[go: up one dir, main page]

JPS59112675A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS59112675A
JPS59112675A JP20094183A JP20094183A JPS59112675A JP S59112675 A JPS59112675 A JP S59112675A JP 20094183 A JP20094183 A JP 20094183A JP 20094183 A JP20094183 A JP 20094183A JP S59112675 A JPS59112675 A JP S59112675A
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
temperature
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20094183A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
良一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20094183A priority Critical patent/JPS59112675A/en
Publication of JPS59112675A publication Critical patent/JPS59112675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To maintain the temperature of a heat sink constant and to control the input current of a semiconductor laser element in response to the variation in the laser light by providing a thermoelectric cooling element of a temperature control element under the sink when mounting the laser element for emitting lights in bidirections and a detector for detecting one light on the sink of a support. CONSTITUTION:When a photodetector 5 and a semiconductor laser element 1 are placed on a heat sink fin 13, a thermoelectric cooling element 12 of a temperature control element is interposed therebetween. Then, a copper heat sink 8 having uneven surface is mounted on the element 12 through an insulating layer 11 and a metal plate 10, the photodetector 5 having an insulating layer is mounted on the bottom of the recess and at the side of the element 1, and the element for emitting lights 3, 4 in bidirections is provided. In this structure, a power source 7 for the thermoelectric cooling element having an amplifier 6 and a control circuit is connected between the photodetector 5 and the element 12, thereby maintaining the temperature of the element 12 constant and simultaneously correcting the variation in the laser lights.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、注入型半纏体レーザ、特に室温ないし室温に
近い温度で、連続的ないし連続に近いデユーティ比(1
)uty 1latio)で動作する半導体レーザ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an injection type semi-integrated laser, in particular a continuous or nearly continuous duty ratio (1) at room temperature or near room temperature.
) Uty 1latio).

し発明の静置」 半導体レーザは、素子の温度上昇に半なって発倣の“し
きい電流”も増大する。たとえば、アイ・ハヤシ(工・
)(aya3hi)他数氏は、米国における学術准誌[
ジャーナル・オプ・アゲライド・フィジンクス誌(Jo
urnal of Apuiecl physics月
第42巻第1929頁(1971年)に投稿した論文r
GaAs−AtxGa+−xAs ダブルへテロ接合溝
造圧入レーザ」に報告しているように、半導体レーザを
一定の′直流で、駆動していると周囲温度の液化に伴っ
て、レーザ出力も変化する。
In a semiconductor laser, the "threshold current" of the laser beam increases by half as the temperature of the device increases. For example, Ai Hayashi (Engineering)
) (aya3hi) and several others have published an academic journal in the United States [
Journal of Agelide Physics (Jo
Paper submitted to Urnal of Apuiecl Physics, Volume 42, Page 1929 (1971)
As reported in ``GaAs-AtxGa+-xAs Double Heterojunction Grooving Press-In Laser'', when a semiconductor laser is driven with a constant direct current, the laser output changes as the ambient temperature liquefies.

すなわち、“しきい直流”Jth  の温度変化がJ 
th =Jo e x p(T/To )     −
−(1)(ただし、Jo l ’I”Oはいずれも“し
さい或流″の温度に対する変化を定めるパラメータで、
素子ヨ#)足まる。)で衣わされる。ダブルへテロ4合
構造GaAs−AtGaAsレーザを動作させた場合を
考える。半導体レーザ素子の温度TがΔT変化しとなる
。半導体レーザ素子の動作−流をJとすれば素子の温度
変化によるレーザ出力Pの変化ΔPは、 ΔP   ΔJtb P    J Jth となる。
In other words, the temperature change of “threshold DC” Jth is J
th = Jo x p(T/To) −
-(1) (However, Jo l 'I'O is a parameter that determines the change in the "small flow" with respect to temperature,
Motokoyo #) Add Maru. ). Let us consider the case where a double hetero-quaternary structure GaAs-AtGaAs laser is operated. The temperature T of the semiconductor laser element changes by ΔT. If the operating flow of the semiconductor laser device is J, then the change ΔP in the laser output P due to the temperature change of the device is ΔP ΔJtb P J Jth .

