簡易が圧延時の管理によっ
て、より硬度および強度の犬にして面内異方性の小はい
罐用冷延鋼板の効果的な製造方法を提供するにある。The purpose of the present invention is 1. Patent application No. 57-3 disclosed by the present inventors.
The object of the present invention is to further improve 3075 and provide an effective method for manufacturing a cold-rolled steel sheet for small cans with greater hardness and strength and in-plane anisotropy through simpler control during rolling.
本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.
す々わち、重量比にてC:o、1o%以下、 Si
:0.06%以下、Mn:0.5%以下、r’:o、o
3%以下、s:o、o3%以下、 A/−: 0.15
%以下、N:0.008%以下を含有し残部はFeおよ
び不可避的不純物より成る連続鋳造鋼片を圧延仕上温度
830〜900℃5巻取り温度580〜730℃にて熱
間圧延する工程と、前記熱延銅帯を酸洗後第1回の冷間
圧延を行い1次いで再結晶焼鈍を行つ友後第2回の冷間
圧延する工程を有して成る超硬質極薄冷延鋼板の製造方
法において、前記第1回冷間圧延の圧下率r、 (%)
および第2回冷間圧延の圧下率r、 i%)はそれぞれ
次の(1)、 (2)式を満足することを特徴とする超
硬質極薄冷延鋼板の製造方法、である。That is, C: o, 1o% or less, Si
: 0.06% or less, Mn: 0.5% or less, r': o, o
3% or less, s:o, o3% or less, A/-: 0.15
% or less, N: 0.008% or less, with the remainder consisting of Fe and unavoidable impurities. , an ultra-hard, ultra-thin cold-rolled steel sheet comprising the steps of pickling the hot-rolled copper strip, subjecting it to a first cold rolling process, followed by recrystallization annealing, and then a second cold rolling process. In the manufacturing method, the rolling reduction rate r of the first cold rolling, (%)
and the rolling reduction ratio (r, i%) of the second cold rolling satisfy the following formulas (1) and (2), respectively.
60≦r、≦79.9 ・・・(1)−0,
92r、 +83≦r、≦−0.75r、 + 98
・”(2)本発明を得るに至った本発明者らの実
験結果について説明する。60≦r, ≦79.9...(1)-0,
92r, +83≦r, ≦-0.75r, +98
・”(2) The experimental results of the present inventors that led to the present invention will be explained.
第1表にて示す如き化学組成を有する低炭素アルミキル
ド鋼スラブを連続鋳造法にて製造した。A low carbon aluminum killed steel slab having a chemical composition as shown in Table 1 was manufactured by a continuous casting method.
第1表
第1表に示す化学成分を有する多くの供試材スラブを、
いずれもArs変態点以上の仕上温度で熱間圧延し65
0〜700℃の温度範囲で巻取り、板厚1.2wm、お
よび2.4mmの熱延鋼帯を製造した。Table 1 A number of test material slabs having the chemical composition shown in Table 1 were
Both are hot-rolled at a finishing temperature higher than the Ars transformation point.
Hot-rolled steel strips with plate thicknesses of 1.2 wm and 2.4 mm were produced by winding in a temperature range of 0 to 700°C.
これらの熱延鋼帯供試材をそれぞれ脱スケール後。After descaling each of these hot rolled steel strip specimens.
第1回の冷間圧延の圧下率(r、)を90%と75%と
して圧延を行った後、再結晶焼鈍を行い、その後第2回
の冷間圧延を圧下率(r、)を種々変えて行い、いずれ
も板厚0.12〜0.3+m+1範囲内の冷延鋼板とし
た。かくして得た各供試材にクロムめつきを施し、いわ
ゆるティンフリー鋼板に仕上げた後、霞径60−の罐に
DRD製罐製鑵々い深絞り時の耳の高さ△Hを測定した
。この場合の△l(と第1回の冷間圧延の圧]率r、お
よび第2回の冷間圧延の圧下率r2 との関係は第1図
に示すとおりである。After rolling with the first cold rolling at a rolling reduction ratio (r,) of 90% and 75%, recrystallization annealing is performed, and then the second cold rolling is performed at various rolling reduction ratios (r,). The cold-rolled steel sheets were each made with a thickness within the range of 0.12 to 0.3+m+1. After applying chromium plating to each sample material thus obtained and finishing it into a so-called tin-free steel plate, the height of the selvedge △H when carefully deep drawing a DRD can into a can with a haze diameter of 60- was measured. . In this case, the relationship between the Δl (and the rolling ratio of the first cold rolling) r and the rolling reduction ratio r2 of the second cold rolling is as shown in FIG.
