JPS5910948B2 - Materials for cutting tools and their manufacturing method - Google Patents
Materials for cutting tools and their manufacturing methodInfo
- Publication number
- JPS5910948B2 JPS5910948B2 JP54063080A JP6308079A JPS5910948B2 JP S5910948 B2 JPS5910948 B2 JP S5910948B2 JP 54063080 A JP54063080 A JP 54063080A JP 6308079 A JP6308079 A JP 6308079A JP S5910948 B2 JPS5910948 B2 JP S5910948B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- nbn
- vol
- tan
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title claims description 13
- 238000005520 cutting process Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000005245 sintering Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000000919 ceramic Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
本発明はセラミック系高速切削工具材料に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ceramic-based high speed cutting tool materials.
セラミック系高速切削工具材料は、製造法の進5 歩に
よる組織の均一微細化と、工作機械の改良による主軸回
転数、馬力および剛性等の向上とが相俟つて、最近その
活用範囲が広がつている。Ceramic high-speed cutting tool materials have recently been used in a wider range of applications due to advances in manufacturing methods that have resulted in more uniform and finer structures, and improvements in machine tools that have increased spindle speed, horsepower, and rigidity. It's on.
これまで、セラミック工具は、粒度の微細化による強度
、靭性性の向上と密度の向上による耐摩10耗性の向上
が一つの関発の方向であり1968年頃TiCを添加し
たホットプレス品、いわゆる”黒セラミックが関発され
た。しかしながら、Al2O3と炭化物あるいは炭窒化
物粉末から構成される成形体を、高温真空中で焼結する
と、例えば15Al203+3C(炭化物あるいは炭窒
化物)=nA1+3COのような点がある。Up until now, the focus of ceramic tools has been to improve strength and toughness through finer grain size, and to improve wear resistance through increased density. However, when a compact composed of Al2O3 and carbide or carbonitride powder is sintered in a high-temperature vacuum, a point such as 15Al203+3C (carbide or carbonitride) = nA1+3CO is formed. be.
ちなみに、Al2O3−3CTiCの場合には、真空中
(10−2TOrr)、1600℃で1時間焼結しても
、理論密度の70%までしか靭密化は進行し20ない。
このためAl2O3−炭化物あるいは炭窒化物等の緻密
化には、黒鉛型中に被焼結物原料混合粉を入れて約20
kg/ cmの圧力1500〜1700℃の温度でホッ
トプレスする必要があり、事実、現在市販されている全
てのA1203=3CWt%25TiC系黒色セラミッ
クは、ホットプレス法で生産されている。しかしながら
、ホットプレス法は、黒鉛型の点から大量の処理ができ
ず、また連続化も難しいこと、およびスローアウエイチ
ツプの形状に切断して研削する工程が不可避であり、生
産30コストが高くならざるを得ないなどの欠点がある
。上記欠点の対策として、始めからスローアウエイ形状
の仮焼体を得て切削工程をなくすとともに研削代が少な
くなるように寸法調整して、熱間静水圧プレス法(以下
「HIP」という)によつて35大量処理することが考
えられる。しかしながら、上記HIPも、仮焼体の密度
が理論値の95%以上でないと、圧力媒体である不活性
ガスあるいは高温溶融ガラスが仮焼結体の内部に侵透し
て、収縮が充分に行なわれないために高密度焼結体が得
られないという難点がある。このため密度が理論的の9
5%以下の被焼結体をHIPする場合は通常金属キヤプ
セルまたは焼結温度で軟化するガラスキヤプセルに真空
封入するか、あるいは被焼結体の表面を金属または化合
物でコーテイングする等の方法が必要であり、上記した
HIPによる生産コストの低下という長所が十分に発揮
できないことがある。しかるに最近、上記従来技術の欠
点を解消し、通常の焼結条件で相対密度95%になるよ
うな新規なAl2O3基セラミツク組成物として、Ti
Nを5〜15wt%含有するものが提案されている(特
開昭53−130208号公報参照)。Incidentally, in the case of Al2O3-3CTiC, even if it is sintered in vacuum (10-2 TOrr) at 1600 DEG C. for 1 hour, the sintering progresses only to 70% of the theoretical density20.