J−(1+ε) Jch とすれば(ただし、εは半導体レーザ素子の動作点を定
めるパラメータ。) となる。
If J-(1+ε) Jch (where ε is a parameter that determines the operating point of the semiconductor laser element).

ε=0.1 、 To =120 ’にの場合は、とな
るから、素子の温度が動作点から6C上昇すると、し〜
ザ出力は半減する。勿論、εの大きい状態で素子を使用
すれば、温度変化に対するレーザ出力の変化率は減少す
るが、反面、半導体レーザ素子の劣化速度は動作電流の
増大と共に種火するので、なるべく”しきい電流”附近
で動作させることが望ましい。
When ε = 0.1 and To = 120', then if the temperature of the element rises by 6C from the operating point, then ~
The output will be halved. Of course, if the device is used with a large ε, the rate of change in laser output with respect to temperature changes will decrease, but on the other hand, the rate of deterioration of the semiconductor laser device will begin to rise as the operating current increases, so it is best to reduce the threshold current as much as possible. ``It is desirable to operate it nearby.

上記したごとく、半導体レーザの光出力は、素子の湿度
によって左右され易いので、温度を一足に維持する手段
を講じていない通常の条件の下では、レーザ光出力を定
常に維持するための他の手段が必要となる。
As mentioned above, the optical output of a semiconductor laser is easily influenced by the humidity of the device, so under normal conditions where no means are taken to maintain the temperature, other methods are required to maintain the laser output at a constant level. A means is required.

半4木レーザ装置においては、従来、このような手段を
設けたものが市販されていないが、気体レーザの分野で
は、レーザ光の一部をビーム・スズリンク(beam 
5plitter)などの光学系全利用して取り出し、
取シ出したレーザ光を適当な光検出器で検知し、レーザ
出力が変化した場合は、検知出力全気体ガスレーザ励起
酸源に帰還させ、気体ガス・レーザへO供給入力を制御
して、レーザ出力を一定に維持する手段が採用押れてい
る。半導体レーザの場合も、同じ手段を採用することが
できるが、小型・Ig:tを生命とする半導体レーザ装
置にビーム・スプリンタなどの光学系を導入することは
、装置ケ大型化することになる。しかも、ビーム・スプ
リンタで大きな光の損失が起こる。
Conventionally, there are no half-barrel laser devices on the market that are equipped with such a means, but in the field of gas lasers, a portion of the laser beam is
5plitter), etc., to take out the
The extracted laser light is detected by an appropriate photodetector, and if the laser output changes, the detected output is fed back to the all-gas laser excitation acid source, and the O supply input to the gas laser is controlled. There is a push to adopt a means to maintain a constant output. The same method can be used in the case of semiconductor lasers, but introducing an optical system such as a beam splinter into a compact semiconductor laser device that relies on Ig:t would lead to an increase in the size of the device. Become. Moreover, large light losses occur in the beam splinter.

半導体レーザは、ガスレーザに比べ光出力が小さいので
、このような光の損失は重大な問題である。
Since semiconductor lasers have a lower optical output than gas lasers, such light loss is a serious problem.

十分な光出力?得るにりす、動作゛亀流を増大すればよ
いが、動作電流の増大は新たな温度上昇を招くわけだか
ら、レーザ出力の安定化の点から好ましくなく、シかも
手4本レーザ素子の劣化速度は動作電流の増大と共に増
大するので、半導体レーザ素子の劣化を促進することに
なる。
Enough light output? To achieve this, it is possible to increase the operating current, but since increasing the operating current causes a new temperature rise, this is not desirable from the point of view of stabilizing the laser output. increases as the operating current increases, which accelerates the deterioration of the semiconductor laser device.

〔発明の目的〕[Purpose of the invention]

かかる点に鑑み本発明は、半導体レーザ素子の小型・軽
量という特長を損うことなく、シかも半導体レーザ素子
から取り出す出力光に損失を与えることなく出力検出用
の光を*V出し、かつ安定な光出力を取り出すことがで
きる半導体レーザ装置を提供することを目的とする。
In view of these points, the present invention has been developed to emit *V output detection light without impairing the features of the semiconductor laser device such as small size and light weight, and without causing any loss to the output light extracted from the semiconductor laser device, and to stably output the light for output detection. An object of the present invention is to provide a semiconductor laser device that can extract a high optical output.