第1図における耳の高坏△H(m )は次の如くして算
出したものである。すなわち、各供試材の耳の山(1−
1p lと谷(Ht)の高さを測定し、△Hi−Hp
−1−1iとし、各供試材の俗耳について測定した△H
iを平均したものである。すなわち。The ear height ΔH(m) in FIG. 1 was calculated as follows. In other words, the peak of the ears of each sample material (1-
1p l and the height of the valley (Ht) are measured, and △Hi-Hp
-1-1i, △H measured for the common ear of each sample material
It is the average of i. Namely.
ただし N:耳の数
第1図において実線はr、=90%、破線けr、=75
%の場合である。第1図より明らかなとおり、△HHr
、によって大きく異っており、その変化の状況けr、の
大小によっても大きく異っている。すなわち、r、−7
5%と低い場合にはr、の増大に伴々い△Hは減少し、
r! が20〜45%の範囲で極小となり再び増加する
。しかしr、が90%と第1回の圧下率が犬なる場合に
は。However, N: Number of ears In Figure 1, the solid line is r, = 90%, and the broken line is r, = 75.
% case. As is clear from Figure 1, △HHr
, and also the magnitude of the change. That is, r, -7
When it is as low as 5%, △H decreases as r increases,
r! becomes minimum in the range of 20 to 45% and increases again. However, if r is 90% and the first rolling reduction rate is 0.
r、が30%程度までは△Hはあまり変化せず、30%
以上犬となると急増する。かくの如(r。△H does not change much until r is around 30%, and 30%
The number increases rapidly when it comes to dogs. Like this (r.
とr、との組合わせ配分によって耳の高さ△Hが変化し
、その配分を適正にすることにより△Hを小さくするこ
とが可能であるとの新しい知見を得た。A new finding has been obtained that the ear height ΔH changes depending on the combination distribution of and r, and that it is possible to reduce ΔH by optimizing the distribution.
本発明者らは上記新しい知見をもとに、rIとr!を更
に広い範囲に組合わせて深絞り時に発生する耳の高さ△
Hを測定した結果は第2図に示すとおりである。耳の高
さの実用的な限界としてΔHが1ガ以下に々ることが望
捷しいので第2図では下記の如く評価した。The present inventors based on the above new knowledge, rI and r! By combining these over a wider range, the height of the ears that occurs during deep drawing△
The results of measuring H are shown in FIG. Since it is desirable that ΔH be 1 ga or less as a practical limit for the ear height, the following evaluation was made in FIG.
○印;ΔH≦0.5 m 最適範囲△印:0.5鵡
〈6851.0m 良×印:△H> 1. O籠
不合格
第2図にて表わされた△Hの評価からrl とr。○ mark; ΔH≦0.5 m Optimal range △ mark: 0.5 parrot <6851.0 m Good × mark: △H> 1. O basket
From the evaluation of △H shown in Figure 2, rl and r.
との関係において直線ABと直IcDに狭まされた領域
において△Hが良好であることが判明した。It was found that ΔH is good in the area narrowed between the straight line AB and the straight line IcD.
直線AB・r、 =−0,75r、 + 98 ”・
(3)直線CD・・−r1=−0,92r、 + 81
−(4)にて表わこれる。しかし第1図の圧下率r、
が60%未満に方ると、上記(3)、(4)式より第2
回の圧下率r、が必然的に大となって極薄鋼板の形状矯
正が困難にhるばかりではなく、得られる成品冷延鋼板
の硬度が大となって與罐加工が困難となるので
rl 560% ・・・(5)と限定すべきで
ある。Straight line AB・r, =-0,75r, +98”・
(3) Straight line CD...-r1=-0,92r, +81
- This is expressed in (4). However, the rolling reduction r in Fig. 1,
is less than 60%, from equations (3) and (4) above, the second
Not only does the rolling reduction ratio (r) become large, making it difficult to straighten the shape of ultra-thin steel sheets, but also the hardness of the finished cold-rolled steel sheets increases, making it difficult to process them into cans. It should be limited to rl 560% (5).
