JPS59111050A - Measurement of live body components - Google Patents
Measurement of live body componentsInfo
- Publication number
- JPS59111050A JPS59111050A JP57221497A JP22149782A JPS59111050A JP S59111050 A JPS59111050 A JP S59111050A JP 57221497 A JP57221497 A JP 57221497A JP 22149782 A JP22149782 A JP 22149782A JP S59111050 A JPS59111050 A JP S59111050A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- measurement
- stirrer
- whole blood
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/492—Determining multiple analytes
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Ecology (AREA)
- Food Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は臨床化学検査に於て重要度の高い複数の成分を
電極法により簡単な操作で迅速かつ高精度に測定する自
動定量測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic quantitative measurement device that quickly and accurately measures a plurality of components of high importance in clinical chemistry tests using an electrode method with simple operations.
従来臨床化学検査に於ける生体成分の測定は目的物質毎
に異なった測定方法、即ち無機電解質については条光光
度法、有機物の生化学成分分析には主として比色法が採
用されて来た0しかしながらいずれの場合も血清分離、
タンパク除去等の前処理ご必要とする〜必要試料量が多
い、分析に要する時間が長い等の欠点があった〇
一方近年の電気化学的計測技術の発達により電解質に関
してはアニオン、カチオン共多数のイオン種についてイ
オン電極で測定出来る様になった。又生化学分析に於い
ては酵素の嶋い基質特異性を利用した測定法が開発され
更には取扱いが簡便でかつ酵素の効率の高い利用を計る
方法として固定化酵素法も開発され既に専用分析機器と
して一部市販されつつある。Conventionally, biological components in clinical chemistry tests have been measured using different measurement methods depending on the target substance, i.e., the photometric method has been used for inorganic electrolytes, and the colorimetric method has been mainly used for biochemical component analysis of organic substances. However, in both cases, serum separation,
Requires pre-treatment such as protein removal ~ There are disadvantages such as large amount of sample required and long time required for analysis.On the other hand, with the recent development of electrochemical measurement technology, there are many anions and cations in electrolytes. It has become possible to measure ion species using ion electrodes. In addition, in biochemical analysis, a measurement method that utilizes the low substrate specificity of enzymes has been developed, and an immobilized enzyme method has also been developed as a method that is easy to handle and uses enzymes with high efficiency, and has already been used for dedicated analysis. Some devices are now on the market.
しかしながら現在電解質イオン及び有機成分を同時に全
血で自動測定する装置は市販されるには至っておらず、
臨床化学検査部門に於いてその実現が望まれている。However, currently there are no devices on the market that can automatically measure electrolyte ions and organic components simultaneously in whole blood.
It is hoped that this will be realized in the clinical chemistry testing department.
本発明者らはかかる情勢に鑑み鋭意検討した結果、簡単
な手順で複数成分の連続自動分析ができることを見出し
本発明に到達した。The inventors of the present invention made extensive studies in view of the above situation, and as a result, they discovered that continuous automatic analysis of a plurality of components can be performed using a simple procedure, and arrived at the present invention.
即ち本発明は全血試料を予め緩衝液又は純水で稀釈した
後、生化学成分測定用に調整された一定量の緩衝液を含
む測定セルに定量分注し、イオン電極及び酵素電極を用
いて各測定セル内において生化学成分を測定することを
特徴とする生体成分測定方法にある。That is, in the present invention, a whole blood sample is diluted in advance with a buffer solution or pure water, then quantitatively dispensed into a measurement cell containing a fixed amount of buffer solution adjusted for measuring biochemical components, and then using an ion electrode and an enzyme electrode. A method for measuring biological components is characterized in that biochemical components are measured in each measurement cell.
本発明で測定する生化学成分としてはナトリウム、カリ
ウム、カルシウム、塩素などの電解質、血中アンモニア
、尿素窒素、グルコース、尿酸等を挙げることができる
。Biochemical components measured in the present invention include electrolytes such as sodium, potassium, calcium, and chlorine, blood ammonia, urea nitrogen, glucose, and uric acid.
