JPS59112436A - Manufacture of magnetic tape - Google Patents
Manufacture of magnetic tapeInfo
- Publication number
- JPS59112436A JPS59112436A JP22074282A JP22074282A JPS59112436A JP S59112436 A JPS59112436 A JP S59112436A JP 22074282 A JP22074282 A JP 22074282A JP 22074282 A JP22074282 A JP 22074282A JP S59112436 A JPS59112436 A JP S59112436A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic tape
- vapor deposition
- film
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/85—Coating a support with a magnetic layer by vapour deposition
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高分子成形物よシなる支持体上に蒸着により
金属薄膜を形成して磁気テープを製造する磁気テープの
製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a magnetic tape by forming a thin metal film by vapor deposition on a support such as a molded polymer.
背景技術とその問題点
従来、高分子成形物よりなる非磁性支持体上に所定の入
射角の範囲内で金属磁性材料を斜め蒸着しかかる非磁性
支持体上に強磁性金属層を形成して磁気テープを製造す
る方法としては第1図に示す如き製造装置を用いる製造
方法が提案されていた。BACKGROUND ART AND PROBLEMS Conventionally, a ferromagnetic metal layer is formed on a non-magnetic support made of a polymer molded material by diagonally depositing a metal magnetic material within a predetermined incident angle range. As a method of manufacturing a magnetic tape, a manufacturing method using a manufacturing apparatus as shown in FIG. 1 has been proposed.
この第1図に於いて、(1)は所謂斜め蒸着により磁気
テープを得る磁気テープの製造装置を全体として示し、
この磁気テープの製造装置(1)の内部(1a)は真空
ポンプ(2)を用いて真空とできるようになされている
。(3)は非磁性支持体例えば6μm厚のホIJエチレ
ンテレフタレートフイルムテープヲ示す。この非磁性支
持体(3)は、回転軸(4a)を軸として回転して外観
円柱状で冷却されてその温度がさげられているクーリン
グキャン(4)に所定長だけ巻き掛けられて、所定速度
で矢印入方向に移動するようになされている。ここで、
非磁性支持体(3)は非磁性支持体供給用ロール(3a
)から供給され、所定長だけクーリングキャン(4)に
巻き掛けられ、巻取用ロール(3b)に供給される如く
なされている。(5)は金属磁性材料例えばコバルト−
ニッケル合金(コバルト80%、ニッケル20%)を示
し、このコバルト−ニッケル合金(5)Fi坩堝(6)
に入れられている。そして、電子銃(図示せず)によシ
この坩堝(6)が加熱された際に、真空ポンプ(2)を
使って例えば5X10−5torrの酸素雰囲気となさ
れた製造装置の内部(la) K、コバルト−ニッケル
合金(5)が蒸発して飛び出し、非磁性支持体(3)上
に蒸着される如くなされている。また一方、クーリング
キャン(4)の水平断面としての円周の法線方向とコバ
ルト(5)の飛んでくる非磁性支持体(3)の方向との
なす角としての入射角θを所定の入射角の範囲内に限っ
て、コバルト−ニッケル合金が斜め蒸着されるようにす
るため、蒸着領域規定用マスク(7m)(7b)(7a
)及び蒸着領域規定板(8a)(8b)(8c)が図示
の如く設けられている。ここで、規定板(8a)及び(
8b)は夫々蒸着領域のうち入射角の範囲を規定すべく
非磁性支持体(3)の長手方向の間隔を規定し、規定板
(8C)は非磁性支持体幅方向下方を規定し、図示せず
も上方を規定する規定板も規定板(8C)に対応して設
けられている。また、マスク(7a)(7b)(7c)
は非磁性支持体に近接して円弧状に設けられ、マスク(
7a)及び(7b)にて入射角の範囲を規定すべく長手
方向の間隔を規定すると共にマスク(7C)は非磁性支
持体(3)の幅方向の一方を規定し、図示せずも非磁性
支持体(3)の幅方向のもう一方を規定するマスクがマ
スク(7C)に対応して設けられている。そのため、こ
れら規定板(8a)(8bX8c)及びマスク(7a)
(7b)(7c)とクーリングキャン(4)と坩堝(6
)との相対位置によシ、非磁性支持体(3)上へのコバ
ルト−ニッケル合金の入射角を限定でき、所望の斜め蒸
着がなされることになる。In FIG. 1, (1) generally shows a magnetic tape manufacturing apparatus for producing a magnetic tape by so-called oblique deposition.