また、第1回冷間圧延の圧下率r、の最大は冷間圧延機
の能力からも制限嘔れ、97.3%を越す高い圧下率は
困難であるばかりで々く、生産能率が著しく低下するの
で
r、≦97.3% ・= (6)
と限定すべきである。In addition, the maximum rolling reduction r of the first cold rolling is limited by the capacity of the cold rolling mill, and it is not only difficult to achieve a high rolling reduction of more than 97.3%, but the production efficiency is significantly reduced. Therefore, it should be limited to r, ≦97.3% ·= (6).
第2回の冷間圧延の圧下率r1については、上記(3)
、 (4)式よりr、が大力ればなるほどr、が小さく
ガるが、第1回の冷延後、再結晶焼鈍するので著しく硬
度が小となっており1本発明の目的の超硬質極薄冷延鋼
板の硬度を保証することができhいので少くとも5%以
上の圧下率で第2回の冷間圧延をすべきである。Regarding the rolling reduction ratio r1 of the second cold rolling, see (3) above.
From equation (4), the stronger r is, the smaller r is. However, since recrystallization annealing is performed after the first cold rolling, the hardness is significantly smaller, and the hardness is extremely hard, which is the object of the present invention. Since the hardness of the ultra-thin cold rolled steel sheet cannot be guaranteed, the second cold rolling should be performed at a rolling reduction of at least 5% or more.
r!≧5% ・・・(7)
上記(3)、 (4)、 (5)、 (6)、(7)式
より第2図において斜線を施した範囲EFGHIけ良好
々成品を得ることができるrlとr2との関係範囲であ
り、その中の黒枠を施した範囲け△■4≦0.5mの最
適範囲である。しかし本発明者らは特願昭57−330
75において第1回の冷間圧延時の圧下率r、を80〜
95%と限定すべきであることを開示したので、この範
囲を削除し更に硬質の冷延鋼板を得るために r1
≦79.9% ・・・(8) としく5)式を加
えて 60%≦r、≦79.9% ・・・(1)と限
定することとした。r! ≧5% ... (7) From formulas (3), (4), (5), (6), and (7) above, a good product can be obtained within the shaded area EFGHI in Figure 2. This is the relational range between rl and r2, and the range with a black frame within it is the optimal range of △■4≦0.5m. However, the inventors of the present invention
In 75, the rolling reduction ratio r during the first cold rolling was set to 80~
Since it was disclosed that it should be limited to 95%, in order to delete this range and obtain an even harder cold rolled steel sheet, r1
≦79.9%...(8), and by adding formula 5), it was decided to limit it to 60%≦r, ≦79.9%...(1).
更に(3)、 (43式より本発明の目的を達成し得る
範囲として
−0,92r、 +81≦r、≦−0,75r 、 +
9 g ・(2)(2)式を満足すべきである。Furthermore, (3) (from formula 43, the range in which the object of the present invention can be achieved is -0,92r, +81≦r,≦-0,75r, +
9 g ・(2) Equation (2) should be satisfied.
従って(])、 (2)式を同時に満足する場合に常に
超硬質であって深絞り時の耳の高さ△H≦1mの極薄冷
延鋼板を得ることができることが判明した。Therefore, it has been found that when formulas (]) and (2) are simultaneously satisfied, it is possible to obtain an ultra-thin cold-rolled steel sheet that is always super hard and has a selvedge height △H≦1 m during deep drawing.
(11)
次に本発明において使用する素材の化学成分ならびに熱
間圧延における限定条件について説明する。先ず本発明
において使用する鎖スラブの化学成分の限定理由は次の
如くである。(11) Next, the chemical composition of the material used in the present invention and the limiting conditions in hot rolling will be explained. First, the reason for limiting the chemical composition of the chain slab used in the present invention is as follows.
