JPS59107990A - Carbide coating method for carbon-containing materials - Google Patents
Carbide coating method for carbon-containing materialsInfo
- Publication number
- JPS59107990A JPS59107990A JP21374982A JP21374982A JPS59107990A JP S59107990 A JPS59107990 A JP S59107990A JP 21374982 A JP21374982 A JP 21374982A JP 21374982 A JP21374982 A JP 21374982A JP S59107990 A JPS59107990 A JP S59107990A
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- fluidized bed
- furnace
- carbon
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 19
- 229910052799 carbon Inorganic materials 0.000 title claims description 16
- 238000000576 coating method Methods 0.000 title claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- -1 ammonium halide Chemical class 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 30
- 239000007789 gas Substances 0.000 description 24
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- 229910052736 halogen Inorganic materials 0.000 description 10
- 150000002367 halogens Chemical class 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 235000019270 ammonium chloride Nutrition 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010955 niobium Substances 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- GVEHJMMRQRRJPM-UHFFFAOYSA-N chromium(2+);methanidylidynechromium Chemical compound [Cr+2].[Cr]#[C-].[Cr]#[C-] GVEHJMMRQRRJPM-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910003470 tongbaite Inorganic materials 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910000592 Ferroniobium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、流動層式炉を用いて、炭素を含む材料−の表
面tこ、チタン(Ti)、バナジウム(V)。DETAILED DESCRIPTION OF THE INVENTION The present invention uses a fluidized bed furnace to process the surface of materials containing carbon, titanium (Ti), and vanadium (V).
ニオブ(Nb)、タンク/I/(T a ) rクロふ
(Cr)、又はマンガン(Mn)、(以下、これらの元
素を炭化物形成元素と総称する)の炭化物層を形成させ
る表面処理方法に関するものである。Related to a surface treatment method for forming a carbide layer of niobium (Nb), tank/I/(Ta)r chromium (Cr), or manganese (Mn) (hereinafter, these elements are collectively referred to as carbide-forming elements) It is something.
従来、鋼の熱処理用炉として、アルミナ粉体に。Conventionally, it was used as a furnace for heat treatment of steel to produce alumina powder.
空気やアルゴン等のガスを吹込んで流動状態とした流動
層を、熱媒体として使用する流動層式炉が使用されてき
た。この熱媒体は温度分布が均一であり、かつ熱伝達が
迅速であるので、この熱媒体を利用すれは1品物を急速
に、かつ品物の各部の温度を均一に加熱することができ
る。Fluidized bed furnaces have been used that use a fluidized bed made into a fluidized state by blowing gas such as air or argon as a heat medium. Since this heat medium has a uniform temperature distribution and rapid heat transfer, it is possible to rapidly heat an item and uniformly heat each part of the item using this heat medium.
そこで、すでFここの流動層炉を使用して、金属表面へ
の拡散被覆を行う試みが公表されている。Therefore, attempts have already been made public to perform diffusion coating on metal surfaces using F's fluidized bed furnace.
この方法を第1図を基に説明する。まず浸透用元素を含
む物質と塩化物の混合粉末よりなる処理剤を流動層式炉
の炉本体a内の散気板す上に置く。This method will be explained based on FIG. First, a treatment agent made of a mixed powder of a substance containing a penetrating element and a chloride is placed on a diffuser plate in the furnace body a of a fluidized bed furnace.
ついで、不活性ガスをガス供給通路C1を経て炉本体a
内に注入し、処理剤粉末を流動状態にして。Then, the inert gas is passed through the gas supply passage C1 to the furnace body a.
Inject the processing agent powder into a fluid state.
流動層dを形成する。そして、炉本体aの頂部の蓋eを
とって、被処理材fを流動層d中に埋設し。A fluidized bed d is formed. Then, the lid e on the top of the furnace body a is removed, and the material to be treated f is buried in the fluidized bed d.
蓋0を締める。その場合に、炉の密閉の確保には充分注
意する。ついで、水素をキャリヤーガスとして、活性化
剤のハロゲン蒸気がガス供給通路C1を経て、流動層d
に供給される。すると、ハロゲン蒸気と浸透用元素の粉
末とが相互反応してツ浸透用元素のハロゲン化物のガス
が発生する。Tighten lid 0. In that case, be careful to ensure that the furnace is sealed tightly. Next, using hydrogen as a carrier gas, the halogen vapor of the activator passes through the gas supply passage C1 and enters the fluidized bed d.
supplied to Then, the halogen vapor and the powder of the penetrating element react with each other, and a gas of the halide of the penetrating element is generated.