本発明は全血を用いこれらの成分をすべて電極法で測定
するため試料の水素イオン濃度(PH)°変化及びこれ
に伴なうカルシウム等のイオン濃度変化をひきおこす事
なく迅速かつ精度よく生体成分の定量分析が出来るとい
う特徴を有している。本発明でいつ全血試料とは生体か
ら採取した血液そのものすなわち、血清、血漿等、血液
から成分を分離していない血液をさす。The present invention uses whole blood to measure all of these components using an electrode method, so biological components can be detected quickly and accurately without causing changes in the hydrogen ion concentration (PH) of the sample or accompanying changes in the concentration of ions such as calcium. It has the feature of being able to perform quantitative analysis. In the present invention, the term "whole blood sample" refers to blood itself collected from a living body, that is, blood from which components have not been separated, such as serum or plasma.
次に本発明を図面を用いてさらに詳しく説明する。Next, the present invention will be explained in more detail using the drawings.
第1図は、本考案の実施の一例を示す概略図である。注
射器/により採血した全血試料は稀釈槽コに設けられた
注入口から直接稀釈槽コに注入される。コには、あらか
じめ純水又は測定対象物質を含まない緩衝溶液が入って
おり、注入と同時に攪拌器ダにより均一に混合される。FIG. 1 is a schematic diagram showing an example of implementation of the present invention. A whole blood sample collected with a syringe is directly injected into the dilution tank from an injection port provided in the dilution tank. A buffer solution that does not contain pure water or a substance to be measured is pre-filled in the container, and is mixed uniformly by a stirrer at the same time as the injection.
一定時間後、分注器Sと連動したポンプ16により各種
電解質測定用セル//、アンモニア測定用セル/コ及び
生化学成分測定用セル例えば尿素窒素測定用セル13、
グルコース測定用セル/44、尿酸測定用セルlsに定
量分注される。After a certain period of time, the pump 16 in conjunction with the dispenser S removes various electrolyte measurement cells, ammonia measurement cells, and biochemical component measurement cells, such as the urea nitrogen measurement cell 13,
A fixed amount is dispensed into the glucose measurement cell/44 and the uric acid measurement cell ls.
各セルにはあらかじめそれぞれに至適な緩衝溶液が所定
量入れられており、分注后各セルに入れられた液は各々
直ちに攪拌器2gの回転により混合均一化される。又各
セルにはそれぞれの測定対象成分を電気化学的に検出す
る電極(//〜is)が挿入されており、それぞれ所定
時間后、各電極からの信号がインターフェース3gを通
じ演算装置(o、p、u) J 9へ送られ演算処理さ
れる。測定が終るとドレイン用ポンプコクによりセル中
の溶液はドレインタンク37へ排出され仝7゜続いてボ
ンプコ2./6及び分注器Sにより全てのセルへ純水が
一定量送液され同時に攪拌されセル内の洗浄が行なわれ
る。A predetermined amount of an optimal buffer solution is placed in each cell in advance, and after dispensing, the liquids placed in each cell are immediately mixed and homogenized by rotation of the stirrer 2g. Further, electrodes (//~is) are inserted into each cell to electrochemically detect the respective components to be measured, and after a predetermined time, signals from each electrode are sent to the arithmetic unit (o, p) through the interface 3g. , u) sent to J 9 for calculation processing. When the measurement is completed, the solution in the cell is discharged to the drain tank 37 by the drain pump, and then pumped to the drain tank 37 for 7 degrees. A fixed amount of pure water is sent to all the cells by the /6 and the dispenser S and stirred at the same time to clean the inside of the cells.
本発明に用いる採血用注射器はいがなるものであっても
良いが必要全血麓が微Iであり、かつ正確に定量する必
要を鑑みツベルクリン用等の細くて長いタイプが好まし
い。又、採血に先立ち、抗凝固剤例えばヘパリン等を含
ませても良い。The blood sampling syringe used in the present invention may be of any type, but in view of the small volume of whole blood required and the need for accurate quantification, a thin and long type, such as one for tuberculin, is preferred. Furthermore, an anticoagulant such as heparin may be added to the blood sample prior to blood collection.