〔発明の概要〕[Summary of the invention]

その目的を達成するため本発明は、半導体レーザ素子と
受光素子とを該半導体レーザ素子からのレーザ光の光路
に入るような位置関係に配置する支持手段を設け、′該
半導体レーザから双方向に放射されるレーザ光のうち一
方を出力光として柩り出し、能方を該受光素子で受光し
、その変動に応じて上記半導体レーザ素子の入力直流を
制御すると共に、上記支持手段に接続された温度制御素
子を設け、この温度制御素子によって上記支持手段の温
度を一定に保持することを特徴とするものである。
In order to achieve the object, the present invention provides a support means for arranging a semiconductor laser element and a light receiving element in a positional relationship such that they enter the optical path of the laser light from the semiconductor laser element, and One of the emitted laser beams is emitted as output light, the light is received by the light receiving element, and the input direct current of the semiconductor laser element is controlled according to the fluctuation thereof, and the semiconductor laser element is connected to the supporting means. The present invention is characterized in that a temperature control element is provided, and the temperature of the support means is maintained constant by the temperature control element.

実施例 以下本発明を実施例により説明する。Example The present invention will be explained below with reference to Examples.

第1図は、本発明に係る半導体レーザ装置の一実施例の
構成の概略を示す図でるる。この半導体レーザ装utは
、半導体レーザ索子1、銅製ヒートンンク8、透熱冷却
索子12、我熱フィン13、光検知器5から成シ、6は
光険知器の出力の増幅器、7は可変な定電圧発生器と制
御回路を言む熱電冷却素子の電源である。半導体レーザ
素子1はGaAs  AZGaAsダブルへテロ14造
レーザで、これに電源14及び負荷抵抗15金通して、
”しきい電流”以上の一流を流すとレーザ発議が起こシ
、活性層2の両端の二つのへき開面(すなわち反射面)
からそれぞれレーザ光3及び4が放出される。
FIG. 1 is a diagram schematically showing the configuration of an embodiment of a semiconductor laser device according to the present invention. This semiconductor laser device ut consists of a semiconductor laser cable 1, a copper heat link 8, a heat-transmitting cooling cable 12, a heating fin 13, and a photodetector 5. 6 is an amplifier for the output of the photodetector, and 7 is an optical detector. It is the power source for the thermoelectric cooling element, which refers to the variable constant voltage generator and control circuit. The semiconductor laser element 1 is a GaAs AZGaAs double hetero 14 laser, through which a power supply 14 and a load resistance of 15 gold are passed.
When a current higher than the "threshold current" is passed, a laser beam is generated, and the two cleavage planes (i.e., reflective planes) at both ends of the active layer 2
Laser beams 3 and 4 are emitted from the respective laser beams 3 and 4.

レーザ光3は光通信、光情報処理、スー(クトロメータ
の光源などとして利用することができ、別の反射面から
出るレーザ光4は、半導体レーザ素子1に近接して配置
した光検知器5の受光面に照射される。この光検知器5
としては、たとえばQ a A S系半導体レーザ(発
振波長約7500〜9000人の範囲内)では、Siで
作った太陽畦池、PIN光検出器などが感度、温度特性
などの点で部会がよい。本実施例では光検知器5は温度
に対して比較的安定な短絡颯流モードで1吏用する。光
検但器5は薄い絶縁層9によってヒートシンク8からは
電気的に絶縁されている。半導体レーザ素子1の活性層
2の温度T、はレーザ素子1に供給するシ気入力、周囲
温度T、及び熱電冷却素子12に流す電流で決まる。レ
ーザ素子に供給される電圧。
The laser beam 3 can be used as a light source for optical communication, optical information processing, chromameter, etc., and the laser beam 4 emitted from another reflective surface is detected by a photodetector 5 placed close to the semiconductor laser element 1. The light is irradiated onto the light receiving surface of this photodetector 5.
For example, for Q A S semiconductor lasers (oscillation wavelength within the range of about 7,500 to 9,000), solar ridges made of Si, PIN photodetectors, etc. are better in terms of sensitivity, temperature characteristics, etc. . In this embodiment, the photodetector 5 is used in short-circuit current mode, which is relatively stable with respect to temperature. The optical detector 5 is electrically insulated from the heat sink 8 by a thin insulating layer 9. The temperature T of the active layer 2 of the semiconductor laser device 1 is determined by the air input supplied to the laser device 1, the ambient temperature T, and the current flowing through the thermoelectric cooling element 12. Voltage supplied to the laser element.