Therefore, in order to densify Al2O3-carbide or carbonitride, etc., put the mixed powder of the material to be sintered into a graphite mold for about 20 minutes.
It is necessary to hot-press at a pressure of 1500 to 1700°C at a pressure of kg/cm, and in fact, all A1203=3CWt%25TiC black ceramics currently on the market are produced by the hot-pressing method. However, the hot press method cannot process large quantities due to the graphite mold, and is difficult to achieve continuous production, and the process of cutting and grinding into the shape of the throwaway chip is unavoidable, resulting in high production costs. There are drawbacks such as having no choice but to do so. As a countermeasure to the above-mentioned drawbacks, we obtained a calcined body with a throw-away shape from the beginning, eliminated the cutting process, and adjusted the dimensions to reduce the grinding allowance, and then used the hot isostatic pressing method (hereinafter referred to as "HIP"). It is conceivable to process 35 large quantities. However, in the above-mentioned HIP, if the density of the calcined body is not 95% or more of the theoretical value, the inert gas or high-temperature molten glass that is the pressure medium will penetrate into the inside of the calcined body, and the shrinkage will not be sufficient. There is a drawback that a high-density sintered body cannot be obtained because of the high density. Therefore, the density is theoretically 9
When HIPing a sintered body of 5% or less, the usual methods include vacuum sealing it in a metal capsule or glass capsule that softens at the sintering temperature, or coating the surface of the sintered body with a metal or compound. However, the above-mentioned advantage of reducing production costs by HIP may not be fully utilized. However, recently, a new Al2O3-based ceramic composition that overcomes the drawbacks of the above-mentioned prior art and has a relative density of 95% under normal sintering conditions has been developed.
A material containing 5 to 15 wt% of N has been proposed (see JP-A-53-130208).
この材料は、HIPによる大量処理に適した焼結体が得
られるため製造コストが従来の約半分以下ですむと同時
に高密度焼結体であるために硬度および抗折強度し市販
の黒色セラミツクスに匹敵する特性を有する優れた材料
である。一方、本願発明者も以前から独自に、通常の焼
結条件で相対密度が95%以上になるような新規な組成
Al2O3基セラミツク材を種々検討した結果本発明を
なしたものである。This material produces a sintered body suitable for mass processing by HIP, so the manufacturing cost is less than half that of conventional materials.At the same time, since it is a high-density sintered body, its hardness and bending strength are comparable to commercially available black ceramics. It is an excellent material that has the following properties. On the other hand, the inventor of the present invention has independently studied various types of Al2O3-based ceramic materials with a new composition that have a relative density of 95% or more under normal sintering conditions, and as a result, the present invention was developed.
本発明はHIPにより得られた焼結体の最終組成がTa
N2OvOl%未満、NbNl5vOl%以下で、かつ
TaN<15NbNの和が5〜20v01%、残部Al
2O3からなることを特徴とするものである。In the present invention, the final composition of the sintered body obtained by HIP is Ta.
less than N2OvOl%, NbNl5vOl% or less, and the sum of TaN<15NbN is 5 to 20v01%, the remainder Al
It is characterized by consisting of 2O3.
また、本発明は上記組成にSl3N4,AIN,BNの
の一種以上を5v01%以上含むものを包含する本発明
による新規な組成物はHIPによる大量処理に適した焼
結体であり、製造コストが従来の約半分以下ですむとい
う利点があり、また高密度焼結体であるために硬度およ
び抗折強度も市販の黒色セラミツクに近敵する優れた材
料である。以下、本発明を実施例に基づき詳述する。Furthermore, the novel composition of the present invention, which includes one or more of Sl3N4, AIN, and BN in an amount of 5v01% or more in the above composition, is a sintered body suitable for mass processing by HIP, and the manufacturing cost is low. It has the advantage of being less than half the amount of conventional material, and because it is a high-density sintered body, it is an excellent material with hardness and bending strength that are comparable to commercially available black ceramics. Hereinafter, the present invention will be explained in detail based on Examples.