The interior (1a) of this magnetic tape manufacturing apparatus (1) can be evacuated using a vacuum pump (2). (3) indicates a non-magnetic support such as a 6 μm thick IJ ethylene terephthalate film tape. This non-magnetic support (3) is wound for a predetermined length around a cooling can (4) which rotates around a rotating shaft (4a) and has a cylindrical appearance to reduce its temperature. It is designed to move at speed in the direction indicated by the arrow. here,
The non-magnetic support (3) is supplied with a non-magnetic support supply roll (3a
), is wound around the cooling can (4) by a predetermined length, and is supplied to the winding roll (3b). (5) is a metal magnetic material such as cobalt.
A nickel alloy (80% cobalt, 20% nickel) is shown, and this cobalt-nickel alloy (5) Fi crucible (6)
It is placed in Then, when this crucible (6) is heated by an electron gun (not shown), an oxygen atmosphere of, for example, 5X10-5 torr is created using a vacuum pump (2) inside the manufacturing equipment (la) K. , the cobalt-nickel alloy (5) is evaporated and evaporated onto the non-magnetic support (3). On the other hand, the incident angle θ, which is the angle between the normal direction of the circumference as a horizontal cross section of the cooling can (4) and the direction of the non-magnetic support (3) from which the cobalt (5) is flying, is determined as a predetermined incident angle. In order to ensure that the cobalt-nickel alloy is diagonally deposited only within the corner range, masks for defining the deposition area (7m) (7b) (7a) are used.
) and vapor deposition area defining plates (8a), (8b), and (8c) are provided as shown. Here, the regulation plate (8a) and (
8b) respectively define the interval in the longitudinal direction of the non-magnetic support (3) in order to define the range of the incident angle in the vapor deposition region, and the defining plate (8C) defines the lower part in the width direction of the non-magnetic support. Although not shown, a regulation plate for defining the upper side is also provided corresponding to the regulation plate (8C). Also, masks (7a) (7b) (7c)
is provided in an arc shape close to the non-magnetic support, and the mask (
7a) and (7b) define the interval in the longitudinal direction to define the range of the incident angle, and the mask (7C) defines one side in the width direction of the non-magnetic support (3). A mask defining the other side of the magnetic support (3) in the width direction is provided corresponding to the mask (7C). Therefore, these regulation plates (8a) (8bX8c) and mask (7a)
(7b) (7c), cooling can (4) and crucible (6)
), the angle of incidence of the cobalt-nickel alloy onto the non-magnetic support (3) can be limited, resulting in the desired oblique deposition.
この斜め蒸着の手法を用いて磁気テープを製造すれば、
針状比の良い磁性粉により強磁性金属薄膜が形成され、
磁気テープの保磁力Heが上がって短波長信号の記録が
可能となシ高密度記録が実現できるような高性能の磁気
テープが製造されることが知られている。If magnetic tape is manufactured using this oblique deposition method,
A ferromagnetic metal thin film is formed by magnetic powder with a good acicular ratio,
It is known that high-performance magnetic tapes can be manufactured that can realize high-density recording by increasing the coercive force He of the magnetic tapes and making it possible to record short wavelength signals.
ところで、この従来の装置を用いる製造方法にあっては
、非磁性支持体(3)が連続的にクーリングキャン(4
)上で移動し、この非磁性支持体(3)はクーリングキ
ャン(4)上で幅方向に平坦になる様になされている。By the way, in the manufacturing method using this conventional device, the non-magnetic support (3) is continuously placed in the cooling can (4).
), and the non-magnetic support (3) is made flat in the width direction on the cooling can (4).
そして、安定した移動のため、非磁性支持体(3)には
所定の張力が加わっている。そのため、非磁性支持体(
3)がその長手方向には伸長し、幅方向には収縮した状
態で蒸着工程を経ることになる1内側とする湾曲が起き
る問題があった。For stable movement, a predetermined tension is applied to the non-magnetic support (3). Therefore, the non-magnetic support (
3) is elongated in the longitudinal direction and contracted in the width direction during the vapor deposition process, causing a problem that curvature occurs on the inside.
この湾曲を除去する目的で加熱したローラ間を走行させ
ることも試みられたけれども、ローラ間を移動するとき
にも幅方向に平坦であるので同様に張力がかかり、十分
に変形を取シ除くことができず問題は解決されなかった
。In order to eliminate this curvature, attempts have been made to run the vehicle between heated rollers, but since the rollers are flat in the width direction, the same tension is applied when moving between the rollers, making it difficult to sufficiently remove the deformation. could not be done and the problem was not resolved.