電流をそれぞれV及び工、ヒートシンク8の温度をTh
とすれば T1=Th+θVI        ・・・・・・(5
)及び Ith=Io eXp(T+ /To)     ”・
(6)の関係がある。ここにθはレーザ素子1とヒート
シンク8の熱抵抗であり、Ithはレーザ素子1のしき
い電流である。レーザの光出力Pは、P=ηけ−1,h
)          ・・・・・・(7)で与えられ
る。ここでηは比例定数である。上古己の3式からレー
ザ出力を電流及びヒートシンク温度の関数として求める
ことができる。第2図はその計算結果を模式的に示しだ
特性図で、縦軸はレーザ出力Pを、偵軸は鑞流工を表し
、ノくラメタはヒートシンクの温度ThでTb3>Th
+ >Tb2である。第2図から、レーザ出力P+ を
得るために必要な一流及びヒートシンク温度の組合せは
いろいろあることがわかる。ヒートシンク温度が定まっ
ている場合には、レーザ出力PIを碍るだめに必要な電
流値は二種類あるが、勿論、より低い電流値の方が望ま
しい。第1図の実施例のように、ヒートシンクに熱電冷
却素子12を装置した場合にはヒートシンクの温度をか
なシの範囲内で選ぶことができる。今ヒートシンク、l
li!度を’1’b4とすれば、所要の電流は■菖 と
なる。なるべく小′屯流で必要なレーザ出力を得るとい
う1硯点からヒートシンク温度Th+は周囲温度T、よ
シ低く選ぶ方が望ましい。すなわち Th=T、−ΔT          ・・・・・・(
8)である。ここでΔTは熱電冷却素子12によって保
たれている温度差で、熱電素子に供給される電流によっ
て決まる。今、周囲温度T、が何らかの原因でaTだけ
変化して、ヒートシンク温度がTh3 (=Th++θ
T)になったとし、熱電冷却素子に供給される一流が変
化しないとすれば、レーザ出力は所定のレーザ出力1直
PIからP3に減少する。
The current is V and h, and the temperature of the heat sink 8 is Th.
Then, T1=Th+θVI ・・・・・・(5
) and Ith=Io eXp(T+/To)”・
There is the relationship (6). Here, θ is the thermal resistance of the laser element 1 and the heat sink 8, and Ith is the threshold current of the laser element 1. The optical output P of the laser is P=η−1,h
) ...... is given by (7). Here η is a proportionality constant. Laser output can be determined as a function of current and heat sink temperature from Kamiko's three equations. Figure 2 is a characteristic diagram that schematically shows the calculation results, where the vertical axis represents the laser output P, the horizontal axis represents the flow rate, and the nodal parameter is the temperature Th of the heat sink, and Tb3>Th.
+>Tb2. It can be seen from FIG. 2 that there are many combinations of leading and heat sink temperatures required to obtain the laser output P+. When the heat sink temperature is fixed, there are two types of current values necessary to improve the laser output PI, and of course a lower current value is preferable. When the heat sink is equipped with the thermoelectric cooling element 12 as in the embodiment shown in FIG. 1, the temperature of the heat sink can be selected within a certain range. Now the heat sink, l
li! If the degree is '1'b4, the required current will be ■Iris. From the point of view of obtaining the necessary laser output with as small a current as possible, it is desirable to select the heat sink temperature Th+ to be much lower than the ambient temperature T. That is, Th=T, -ΔT (
8). Here, ΔT is the temperature difference maintained by the thermoelectric cooling element 12, and is determined by the current supplied to the thermoelectric element. Now, the ambient temperature T, changes by aT for some reason, and the heat sink temperature Th3 (=Th++θ
T), and assuming that the current supplied to the thermoelectric cooling element does not change, the laser output decreases from the predetermined laser output 1-direction PI to P3.