稀釈槽は全面試料が入る前に予め一定量の緩衝液又は純
水で満たされる様に構成される。また稀釈が嫌気条件下
で行なわれる様調整されており、これにより試料への系
内に空気が存在した場合の空気中の炭酸ガスの溶けこみ
による試料のPH変化が妨げられ、特にカルシウムイオ
ン及び血中アンモニアの定量が正確に行なわれる。稀釈
した試料を分注する分注器は多方コックタイプ、シリン
ダータイプ等いかなるものであっても良い。第3図は多
方コックタイプ分注器の一例である。The dilution tank is configured to be filled with a predetermined amount of buffer solution or pure water before the entire sample is placed therein. In addition, the dilution is adjusted to be performed under anaerobic conditions, which prevents changes in the pH of the sample due to the dissolution of carbon dioxide gas in the air when air is present in the sample system. Blood ammonia is accurately quantified. The dispenser for dispensing the diluted sample may be of any type, such as a multi-cock type or a cylinder type. FIG. 3 is an example of a multi-way cock type dispenser.
各成分測定用セルには予め電気化学的検出用の電極即ち
イオン電極及び酵素電極とそれぞれに対応する緩衝液が
予めセットされており特に酵素電極の入ったセルでは緩
衝液はPH調整の他酵素活性を高める効果を考慮して決
定されるが、本発明においては特にこれに限定されるも
のではない◎各測定用セルは稀釈試料注入口と緩衝液注
入口及び検液排出口を有するものが好ましく、その−例
を第一図に示すが、稀釈槽同様緩衝液で満たしデッドス
ペースを極力小さくし、かつ窒素置換することが好まし
い。第ダ図はモーターと各測定セルを上がらみた時の概
念図であり、第S図は側面からみた時の模式図である。Each component measurement cell is preset with electrodes for electrochemical detection, that is, an ion electrode and an enzyme electrode, and a buffer solution corresponding to each. This is determined in consideration of the effect of increasing activity, but the present invention is not particularly limited to this. ◎Each measurement cell has a diluted sample inlet, a buffer inlet, and a test solution outlet. Preferably, as shown in FIG. 1, it is preferable to fill the dilution tank with a buffer solution to minimize the dead space, and to replace the tank with nitrogen. Figure D is a conceptual diagram of the motor and each measurement cell viewed from above, and Figure S is a schematic diagram of the motor and each measurement cell viewed from the side.
即ち測定用セル内には攪拌子が入っており1各セル毎に
モーターで回転攪拌せしめる事も可能であるが、第を図
、第S図に示す様な回転子Mを含む固体ヒーター内に回
転子を囲んだ円型に配置し複数の測定用セル内の攪拌子
を同時に攪拌させると装置のコンパクト化、モーターの
節減、電気ノイズ発生の防止等顕著な改良ができる。こ
の場合攪拌子としては円盤状の攪拌子が好ましい。測定
セルの恒温化には・水槽・アルミブロック等いかなるも
のであっても良いがアルミブロックを用いることが望ま
しい。緩衝液を該恒温槽内に設はサブタンクに入れて予
め恒温化しておくと、測定時間の短縮及び測定用セルの
温度斑を防止できる。In other words, there is a stirrer inside the measurement cell, and it is possible to rotate each cell with a motor, but it is also possible to use a solid heater containing a rotor M as shown in Figures 1 and 2. By arranging the stirrers in a circle surrounding the rotor and simultaneously stirring the stirrers in a plurality of measurement cells, significant improvements such as compactness of the device, reduction in motors, and prevention of electrical noise can be achieved. In this case, a disc-shaped stirrer is preferable as the stirrer. Any device such as a water tank or aluminum block may be used to maintain the temperature of the measurement cell, but it is preferable to use an aluminum block. If the buffer solution is placed in a sub-tank in the constant temperature bath and kept constant in advance, the measurement time can be shortened and temperature unevenness in the measurement cell can be prevented.