発明の目的
本発明はかかる点に鑑み、湾曲のない磁気テープを製造
できる磁気テープの製造方法を提供せんとするものであ
る。OBJECTS OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a method for manufacturing a magnetic tape that can manufacture a magnetic tape without curvature.
発明の概要
本発明磁気テープの製造方法は、高分子成形物よりなる
支持体上に強磁性金属薄膜を形成する際に、その支持体
を湾曲させて凸面を形成し、その凸面上に強磁性金属薄
膜を形成するようにしたもので、湾曲のない磁気テープ
を製造できるようにしたものである。Summary of the Invention The method for producing a magnetic tape of the present invention involves, when forming a ferromagnetic metal thin film on a support made of a polymer molded product, the support is curved to form a convex surface, and a ferromagnetic metal film is formed on the convex surface. A thin metal film is formed on the magnetic tape, making it possible to manufacture a magnetic tape without curvature.
X施用
(5)
以下第3図を参照して、本発明磁気テープの製造方法の
一実施例について説明しよう。この第3(込δω
図は、この実施例において使用するクーリンダキャン誇
を示し、このクーリングキャン(9)の側面(9a)が
外側へ湾曲する湾曲面とするようにする。X Application (5) An embodiment of the method for manufacturing the magnetic tape of the present invention will be described below with reference to FIG. This third diagram (including δω) shows the cooling can used in this embodiment, and the side surface (9a) of this cooling can (9) is a curved surface that curves outward.
との例ではこの湾曲面の曲率半径ρを0.3mとして形
成する。他の点については従来の磁気テープの製造方法
と同様に構成するものとする。In the example, the radius of curvature ρ of this curved surface is set to 0.3 m. In other respects, the structure is similar to that of the conventional magnetic tape manufacturing method.
この実施例はこのように構成されたので、非磁性支持体
(3)が非磁性支持体供給用ロール(3a)から供給さ
れ、所定長だけクーリングキャン(9)に巻き掛けられ
順次巻取用ロール(3b)に供給される如くなされる。Since this embodiment is configured in this manner, the non-magnetic support (3) is supplied from the non-magnetic support supply roll (3a), is wound around the cooling can (9) by a predetermined length, and is sequentially wound for winding. It is made such that it is fed to the roll (3b).
また一方、坩堝(6)が電子銃の電子ビームによシ加熱
され、例えば5刈0−5torrの酸素雰囲気中にコバ
ルト−ニッケル合金(5)が蒸発して飛び出し、蒸着領
域規定用マスク及び蒸着領域規定板によシ規定されない
入射角についてクーリングキャン(9)に巻き掛けられ
た非磁性支持体(3)表面に蒸着されるようになる。こ
の際、非磁性支持体(3)は湾曲したクーリングキャン
(9)に巻き掛けられ、蒸 r 1
着される面側か凸となるように湾曲した曲面となってお
シ、所定速度でクーリングキャン(9)が回転して、非
磁性支持体(3)が所定の経路を走行していき、この凸
面上に例えば膜厚04 Jimの強磁性金属薄膜が形成
されることになる。On the other hand, the crucible (6) is heated by the electron beam of the electron gun, and the cobalt-nickel alloy (5) is evaporated and ejected into an oxygen atmosphere of, for example, 0-5 torr, forming a mask for defining the vapor deposition area and a vapor deposition area. At an incident angle not defined by the area defining plate, the vapor is deposited on the surface of the non-magnetic support (3) wrapped around the cooling can (9). At this time, the non-magnetic support (3) is wrapped around a curved cooling can (9), and the non-magnetic support (3) is formed into a curved surface so that the side to be vaporized is convex, and is cooled at a predetermined speed. As the can (9) rotates, the nonmagnetic support (3) travels along a predetermined path, and a ferromagnetic metal thin film having a thickness of, for example, 04 Jim is formed on this convex surface.
そして、単位長さあたシの変形度を第2図のd。Then, the degree of deformation per unit length is d in Figure 2.
lにつきdllで定義すれば、表1に示すようにとの例
による変形度はODIであった。ちなみに、りIJソン
グャン(9)の側面を平坦にしていた従来の場合には、
変形度は0.08であった。If defined as dll per l, the degree of deformation according to the example shown in Table 1 was ODI. By the way, in the conventional case where the sides of Ri IJ Song Gang (9) were flat,
The degree of deformation was 0.08.