而して、第1図の実施列では光検知器5によってモニタ
ーされだレーザ出力4に比例する信号は増幅器6によっ
て増幅された後、基準値(すなわち、この実施列では所
定のレーザ出力値PIに対応する呟)と比較され、基準
値からの変動分をゼロに近づけるように峨#7から熱電
冷却素子12に供給される電流を変化させる。上記の場
合では周囲温度の変動分θTを打ち消すように、熱電冷
却素子によって保たれる温度差ΔTをΔTl?Tに変化
させることになる。熱電冷却素子による温度判例は応答
が速く(1秒以下)、まだ−流の極性によって周囲温度
より高くも、あるいは1氏くもできるという利点を有し
ているので、周囲温度が大幅に変動するような環境でも
、レーザ出力を一定に保つことができる利点がある。−
例を挙げれば、周囲温度が一10Gから、45Cの範囲
内で、出力変動を5チ以円におさえることができる。さ
らに、本実施例の他の利点は、利用すべきレーザ光3と
は独立にモニター用のレーザ光4を便っていることであ
る。すなわち、レーザ光3及び4は同一の光キャビティ
から放出されているので、その出力は互いに比例関係に
あるので、レーザ出力4を一定に保つように制■するこ
とにより、利用すべきレーザ光3の出力を一定に保つこ
とができる。
1, the signal proportional to the laser output 4 monitored by the photodetector 5 is amplified by the amplifier 6 and then converted to a reference value (i.e., in this implementation, a predetermined laser output value PI). The current supplied to the thermoelectric cooling element 12 from #7 is changed so that the variation from the reference value approaches zero. In the above case, the temperature difference ΔT maintained by the thermoelectric cooling element is set to ΔTl? so as to cancel out the variation θT in the ambient temperature. It will be changed to T. Temperature determination using thermoelectric cooling elements has the advantage of fast response (less than 1 second) and the ability to raise or lower the ambient temperature by 1 degree depending on the polarity of the current, so it is possible to avoid large fluctuations in the ambient temperature. The advantage is that the laser output can be kept constant even in harsh environments. −
For example, when the ambient temperature is between 110G and 45C, output fluctuations can be suppressed to 5 degrees or less. Furthermore, another advantage of this embodiment is that the laser beam 4 for monitoring is used independently of the laser beam 3 to be used. That is, since the laser beams 3 and 4 are emitted from the same optical cavity, their outputs are proportional to each other, so by controlling the laser output 4 to be constant, the laser beam 3 to be used can be output can be kept constant.

レーザ素子1に光ファイバなどを近接してレーザ光3を
直接ファイバに導入する場合などにはモ二ター用の光学
系が不要になるので都合がよい。二つの反射面の反射率
が等しい場合にはレーザ出力3および4の大きさは等し
いが、モニター用の出力4は小さくてもかまわないので
、出力4をとり出す反射面には絶縁膜及び金属膜勿コー
トとして反射率を上げて1吏う方が望ましい。なぜなら
一方の反射面の反射率を高くすることVこより、発振の
しきい電流値を小さくすることができるからである。ま
た本実施例においては、光検知器5が、半導体レーザ素
子1と同じヒートシンク8上に装置されているために、
光検知器5の温度もほぼ一定に保たれ、従って、光検知
器の感度も周囲温度の影響を受けにくい利点がある。な
お半導体レーザ素子の出力がIK接変調を受けている場
合には、増幅器6にはローパスフィルターを組み込む必
要がある。この時、レーザ出力の時間平均値が一定に保
たれる。さらに、第1図に示す実施列でぽ、光検知器も
ほぼ一定の温度に保たれるので光検知器の感度もほぼ一
定に保たれる利点がある。
This is convenient when an optical fiber or the like is brought close to the laser element 1 and the laser beam 3 is directly introduced into the fiber, since a monitoring optical system is not required. If the reflectances of the two reflective surfaces are equal, the magnitudes of laser outputs 3 and 4 are equal, but output 4 for monitoring may be small, so the reflective surface from which output 4 is taken out is coated with an insulating film and metal. It is preferable to use a film coating to increase the reflectance. This is because by increasing the reflectance of one reflecting surface, the threshold current value for oscillation can be reduced. Furthermore, in this embodiment, since the photodetector 5 is installed on the same heat sink 8 as the semiconductor laser element 1,
The temperature of the photodetector 5 is also kept almost constant, and therefore the sensitivity of the photodetector has the advantage of being less affected by the ambient temperature. Note that if the output of the semiconductor laser element is subjected to IK modulation, it is necessary to incorporate a low-pass filter into the amplifier 6. At this time, the time average value of the laser output is kept constant. Furthermore, in the embodiment shown in FIG. 1, since the photodetector is also kept at a substantially constant temperature, there is an advantage that the sensitivity of the photodetector is also kept substantially constant.