電気化学計測用の電極1i−1tは例えば各々ナトリウ
ムイオン電極、カリウムイオン電極、カルシウムイオン
電極、塩素イオン電極、アンモニウムイオン電極及び酵
素ウレアーゼをセルローズトリアセテート膜に固定した
膜を隔膜型アンモニア電極の検出部に装着したウレアー
ゼ酵素電極、酵素グルコースオキシダーゼをアセチルセ
ルローズ膜に固定化し白金電極表面に装置した酵素電極
・同様に白金電極上にウリカー玄
ゼを固定化した酵素電極等〃用いることができる0
この様に必要な全ての項目の測定を電極法で行なう事に
より全血での測定が可能となり又従来法(条光法及び比
色法)で必要とされた専用装置及び高価な試薬類の大巾
な軽減が計れる。The electrodes 1i-1t for electrochemical measurement are, for example, a sodium ion electrode, a potassium ion electrode, a calcium ion electrode, a chloride ion electrode, an ammonium ion electrode, and a membrane in which the enzyme urease is immobilized on a cellulose triacetate membrane, respectively, as a detection part of a diaphragm type ammonia electrode. An enzyme electrode with urease enzyme electrode attached to the membrane, an enzyme electrode with the enzyme glucose oxidase immobilized on an acetyl cellulose membrane and mounted on the surface of a platinum electrode, an enzyme electrode with uricar oxidase immobilized on a platinum electrode, etc. can be used. By using the electrode method to measure all the items necessary for measurement, it is possible to measure whole blood, and it also eliminates the specialized equipment and expensive reagents required by conventional methods (light method and colorimetric method). The reduction can be measured.
本発明は以上説明した様に検体の稀釈、分注法の開発に
より臨床化学検査に於て重要度の高い複数項目を血清又
は全血試料を対象として、簡便な操作で精度良く測定す
る事を可能ならしめる効果を有する。As explained above, the present invention makes it possible to accurately measure multiple items of high importance in clinical chemistry tests using simple operations on serum or whole blood samples by developing a method for diluting and dispensing specimens. It has the effect of making it possible.
第1図は本発明による生体成分分析装置の一例を示す。
第2図は該装置で使用するセルの例を示し、第3図は多
方コックの一例を示し、霧′−° −第弘図はセルと
モーターの配置例を上からみた概念図、第S図はセルと
モーターの配置例を側面からみた模式図である。
l・・・試料注入器 コ・・・稀釈セル3・・・攪
拌子 ダ・・・スターラーj・・・分注器
6〜IO・・・測定用セルl/〜tS・・・測定
用電極 /A・・・試料分注用ポンプ77〜コλ・・・
稀釈用ぎンブ
一3〜コル・・・バッファー補充用ポンプλり・・・排
液用ポンプ コS・・・スターラーコ9〜Jコ・・・
サブバッファータンク33〜36・・・メインバッファ
ータンクJ7・・・ドレインタンク 3g・・・イン
ターフェース39・・・演算装置(opu) lIO
・・・プリンターQ/−1ψヒートブロック L2・・
・稀釈注入管ダJ・・・稀釈血液排出管
σ
N・・・磁石N極 l・・・磁石S極特許出願人
三菱レイヨン株式会社
代理人 弁理士 吉 沢 叡 芙
−+2図
+3図
+4図
+5図FIG. 1 shows an example of a biological component analyzer according to the present invention. Fig. 2 shows an example of a cell used in the device, Fig. 3 shows an example of a multi-way cock, Fig. The figure is a schematic side view of an example of the arrangement of cells and motors. l...sample injector c...dilution cell 3...stirrer da...stirrer j...dispenser
6~IO...Measurement cell l/~tS...Measurement electrode /A...Sample dispensing pump 77~koλ...
Dilution pump 3~col... Buffer replenishment pump λri... Drainage pump S... Stirrer 9~J...
Sub-buffer tanks 33 to 36... Main buffer tank J7... Drain tank 3g... Interface 39... Arithmetic unit (opu) lIO
...Printer Q/-1ψ heat block L2...