表1
この実施例における支持体の幅方向の湾曲面の曲率半径
ρ=0.3mを05m m 1.0m + 20mと変
化させて製造した場合の完成された磁気テープの変形度
は夫々01)5 、 OD7 、04)8であったから
、曲率半径ρを調整することによシ完成された磁気テー
プの湾曲が解消される。Table 1 In this example, when the radius of curvature of the curved surface in the width direction of the support body was manufactured by changing the radius of curvature ρ = 0.3 m to 05 m m 1.0 m + 20 m, the degree of deformation of the completed magnetic tape was 01). 5, OD7, 04)8, the curvature of the completed magnetic tape can be eliminated by adjusting the radius of curvature ρ.
このように、この実施例によれば支持体をクーリングキ
ャン(9)上に巻き掛けられた際に湾曲させるようにし
て凸面を形成し、その凸面上に強磁性金属薄膜を形成す
るようにしたので、磁気テープの湾曲を解消するように
できる利益がある。According to this embodiment, the support is curved when wrapped around the cooling can (9) to form a convex surface, and a ferromagnetic metal thin film is formed on the convex surface. So, there is an advantage to being able to eliminate the curvature of the magnetic tape.
次に上述実施例同様、第3図のクーリングキャン(9)
を用いて磁気テープを製造する他の実施例を示す。この
実施例は、先ず第1図によった従来例同様に磁気テープ
を得る工程を経た後、その湾曲した磁気テープを加熱し
所定温度に保たれた第3図に示したクーリングキャン(
9)に所定長巻き掛けて送る工程を経るようにする。こ
の蒸着工程で湾曲した方向と逆方向に強制的に湾曲させ
て熱処理する工程を経ることによシかかる湾曲の除去さ
れた磁気テープが得られることになる。Next, as in the above embodiment, the cooling can (9) shown in FIG.
Another example of manufacturing a magnetic tape using the following will be described. In this embodiment, first a magnetic tape is obtained in the same manner as in the conventional example shown in FIG.
9) The process of wrapping the paper around the paper for a predetermined length and sending it is performed. By forcibly curving the magnetic tape in the opposite direction to the direction of curvature in this vapor deposition step and then performing a heat treatment, a magnetic tape from which such curvature has been removed can be obtained.
例えばクーリングキャン(9)の温度を100℃、クー
リングキャン(9)の湾曲した側面(9a)の曲率半径
を05m、磁気テープ%の蒸着層側をクーリングキャン
(9)と接しない側としこの熱処理工程を行なうものと
する。との結果表2に示すように蒸着工程表 2
を終えた磁気テープの走行速度V [m/rmyr )
= 0.5とすると、変形度d/′t−0となシ完全
に蒸着工程で形成された湾曲が解消された。For example, the temperature of the cooling can (9) is set to 100°C, the radius of curvature of the curved side surface (9a) of the cooling can (9) is 05 m, and the vapor deposition layer side of the magnetic tape % is the side not in contact with the cooling can (9), and this heat treatment is performed. The process shall be carried out. As shown in Table 2, the running speed of the magnetic tape after vapor deposition process Table 2 was V [m/rmyr].
= 0.5, the degree of deformation was d/'t-0, and the curvature formed during the deposition process was completely eliminated.
このようにこの実施例によれば、磁気テープを所定の曲
率で湾曲させ加熱することによシ蒸着工程で形成された
磁気テープの湾曲が解除できる利益がある。As described above, this embodiment has the advantage that by bending the magnetic tape to a predetermined curvature and heating it, the curvature of the magnetic tape formed in the vapor deposition process can be released.
この実施例において磁気テープの走行速度v=1m/m
としたとき変形度d/z−o、o 1、vtg’lJm
としたときdll−0,02、V W 3 m/mと
したときdll−0,04、vm4@/mとしたとき’
/l−o、07となシ、何れの例においても上述例と同
様に熱処理工程を経ない場合のd/l= o、o sに
比し湾曲が改善された。In this example, the running speed of the magnetic tape v=1 m/m
When the degree of deformation d/z-o, o 1, vtg'lJm
When dll-0,02, V W 3 m/m, dll-0,04, vm4@/m'
/l-o, 07, and in both examples, the curvature was improved compared to d/l = o, o s when no heat treatment step was performed, similar to the above-mentioned example.