C:
Cは第1回の冷間圧延終了後の再結晶焼鈍において再結
晶粒の成長を抑制する重要な成分であり。C: C is an important component that suppresses the growth of recrystallized grains during recrystallization annealing after the first cold rolling.
Ciを多くすると結晶粒径が小さくカリ調質度の高い鋼
板が得られるが、Cが0.10%を越して多く方ると過
度に硬度が高くなり深絞り性を阻害するので0.10%
以下に限定した。If the amount of Ci is increased, a steel plate with small grain size and high potassium tempering can be obtained, but if the amount of C exceeds 0.10%, the hardness becomes excessively high and deep drawability is inhibited. %
Limited to the following.
Si:
Siけぶりき、ティンフリー鋼板等の耐食性を劣化させ
、更に冷間圧延時の加工性を阻害するので少い方がよく
、少くとも0.06%以下にする必要Mnは脱硫効果が
あり、かつ熱延コイルの耳割れ発生を防止する効果があ
るが、S量が少なければ過剰の添加は経済的に好ましく
なく耳割れ発生を防止し得る0、50%以下に限定すべ
きである。Si: Si degrades the corrosion resistance of glazed and tin-free steel sheets, etc., and also impedes workability during cold rolling, so less is better, and Mn should be at least 0.06% or less. Mn has a desulfurization effect. , and has the effect of preventing the occurrence of edge cracking in the hot rolled coil, but if the amount of S is small, excessive addition is economically undesirable and should be limited to 0.50% or less, which can prevent edge cracking.
(121’
P :
Pけ0.03%を越して含まれる場合には材質を硬化さ
せ、更に薄鋼板の耐食性を劣化させるので0.03%以
下に限定した。(121' P: If P exceeds 0.03%, it hardens the material and further deteriorates the corrosion resistance of the thin steel sheet, so it was limited to 0.03% or less.
S :
SばMnとの関係において過剰に含有すると熱延コイル
の耳割れやMnS介在物増加にょる製鑵時の割れ欠陥の
原因とがるので0.03%以下に限定した。S: In relation to S and Mn, excessive content may cause edge cracks in hot-rolled coils and cracking defects during steelmaking due to an increase in MnS inclusions, so S is limited to 0.03% or less.
At:
Atけ強い脱酸剤として作用するが、0.15%を越す
過剰の場合には、再結晶粒成長を抑制するので0.15
%以下に限定した。At: At acts as a strong deoxidizing agent, but if it exceeds 0.15%, recrystallized grain growth is suppressed.
% or less.
N :
Nij空気中から溶鋼中に混入し、過剰となれば材質を
硬化し深絞り性を阻害するので0.008%以下に限定
した。N: Nij mixes into molten steel from the air, and if excessive, hardens the material and impedes deep drawability, so it was limited to 0.008% or less.
上記主要限定組成のほかけFeおよび不可避的不純物よ
り成るもので、溶製方法は特に限定の要がないが5通常
転炉→真空脱ガス処理したうえ連続鋳造によってスラブ
を製造する。In addition to the above-mentioned main limited composition, it is composed of Fe and unavoidable impurities.The melting method is not particularly limited, but the slab is usually manufactured by converter → vacuum degassing treatment and continuous casting.
次に熱間圧延条件の限定理由について説明する。Next, the reason for limiting the hot rolling conditions will be explained.
スラブ加熱温度:
の場合には圧延性が阻害されるので1100〜1200
℃の範囲が好ましい。Slab heating temperature: 1100-1200 as rollability is inhibited in the case of
A range of 0.degree. C. is preferred.
熱延仕上温度:
仕上温度が低きに過ぎる場合は耳発生率が高く々るので
少くともAr、変態点以上である必要があり、上記組成
の本発明に使用する素材の場合は830℃以上とすべき
である。しかし900℃を越す仕上温度の場合にはスラ
ブの加熱温度も高く要[2、エネルギーを無駄に消費す
ることとなるので830〜900℃の温度範囲一限定し
た。Hot rolling finishing temperature: If the finishing temperature is too low, the occurrence of ears will be high, so it needs to be at least Ar, the transformation point or higher, and in the case of the material used in the present invention with the above composition, it is 830°C or higher. Should be. However, if the finishing temperature exceeds 900°C, the heating temperature of the slab needs to be high [2. Since energy will be wasted, the temperature range is limited to 830 to 900°C.