本発明に係る半導体レーザ装置の他の実施例の概略構成
図を第3図に示す。第3図は、半導体レーザ素子1の二
つの反射面から放射されたレーザ光のうち、4のレーザ
光はヒートシンク上に装着した光検知器5に照射する。
FIG. 3 shows a schematic configuration diagram of another embodiment of the semiconductor laser device according to the present invention. In FIG. 3, of the laser beams emitted from two reflective surfaces of the semiconductor laser device 1, four laser beams are irradiated onto a photodetector 5 mounted on a heat sink.

光検知器5に得られる出力は増幅器6で増幅し、所定の
レーザ出力P1に対応する直と比較され、対応する変動
分を打ち消すようにレーザ素子への入力供給′亀源14
′をrl 呻する。不実施例は、第1図の実施例の構成
と異なり、レーザ素子への供給成力を調節してレーザ出
力の変化を打ち消すものである。第2図の特性図かられ
かるように、連続動作ないし、連続に近いデユーティ比
の動作状態では得られるレーザ出力の最大値は周囲温度
によって決まるので、周囲r温度が大きく変動するよう
な条件では不実施例は使い難い。また、第2図から明ら
かなように、電流をふやすと光出力が1氏下するit’
ll:条件も存在するが、このような条件で出力を利(
財)することは望ましくなく、亀流と共に光出力が増加
するような条件で動作させるべきである。したがって、
本実施例は半導体レーザ素子の周囲温度がほぼ一定に保
たれているような状態、あるいは熱電冷却素子によって
ヒートシンク温度がほぼ一定に保たれているような場合
に、光出力を精密に中1j両するだめに用いることがで
きる。−例として、室温25Cのまわりに±3Cの温度
変化がある場合の出力安定度は±2チであった。レーザ
光が変調されている場合に、増幅器6にローパスフィル
ターを設けることは第1図の実施例の場合と同]求であ
る。
The output obtained by the photodetector 5 is amplified by an amplifier 6 and compared with the output corresponding to a predetermined laser output P1, and the input source 14 is applied to the laser element so as to cancel out the corresponding variation.
' rl groan. The non-embodiment differs from the configuration of the embodiment shown in FIG. 1 in that the change in laser output is canceled out by adjusting the power supplied to the laser element. As can be seen from the characteristic diagram in Figure 2, the maximum value of the laser output that can be obtained in continuous operation or operating conditions with a nearly continuous duty ratio is determined by the ambient temperature. Non-implemented examples are difficult to use. Also, as is clear from Figure 2, when the current is increased, the optical output decreases by 1 degree.
ll: Although there are conditions, it is not possible to use the output under such conditions (
It is undesirable to do so (goods) and should be operated under conditions such that the light output increases with the current. therefore,
In this embodiment, the optical output can be adjusted precisely between 1 and 20 kHz when the ambient temperature of the semiconductor laser element is kept almost constant, or when the heat sink temperature is kept almost constant by a thermoelectric cooling element. It can be used freely. - As an example, when there is a temperature change of ±3C around a room temperature of 25C, the output stability was ±2 degrees. When the laser beam is modulated, the provision of a low-pass filter in the amplifier 6 is the same as in the embodiment of FIG.

まだ、レーザ素子に流す藏流直が犬きくなυ過き゛て、
電流の増力日と共にレーザ出力が低下する不安定領域に
入ることを防ぐために電源14′に電流制限装置を設け
ることが望ましい。
The current flow to the laser element is still too strong,
It is desirable to provide a current limiting device in the power supply 14' to prevent the laser from entering an unstable region where the laser output decreases as the current increases.