また、上述実施例の夫々につき側面な凹形の湾曲面とし
磁気テープの蒸着面をかかる側面に対接(9)
して走行させて熱処理を行う工程を可とする。Further, in each of the above-mentioned embodiments, it is possible to perform a heat treatment by running a concave curved side surface with the vapor deposition surface of the magnetic tape in contact with the side surface (9).
尚、本発明は上述実施例に限らず本発明の要旨を逸脱す
ることなくその他種々の構成が取シ得ることは勿論であ
る。It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be made without departing from the gist of the present invention.
発明の効果
以上述べたように本発明磁気テープの製造方法によれば
1湾曲のない磁気テープを製造できる利益がある。Effects of the Invention As described above, the method for manufacturing a magnetic tape of the present invention has the advantage that a magnetic tape without any curvature can be manufactured.
第1図は従来の磁気テープの製造方法による例を示す断
面図、第2図は第1図例の説明に供する線図〜第3図は
本発明磁気テープの製造方法の一実施例による要部の例
を示す線図である。
(3)は支持体、(9)はクーリングキャン、(9a)
はクーリングキャンの側面である。
(10)FIG. 1 is a sectional view showing an example of a conventional magnetic tape manufacturing method, FIG. 2 is a line diagram for explaining the example in FIG. FIG. (3) is a support body, (9) is a cooling can, (9a)
is an aspect of cooling can. (10)
Claims (1)
する際に、その支持体を湾曲させて凸面を形成し、その
凸面上に強磁性金属薄膜を形成するようにしたことを特
徴とする磁気テープの製造方法。When forming a ferromagnetic metal thin film on a support made of a molded polymer, the support is curved to form a convex surface, and the ferromagnetic metal thin film is formed on the convex surface. A method of manufacturing magnetic tape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22074282A JPS59112436A (en) | 1982-12-16 | 1982-12-16 | Manufacture of magnetic tape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22074282A JPS59112436A (en) | 1982-12-16 | 1982-12-16 | Manufacture of magnetic tape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59112436A true JPS59112436A (en) | 1984-06-28 |
Family
ID=16755812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22074282A Pending JPS59112436A (en) | 1982-12-16 | 1982-12-16 | Manufacture of magnetic tape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59112436A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62134829A (en) * | 1985-12-06 | 1987-06-17 | Matsushita Electric Ind Co Ltd | Production of magnetic recording medium |
-
1982
- 1982-12-16 JP JP22074282A patent/JPS59112436A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62134829A (en) * | 1985-12-06 | 1987-06-17 | Matsushita Electric Ind Co Ltd | Production of magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59112436A (en) | Manufacture of magnetic tape | |
JPH0721560A (en) | Production of magnetic recording medium | |
JPH0626018B2 (en) | Method of manufacturing magnetic recording medium | |
JP2827218B2 (en) | Manufacturing method of magnetic recording medium | |
JP2629847B2 (en) | Manufacturing method of magnetic recording medium | |
JP2668953B2 (en) | Manufacturing method of magnetic recording medium | |
JPH05101383A (en) | Manufacture of magnetic recording medium | |
JPS59150083A (en) | Vacuum deposition device | |
JPS61289533A (en) | Manufacture of magnetic recording medium and its device | |
JPS59110040A (en) | Vapor-depositing device of magnetic tape | |
JPH05101384A (en) | Manufacture of magnetic recording medium | |
JPS60111345A (en) | Manufacture of magnetic recording medium | |
JPH1091954A (en) | Production of magnetic recording medium and producing device therefor | |
JPH05128518A (en) | Manufacture of magnetic recording medium | |
JPS644254B2 (en) | ||
JPS59165410A (en) | Ferromagnetic thin film forming apparatus | |
JPH05101382A (en) | Production of magnetic recording medium | |
JPH0626021B2 (en) | Method of manufacturing magnetic recording medium | |
JPH06333225A (en) | Thin film magnetic recording medium | |
JPH10124871A (en) | Production of magnetic metallic thin-film type magnetic recording medium and apparatus for production thereof | |
JPH117627A (en) | Magnetic recording medium and its method and device of manufacturing | |
JPS6260127A (en) | Production of magnetic recording medium | |
JPH044659B2 (en) | ||
JPH07114731A (en) | Production of magnetic recording medium | |
JPH05128517A (en) | Manufacture of magnetic recording medium |