巻取り温度:
巻取り温度が580℃未満と低い場合には自己焼鈍効果
が少く、また730℃を越す過度の高温は酸洗時の脱ス
ケールを困難ならしめるので580〜730℃の温度範
囲に限定した。Winding temperature: If the winding temperature is as low as less than 580°C, the self-annealing effect will be small, and excessively high temperatures exceeding 730°C will make descaling during pickling difficult, so the temperature range is between 580 and 730°C. Limited.
実施例
第1表に示(また化学組成の低炭素アルミキルド鏝スラ
ブを連続鋳造法にて製造1〜、該スラブを圧延仕上温度
850℃、巻取り温度625℃にて熱間圧延17板厚1
.2〜2.8割の熱延鋼帯とした。該熱延鋼帯を酸洗脱
スケールした後5本発明により第1回の冷間圧延を行い
、再結晶焼鈍後、更に第2回の冷間圧延を行ない、この
冷延鎖板にクロムめっきを施し、いわゆるティンフリー
鋼板を製造し、この供試材について深絞り加工を施し、
その耳の高ζ△Hを測定した。Example 1 Low carbon aluminum killed trowel slabs having chemical compositions shown in Table 1 were produced by continuous casting method.
.. The hot-rolled steel strip had a thickness of 2 to 2.8%. After pickling and descaling the hot rolled steel strip, the first cold rolling is performed according to the present invention, and after recrystallization annealing, a second cold rolling is performed, and the cold rolled chain plate is chromium plated. A so-called tin-free steel plate was manufactured by applying this process, and this sample material was deep-drawn.
The ear height ζΔH was measured.
同一化学成分を有する熱延鋼帯を比較のため酸洗後1本
発明外の圧下率rl+r!にて同様に第1回、第2回冷
間圧延した後、同一条件でティンフリー鋼板を製造し、
深絞り加工時の耳の高さ△Hを測定した結果は第2表に
示すとおりである。なお、第2表にはクロムめっき前の
各供試材の硬度をHR30Tにて示した。For comparison, hot-rolled steel strips with the same chemical composition are pickled and then the rolling reduction rl+r, which is outside the scope of the present invention! After performing the first and second cold rolling in the same manner, a tin-free steel plate was manufactured under the same conditions,
The results of measuring the ear height ΔH during deep drawing are shown in Table 2. Note that Table 2 shows the hardness of each sample material before chromium plating in terms of HR30T.
第2表に示す実施例の比較試験より明らかカとおり1本
発明による限定化学成分を有する鋼スラ(15)
プを限定条件にて熱間圧延した熱延鋼帯をDR法によっ
て、第1回の冷間圧延を圧下率r、にて行い、これを再
結晶焼鈍した後、更に第2回の冷間圧延を圧下率r2に
て行々い、このrI * rI の関係を限定する
ことによって深絞り時の耳の高さ△Hを1閣以下にする
ことが可能と々す、超硬質極薄冷延鋼板の製鑵を「し、
わ」の発生を避けて円滑に絞り加工し得る超硬質極薄冷
延鎖板を製造することができた。As is clear from the comparative test of the examples shown in Table 2, a hot rolled steel strip obtained by hot rolling a steel slurry (15) having a limited chemical composition according to the present invention under limited conditions was subjected to the first rolling process using the DR method. By performing cold rolling at a reduction rate r, recrystallizing it, and then performing a second cold rolling at a reduction rate r2, by limiting the relationship rI * rI. We are manufacturing ultra-hard, ultra-thin cold-rolled steel sheets that make it possible to reduce the selvedge height △H during deep drawing to less than 1 mm.
We were able to produce an ultra-hard, ultra-thin cold-rolled chain plate that can be drawn smoothly while avoiding the occurrence of "wrinkles".