また、第3図に示す実施例の場合では、半導体レーザの
キャビティが、二個の相対する反射面で偶成される場合
を述べたが、該反射面はへき開、研摩、エツチング、イ
オンミリングなどの手段を用いて得られる平面全利用す
るものの他に、レーザの活性層ないし、レーザ光の伝播
路に設けた周期構造によって得られるブラッグ反射を利
用するものについても同様に本発明を応用することがで
きる。なぜなら、後者の場合にも等画的に二個の反射面
かりるとみなすことができるからである。
In addition, in the case of the embodiment shown in FIG. 3, the cavity of the semiconductor laser is formed by two opposing reflecting surfaces, but the reflecting surfaces are processed by cleaving, polishing, etching, ion milling, etc. In addition to the method that utilizes the entire plane surface obtained by using this method, the present invention can also be applied to devices that utilize the Bragg reflection obtained by the periodic structure provided in the active layer of the laser or the propagation path of the laser beam. can. This is because even in the latter case, it can be considered that there are two reflective surfaces isographically.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、以下に述べる如き種
々の効果を奏することがoT能となる。即ち ■ 半導体レーザ素子の二つの反射面から双方向に送出
されるレーザ光のうち一方を出方光として取り出し、他
方を光検出器でモニターするので、半導体レーザ素子の
二方向からの光をすべて有効に利用できる。もし、一方
向からの光のみでモニターすると、その分たけ光量が減
少することとなり、光量損失?招くことになる。
As explained above, according to the present invention, various effects as described below can be achieved. That is, ■ Of the laser beams sent out in both directions from the two reflective surfaces of the semiconductor laser element, one is extracted as the outgoing light and the other is monitored by a photodetector, so all the light from the two directions of the semiconductor laser element is detected. Can be used effectively. If you monitor only with light coming from one direction, the amount of light will decrease by that amount, resulting in a loss of light amount? I will invite you.

■ しかも、モニターのだめの光を格別の構成なく取シ
出すので、モニター用光学系は不要であυ、その位置A
整のだめの繁雑さがなく、装置としての安定性にばれる
。これにょム装置の1氏コスト化が図れ、かつ量産性に
優れる。
■ Moreover, since the light from the monitor is extracted without any special configuration, there is no need for a monitor optical system υ, and its position A
It does not have the complexity of a preparatory tank, and is known for its stability as a device. This makes it possible to reduce the cost per unit of the device and is excellent in mass production.

■ 半導体レーザ素子と受光素子を1つのパッケージ内
に収納することができ、出方光として外部へ取り出すレ
ーザ光は1つですむので、反射面と光嘔り出し窓のイ立
(−合せが容易である。
■ The semiconductor laser element and the light-receiving element can be housed in one package, and only one laser beam is needed to be taken out as the output light, so there is no problem between the reflective surface and the light exit window. It's easy.

■ 温度制御素子によシ半導体レーザの設置された支持
体の温度を一定に保持したうえで、この温度11f11
f卸素子で補1ハしきれない出力光の変動を半導体レー
ザの入力電流によシ補償するので、より積台に安定化で
きる。
■ After keeping the temperature of the support body on which the semiconductor laser is installed constant by the temperature control element, this temperature 11f11
Fluctuations in the output light that cannot be compensated for by the f output element are compensated for by the input current of the semiconductor laser, making it possible to stabilize the stack even more.