純度99.9%、平均粒径0.5μのα−Al2O3、
純度9.9%平均粒子径1μのTaN,NbN,O.5
wt%MgOおよびSi3N4,AIN,BNを第1表
に示す各配合割合で配合し原料粉末とした。α-Al2O3 with a purity of 99.9% and an average particle size of 0.5μ,
TaN, NbN, O.P. with a purity of 9.9% and an average particle size of 1 μm. 5
Wt% MgO, Si3N4, AIN, and BN were blended at each blending ratio shown in Table 1 to obtain a raw material powder.
この粉末を72時間エチルアルコール中で粉砕を行つた
後、ワツクスを添加して造粒し、2000kg/(17
7iの圧力で成形した成形体を種々の温度で窒素雰囲気
中で予備焼結した。次いで、第1表に示す各HIP温度
で1500気圧の高圧Arガス圧下で60分間加圧焼結
を行つた。得られた焼結体の硬さ、抗折強度および相対
密度を第1表に示す。第1表からTaN2OvOl%未
満、NbNl5vOl%以下で、かつTaNとNbNの
和の含有量が5〜20v01%の場合には予備焼結温度
が1400〜1700℃の範囲で相対密度を95%以上
にすることができるため、その後に1400〜1700
℃の温度範囲でHIP処理を行うことにより相対密度が
99.8%以上で、硬さおよび抗折強度の優れたセラミ
ツク組成物が得られることがわかる。またTaN.l5
NbNの含有量がそれぞれ101%であり、その和が2
v01%の場合には、Al2O3の結晶粒が大きくなり
、抗折強度が劣り、他方、TaNとNbNの含有量が2
5v01%の場合には予備焼結温度が1700℃でも相
対密度が高々91.0%であり、したがつてHIP処理
しても高緻密化せず抗折強度も低いことが明らかである
。したがつて、本発明においてTaN2OvOl%未満
、NbNl5vOl%以下で、かつTaN,NbNの含
有量は、いずれか一方が1%以下の含有量であつても合
計で5〜15v02%であれば良いが、両者ともに2.
5%以上含有することがより好ましく、予備焼結温度お
よびHIP温度はいずれもTaN,NbNの含有量に応
じ1400〜1700℃の範囲内の任意を選定すればよ
い。After pulverizing this powder in ethyl alcohol for 72 hours, wax was added and granulated to give a weight of 2000 kg/(17
The compacts formed at a pressure of 7i were presintered at various temperatures in a nitrogen atmosphere. Next, pressure sintering was performed at each HIP temperature shown in Table 1 under a high pressure Ar gas pressure of 1500 atmospheres for 60 minutes. Table 1 shows the hardness, bending strength and relative density of the obtained sintered body. From Table 1, if TaN2OvOl% or less, NbNl5vOl% or less, and the total content of TaN and NbN is 5 to 20v01%, the relative density should be 95% or more when the preliminary sintering temperature is in the range of 1400 to 1700℃. 1400-1700 after that.
It can be seen that a ceramic composition having a relative density of 99.8% or more and excellent hardness and bending strength can be obtained by performing the HIP treatment in the temperature range of .degree. Also TaN. l5
The NbN content is 101% for each, and the sum is 2
In the case of v01%, the crystal grains of Al2O3 become large and the bending strength is poor, while on the other hand, the content of TaN and NbN is
In the case of 5v01%, the relative density is at most 91.0% even if the preliminary sintering temperature is 1700°C, and it is therefore clear that even if HIP treatment is performed, high densification is not achieved and the bending strength is low. Therefore, in the present invention, the content of TaN and NbN may be less than TaN2OvOl% and less than NbNl5vOl%, and the content of TaN and NbN may be 5 to 15v02% in total even if the content of either one is 1% or less. , both 2.
It is more preferable that the content is 5% or more, and the pre-sintering temperature and HIP temperature may be arbitrarily selected within the range of 1400 to 1700°C depending on the content of TaN and NbN.
また本発明においては周期率表1,,1
族金属の炭化物を5v0!?以下含有させて特性改善を
図ることができる。In addition, in the present invention, carbides of metals in Groups 1 and 1 of the periodic table are used at 5v0! ? The following elements can be included to improve characteristics.