第1図、第2図は本発明を得る実験によって得たそれぞ
れ、第1回の冷間圧下率r、が75%。
90%の時の第2回の冷間圧下率r!と耳高さ△Hとの
関係を示す相関図、第2図は第1回の冷間圧下率r1と
第2回の冷間圧下率r、の組合わせの変化による耳高さ
△Hに及ぼす影響を示す相関図である。
代理人 弁理士 中 路 武 雄
(17)
(16)
第1図FIGS. 1 and 2 show that the first cold rolling reduction r is 75%, which was obtained through experiments to obtain the present invention. The second cold reduction rate r at 90%! Figure 2 is a correlation diagram showing the relationship between the selvedge height △H and the selvedge height △H due to a change in the combination of the first cold rolling reduction rate r1 and the second cold rolling reduction rate r. It is a correlation diagram showing the influence. Agent Patent attorney Takeo Nakaji (17) (16) Figure 1
Claims (1)
6%以下、 Mn 70.5%以下、P:0.03%以
下、S:0.03%以下、At:0.15%以下、N:
o、oos%以下を含有し残部ばFeおよび不可避的不
純物より成る連続鋳造鋼片を圧延仕上温度830〜90
0℃1巻取り温度580〜730℃にて熱間圧延する工
程と、前記熱延鋼帯を酸洗抜駆1回の冷間圧延を行い次
いで再結晶焼鈍を行った後第2回の冷間圧延する工程を
有(−で成る超硬質極薄冷延鋼板の製造方法において、
前記第1回冷間圧延の圧下率r、(%)および第2回冷
間圧延の圧下率r2(%)はそれぞれ次の(1)、 (
21式を満足することを特徴とする超硬質極薄冷延鋼板
の製造方法。 60≦r、≦79.9 ・・・(])−0,
92r、 +s 1≦r2≦−0,75r、 +98−
(2)(1) C: 0.10% or less, Si: 0.0 at weight ratio 1
6% or less, Mn 70.5% or less, P: 0.03% or less, S: 0.03% or less, At: 0.15% or less, N:
Continuously cast steel billets containing 0,00% or less and the remainder consisting of Fe and unavoidable impurities are rolled at a finishing temperature of 830 to 90%.
A process of hot rolling at 0°C and a coiling temperature of 580 to 730°C, and a second cold rolling process of the hot-rolled steel strip after pickling and stripping once, followed by recrystallization annealing. In a method for producing an ultra-hard, ultra-thin cold-rolled steel sheet that includes a step of rolling (-),
The rolling reduction ratio r of the first cold rolling (%) and the rolling reduction ratio r2 (%) of the second cold rolling are as follows (1), (
A method for producing an ultra-hard, ultra-thin cold-rolled steel sheet, characterized by satisfying Formula 21. 60≦r, ≦79.9 ... (]) -0,
92r, +s 1≦r2≦-0,75r, +98-
(2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22155082A JPS59113123A (en) | 1982-12-17 | 1982-12-17 | Production of ultra-hard extra-thin cold rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22155082A JPS59113123A (en) | 1982-12-17 | 1982-12-17 | Production of ultra-hard extra-thin cold rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59113123A true JPS59113123A (en) | 1984-06-29 |
JPH0341529B2 JPH0341529B2 (en) | 1991-06-24 |
Family
ID=16768473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22155082A Granted JPS59113123A (en) | 1982-12-17 | 1982-12-17 | Production of ultra-hard extra-thin cold rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59113123A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01306527A (en) * | 1988-06-01 | 1989-12-11 | Toyo Kohan Co Ltd | Production of hard steel sheet having small anisotropy |
JPH03249133A (en) * | 1990-02-28 | 1991-11-07 | Nippon Steel Corp | Production of steel sheet for welded can excellent in blank layout property |
JPH0892642A (en) * | 1994-09-29 | 1996-04-09 | Nippon Steel Corp | Method for producing steel sheet for container having excellent earring resistance |
JPH09184018A (en) * | 1995-12-28 | 1997-07-15 | Kawasaki Steel Corp | Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty |
CN1055504C (en) * | 1996-05-23 | 2000-08-16 | 鞍山钢铁集团公司 | Production technology of cold-rolled plate for automobile friction sheets |
KR20030035697A (en) * | 2001-11-02 | 2003-05-09 | 주식회사 포스코 | A method for manufacturing high intensity tin plating steel plate having good aging property and corrosion-resistance and broken-resistance |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725697A (en) * | 1993-12-24 | 1998-03-10 | Kawasaki Steel Corporation | Method of manufacturing cold-rolled can steel sheet having less planar anisotropy and good workability |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5149116A (en) * | 1974-10-26 | 1976-04-28 | Nippon Steel Corp | HYOMENSHORIKOHANYOGENBANNO SEIZOHO |