・Dilution injection tube DA J...Diluted blood discharge tube σ N...Magnet north pole l...Magnet S pole Patent applicant Mitsubishi Rayon Co., Ltd. agent Patent attorney Akira Yoshizawa Fu-+2 figures+3 figures+4 figures +5 figure
Claims (1)
測定用に調整された一定量の緩衝液を含む測定セルに定
量分注せしめ、イオン電極及び酵素電極を用いて各測定
セル内に於て各生化学成分を同時に測定する事を特徴と
する生体成分測定方法0 コ〕 上記酵素電極が電極面に酵素固定化膜を一体化し
た状態で装着した酵素電極であることを特徴とする特許
請求の範囲第一項記載の測定方法。 3)測定セルが各々その底部に攪拌子を備え、恒温槽内
に円型に配置され中心部の単一の磁石の回転により同時
に複数のセル内検液が攪拌される事を特徴とする特許請
求の範囲第一項記載の測定方法。[Scope of Claims] l) A whole blood sample is diluted with a buffer solution or pure water, and then dispensed in a fixed amount into a measurement cell containing a fixed amount of buffer solution adjusted for measuring biochemical components, and an ion electrode and an enzyme electrode are attached. A biological component measuring method characterized in that each biochemical component is simultaneously measured in each measurement cell using the enzyme electrode. A measuring method according to claim 1, characterized in that: 3) A patent characterized in that each measurement cell is equipped with a stirrer at its bottom, arranged in a circle in a constant temperature bath, and a plurality of test solutions in the cells are simultaneously stirred by the rotation of a single magnet in the center. A measuring method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57221497A JPS59111050A (en) | 1982-12-17 | 1982-12-17 | Measurement of live body components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57221497A JPS59111050A (en) | 1982-12-17 | 1982-12-17 | Measurement of live body components |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59111050A true JPS59111050A (en) | 1984-06-27 |
Family
ID=16767629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57221497A Pending JPS59111050A (en) | 1982-12-17 | 1982-12-17 | Measurement of live body components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59111050A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03273153A (en) * | 1990-03-23 | 1991-12-04 | Nec Corp | Measuring instrument and measuring method for liquid component |
-
1982
- 1982-12-17 JP JP57221497A patent/JPS59111050A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03273153A (en) * | 1990-03-23 | 1991-12-04 | Nec Corp | Measuring instrument and measuring method for liquid component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6646579B2 (en) | Devices for the detection of hyperammonemia and methods of using the devices | |
EP0102958B1 (en) | Method for measuring ionic concentration utilizing an ion-sensing electrode | |
CN102269732B (en) | High-speed electrolyte analysis device | |
ES8802198A1 (en) | Ion selective/enzymatic electrode medical analyzer device and method of use | |
JPH10501425A (en) | Measuring device for analytes in liquid samples | |
US4490235A (en) | Electrochemical cell provided with selective electrodes and at least one chemical reactor, for indirect measurement of clinical-chemical parameters | |
JP2630005B2 (en) | Liquid component measuring device and measuring method | |
US20040002161A1 (en) | Analytical test cartridge; and, methods | |
JP4901956B2 (en) | Substrate concentration measuring method and substrate concentration measuring apparatus | |
US5976465A (en) | Apparatus and method for the determination of substances in solution suspension or emulsion by differential pH measurement | |
EP0478048A2 (en) | Process and apparatus for the electrochemical determination of PCO2 in blood | |
DK156977B (en) | PH ANALYZER AND PROCEDURE FOR QUANTITATIVE DETERMINATION OF A SUBSTANCE IN A SAMPLE SOLUTION | |
CN102072930A (en) | Flow injection serially connected microelectrode electrochemical automatic method and device for simultaneous measurement of various electrolytes in blood sample | |
JPS59111050A (en) | Measurement of live body components | |
CN102866197A (en) | Method for quickly detecting concentrations of various electrolytes by ion-selective electrodes | |
JPH029302B2 (en) | ||
JPS6325301B2 (en) | ||
JP3895307B2 (en) | Quantitative method and quantitative chip for target substance | |
JP3074361B2 (en) | Quantitative analyzer | |
Absolute | Ultrafiltrate and microdialysis DL probe in vitro recoveries: electrolytes and metabolites | |
JPS59187249A (en) | Analyzing device of urea nitrogen | |
EP0139143B1 (en) | Process and apparatus for measuring the parameters characterizing the microbiological interactions between phages and bacteria | |
Wang et al. | Electrolyte Technologies | |
JPS58135950A (en) | Measurement of biocomponent | |
RU2544273C1 (en) | Electroanalytic system based on accumulative column biosensor for determination of low lactate concentrations |