■ しかも、入力電流の増加による温度上−7’f、は
穐度制画素子により抑えられるので、入力電流の増大に
よる半導体レーザ素子の劣化を抑止できる。
(2) Furthermore, since the temperature increase of -7'f due to an increase in input current can be suppressed by the pixel control element, deterioration of the semiconductor laser element due to an increase in input current can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーザ装置の一実施例の概
略、祷成図、第2図は連続動作もしくは連続に近いチュ
ーティ比で動作する半導体レーザのレーザ出力と電流及
びヒートシンクの温度との関係を示す特性図、第3図は
本発明による半導体レーザ装置の第2の実施しらの断面
図と制御回路のブロツク図である。第1図から第3図に
おいて、1・・・半導体レーザ素子、2・・・半導体レ
ーザの活性層、3,4・・・レーザ光、5・・・光検知
器、6・・・増幅器、7・・・市1j−回路及び熱電冷
却素子用電源、8・・・ヒートシンク、9・・・絶縁層
、10・・・金属板、11・・・絶縁層、12・・・熱
電冷却素子、13・・・放熱フィン、14・・・半導体
レーザ用鑞源、14′・・・制仰回門 第  2  図 I′I
FIG. 1 is a schematic diagram of an embodiment of a semiconductor laser device according to the present invention, and FIG. 2 is a diagram showing the relationship between laser output, current, and heat sink temperature of a semiconductor laser that operates continuously or with a near-continuous tutee ratio. FIG. 3 is a sectional view of a second embodiment of a semiconductor laser device according to the present invention and a block diagram of a control circuit. 1 to 3, 1... semiconductor laser element, 2... active layer of semiconductor laser, 3, 4... laser light, 5... photodetector, 6... amplifier, 7... City 1j-circuit and thermoelectric cooling element power supply, 8... Heat sink, 9... Insulating layer, 10... Metal plate, 11... Insulating layer, 12... Thermoelectric cooling element, 13... Heat dissipation fin, 14... Semiconductor laser soldering source, 14'... Control circuit No. 2 Figure I'I

Claims (1)

【特許請求の範囲】[Claims] 1、双方向に送出されるレーザ光の一方を出力光として
取シ出す半4本レーザ素子と、受光素子と、上記半導体
レーザ素子からの他方のレーザ光の光路に入るような位
置関係に上記画素子を配置する支持手段と、上記支持手
段に接続された温度制御素子とからなり、上記温度制岬
素子は、上記支持手段の温度全一定に保持するために用
いられると共に、上記受光素子の受光するレーザ光の変
動分に応じて上記半導体レーザ素子の入力直流を制舞す
ること全特徴とする半導体レーザ装置。
1. A half-four laser element that extracts one of the laser beams emitted in both directions as output light, a light receiving element, and the above-mentioned in a positional relationship such that it enters the optical path of the other laser beam from the semiconductor laser element. It consists of a support means for arranging the pixel element, and a temperature control element connected to the support means. A semiconductor laser device characterized in that input direct current to the semiconductor laser element is controlled in accordance with fluctuations in received laser light.
JP20094183A 1983-10-28 1983-10-28 Semiconductor laser device Pending JPS59112675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20094183A JPS59112675A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20094183A JPS59112675A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP688580A Division JPS55113390A (en) 1980-01-25 1980-01-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS59112675A true JPS59112675A (en) 1984-06-29

Family

ID=16432838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20094183A Pending JPS59112675A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59112675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689659A (en) * 1985-02-18 1987-08-25 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689659A (en) * 1985-02-18 1987-08-25 Fuji Photo Film Co., Ltd. Temperature controller for semiconductor device

Similar Documents

Publication Publication Date Title
US6765948B2 (en) VCSEL assembly with edge-receiving optical devices
US4958354A (en) Apparatus for stabilizing the intensity of light
US6301279B1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
JPS6254991A (en) Semiconductor laser
US6526078B2 (en) Light source
US3999146A (en) Semiconductor laser device
US5345459A (en) Method of reducing the thermally-induced shift in the emission wavelength of laser diodes
JPH0697597A (en) Surface emitting type semiconductor laser with photodetector
WO1991007010A2 (en) Optical amplifier
US5684816A (en) Light Interactive semiconductor device including wire connection at internal light distribution maximum
JPS59112675A (en) Semiconductor laser device
US20030021327A1 (en) Semiconductor surface-emitting laser with integrated photodetector
JP2725012B2 (en) Semiconductor light emitting device
US5812715A (en) Optoelectronic device with a coupling between a semiconductor diode laser modulator or amplifier and two optical glass fibers
JP2000228556A (en) Semiconductor laser device
JPS59152793A (en) Microphone
JPS59112678A (en) semiconductor laser equipment
JPS5846879B2 (en) semiconductor laser equipment
JPS59112676A (en) semiconductor laser equipment
JPS59112677A (en) semiconductor laser equipment
EP0746069B1 (en) Frequency stabilization method of semiconductor laser and frequency-stabilized light source
US4924471A (en) Method for increasing the output power of a laser diode
Ito et al. Temperature stabilization in semiconductor laser diodes
JPS6257117B2 (en)
JPH09312441A (en) Optical transmitter