JPS51131413A (en) * | 1975-05-12 | 1976-11-15 | Nippon Kokan Kk <Nkk> | Process for producing original sheet for hard plating by using alumini um-killed steel |
-
1982
- 1982-12-17 JP JP22155082A patent/JPS59113123A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5149116A (en) * | 1974-10-26 | 1976-04-28 | Nippon Steel Corp | HYOMENSHORIKOHANYOGENBANNO SEIZOHO |
JPS51131413A (en) * | 1975-05-12 | 1976-11-15 | Nippon Kokan Kk <Nkk> | Process for producing original sheet for hard plating by using alumini um-killed steel |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01306527A (en) * | 1988-06-01 | 1989-12-11 | Toyo Kohan Co Ltd | Production of hard steel sheet having small anisotropy |
JPH0711031B2 (en) * | 1988-06-01 | 1995-02-08 | 東洋鋼鈑株式会社 | Method for manufacturing hard thin steel sheet with small anisotropy |
JPH03249133A (en) * | 1990-02-28 | 1991-11-07 | Nippon Steel Corp | Production of steel sheet for welded can excellent in blank layout property |
JPH0892642A (en) * | 1994-09-29 | 1996-04-09 | Nippon Steel Corp | Method for producing steel sheet for container having excellent earring resistance |
JPH09184018A (en) * | 1995-12-28 | 1997-07-15 | Kawasaki Steel Corp | Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty |
CN1055504C (en) * | 1996-05-23 | 2000-08-16 | 鞍山钢铁集团公司 | Production technology of cold-rolled plate for automobile friction sheets |
KR20030035697A (en) * | 2001-11-02 | 2003-05-09 | 주식회사 포스코 | A method for manufacturing high intensity tin plating steel plate having good aging property and corrosion-resistance and broken-resistance |
Also Published As
Publication number | Publication date |
---|---|
JPH0341529B2 (en) | 1991-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0101740B1 (en) | Process for manufacturing cold-rolled steel having excellent press moldability | |
JPS59140333A (en) | Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability | |
JPH0152450B2 (en) | ||
JPS59113123A (en) | Production of ultra-hard extra-thin cold rolled steel sheet | |
JPS5938336A (en) | Production of ultra thin steel sheet for can having high yield strength and drawability | |
JPS6045690B2 (en) | Manufacturing method of ultra-thin steel sheet for cans with small in-plane anisotropy | |
JPH09310150A (en) | Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production | |
JP2001192735A (en) | FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR | |
JPH02163318A (en) | Production of high-tension cold rolled steel sheet having excellent press formability | |
JPS62161919A (en) | Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy | |
JP2002088446A (en) | Steel sheet for forming outer cylinder of battery having excellent anisotropy and its production method | |
JPH02141536A (en) | Manufacturing method of steel plate for drawing cans with small selvage formation | |
JP3707260B2 (en) | Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil | |
JPS6115929B2 (en) | ||
JPS5856023B2 (en) | Cold-rolled steel sheet with excellent deep drawability | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability | |
JP2816358B2 (en) | Manufacturing method of steel sheet for DI can | |
JPH08120348A (en) | Production of steel sheet for hard can small in plane anisotropy | |
JP3257390B2 (en) | Method for producing two-piece steel sheet with small in-plane anisotropy | |
JP2971192B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JPS6330969B2 (en) | ||
KR950003807B1 (en) | Making method of cold rolling sheet | |
JPH08283863A (en) | Production of hard steel sheet for can excellent in uniformity of material | |
JPH02141535A (en) | Manufacturing method of steel plate for drawing cans with small selvage formation | |
JPS5861228A (en) | Production of original black plate for ultra thin galvanized steel plate having excellent shape |