Claims (1)
vol%未満、NbN15vol%以下で、かつTaN
とNbNの含有量の和が5〜20vol%、残部Al_
2O_3からなることを特徴とする切削工具用材料。 2 上記組成に副成分としてSi_3N_4、AlN、
BN、の一種以上を5vol%以下含有することを特徴
とする特許請求の範囲第1項記載の切削工具用材料。 3 成形体を真空中、不活性ガス中あるいは水素雰囲気
中1400〜1700℃の相対密度が95%以上になる
よう焼結し、次いで1400〜1700℃の温度で、5
00〜2000kg/cm^2のガス圧下で熱間静水圧
焼結を行なうことにより相対密度の99.8%以上まで
高密度化することを特徴とするTaN、NbNおよびA
l_2O_3を主成分とする切削工具用材料の製造方法
。[Claims] 1. The final composition of the sintered body after hot isostatic sintering is TaN20.
less than vol%, NbN 15 vol% or less, and TaN
The sum of the contents of and NbN is 5 to 20 vol%, the balance is Al_
A cutting tool material characterized by consisting of 2O_3. 2 Si_3N_4, AlN,
The cutting tool material according to claim 1, containing 5 vol% or less of one or more types of BN. 3. Sinter the compact in vacuum, in an inert gas, or in a hydrogen atmosphere at 1,400 to 1,700°C to a relative density of 95% or more, and then sinter at a temperature of 1,400 to 1,700°C, 5
TaN, NbN and A characterized by being densified to 99.8% or more of the relative density by hot isostatic sintering under gas pressure of 00 to 2000 kg/cm^2.
A method for producing a cutting tool material containing l_2O_3 as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54063080A JPS5910948B2 (en) | 1979-05-22 | 1979-05-22 | Materials for cutting tools and their manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54063080A JPS5910948B2 (en) | 1979-05-22 | 1979-05-22 | Materials for cutting tools and their manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55154373A JPS55154373A (en) | 1980-12-01 |
JPS5910948B2 true JPS5910948B2 (en) | 1984-03-12 |
Family
ID=13218993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54063080A Expired JPS5910948B2 (en) | 1979-05-22 | 1979-05-22 | Materials for cutting tools and their manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5910948B2 (en) |
-
1979
- 1979-05-22 JP JP54063080A patent/JPS5910948B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55154373A (en) | 1980-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5094986A (en) | Wear resistant ceramic with a high alpha-content silicon nitride phase | |
US4406668A (en) | Nitride coated silicon nitride cutting tools | |
US4409003A (en) | Carbonitride coated silicon nitride cutting tools | |
US4431431A (en) | Carbide coated silicon nitride cutting tools | |
US4388085A (en) | Abrasion resistant articles based on silicon nitride | |
US4615990A (en) | Silicon nitride sintered bodies and a method for their production | |
EP0035777B1 (en) | Abrasion resistant silicon nitride based articles | |
US5439855A (en) | Silicon nitride ceramics containing a dispersed pentamolybdenum trisilicide phase | |
US4433979A (en) | Abrasion resistant silicon nitride based articles | |
US4497228A (en) | Method of machining cast iron | |
EP0347920B1 (en) | High strength high toughness TiB2 ceramics | |
US4396724A (en) | Ceramic composition | |
US4650498A (en) | Abrasion resistant silicon nitride based articles | |
JPS5919903B2 (en) | Hot press manufacturing method of SiC sintered body | |
JPS5910948B2 (en) | Materials for cutting tools and their manufacturing method | |
US5036028A (en) | High density metal boride-based ceramic sintered body | |
JPS62187173A (en) | Bite chip for machining iron material | |
US4452906A (en) | Ceramic composition | |
JPS5891065A (en) | Manufacturing method of silicon carbide ceramic sintered body | |
JPH07172919A (en) | Titanium compound sintered body | |
JP3051603B2 (en) | Titanium compound sintered body | |
JPH0122233B2 (en) | ||
JP3481702B2 (en) | Cubic boron nitride sintered body using hard alloy as binder and method for producing the same | |
CA1189094A (en) | Ceramic composition | |
KR20020093283A (en) | High hardness titanium carbonitride based cermets and manufacturing method thereof |