ハロゲン化物のガスは、流動層d中の被処理材fに接触
すると1分解して浸透用元素を被処理材表面に析出させ
る。このようにして拡散被覆が行われる。When the halide gas comes into contact with the material f to be treated in the fluidized bed d, it decomposes to cause penetrating elements to be deposited on the surface of the material to be treated. Diffusion coating is performed in this way.
しかし、この方法では、以下のよう1こ、炉の取り扱い
、および処理操作がきわめて、やっかいである点が問題
であつた。すなわち、第1に8本方法で被覆層を形成す
るためtこは、活性化剤としてのハロゲン蒸気が必要で
あり、そのハロゲン蒸気を搬送するキャリヤーガスとし
て水素の使用が不可欠である。ところが、水素は爆発の
危険が多く。However, this method has a problem in that the handling of the furnace and processing operations are extremely troublesome, as described below. That is, first, in order to form the coating layer by the eight-layer method, halogen vapor is required as an activator, and it is essential to use hydrogen as a carrier gas to transport the halogen vapor. However, hydrogen has a high risk of explosion.
そのため配管および炉の密閉などに相当の注意を要する
。そのため、炉の操作が必ずしも能率的でない。また第
2に、水素の爆発を防ぐ゛ために密閉状態で炉を使用す
るので、高温状態の被処理材を炉外に取り出すことがで
きず、そのため、引続いて母材の焼入れを行うことが困
難である。第8に。Therefore, great care must be taken in sealing the piping and furnace. Therefore, the operation of the furnace is not necessarily efficient. Second, since the furnace is used in a closed state to prevent hydrogen explosion, the material to be treated cannot be taken out of the furnace at high temperatures, so the base material must be quenched subsequently. is difficult. Eighth.
ハロゲン蒸気発生装置が必要であるので、炉の構造が複
雑になり、操作も煩雑である。Since a halogen vapor generator is required, the structure of the furnace is complicated and the operation is complicated.
本願発明は、上記問題を解決しようとするものである。The present invention attempts to solve the above problem.
すなわち1本願発明は、水素やハロゲン蒸気を使用する
ことなく、シかも流動層炉を使用して、実用的な厚さの
炭化物層を短時間で安全に形成することができる表面処
理方法を提供することを目的とするものである。In other words, the present invention provides a surface treatment method that can safely form a carbide layer of a practical thickness in a short time using a fluidized bed furnace without using hydrogen or halogen vapor. The purpose is to
そして9本願発明は、50〜70重景%の重量レミナ、
50〜30重量%の炭化物形成元素の金属、又はそれら
の合金、および05〜3重景%重量ロゲン化アンモニウ
ム塩の三種類の粉末よりなる処理剤を、流動層式炉中に
置き、ついで、流動化ガスを導入して前記処理剤を流動
化して、前記流動層式炉中1こ流動層を形成せしめた後
、炭素を含む材料を前記流動層中に埋設し、加熱処理を
行うことにより炭素を含む材料表面tこ炭化物層を形成
させることを特徴とする炭素を含む材料の炭化物被覆方
法、である。And 9 the claimed invention is a weight remina of 50 to 70% heavy weight,
A treatment agent consisting of three powders of 50 to 30% by weight of metals of carbide-forming elements or their alloys and 05 to 3% by weight of halogenated ammonium salts is placed in a fluidized bed furnace, and then After fluidizing the treatment agent by introducing a fluidizing gas to form a fluidized bed in the fluidized bed furnace, a material containing carbon is buried in the fluidized bed and heated. This is a method of coating a carbon-containing material with a carbide, the method comprising forming a carbide layer on the surface of the carbon-containing material.
本願発明方法では、処理剤としてハロゲン化アンモニウ
ム塩の粉末を使用し、ハロゲン蒸気を使用しない。した
がって、ハロゲン蒸気を炉中に搬入するキャリヤガスと
しての水素を必要としない。In the method of the present invention, halogenated ammonium salt powder is used as a processing agent, and halogen vapor is not used. Therefore, there is no need for hydrogen as a carrier gas to carry the halogen vapor into the furnace.
そのため本願発明では、水素による爆発の危険もなくう
安全に炭化物被覆処理を行うことができる。Therefore, in the present invention, carbide coating treatment can be performed safely without the risk of explosion due to hydrogen.
また、炉を密閉する必要がないので、被処理材を高温の
流動層中に直接装入できる。その結果1品物を急速に加
熱することができる。また、高温状態で品物を炉から出
して母材の焼入れを簡単に行うこともできる。さらFこ
、ハロゲン蒸気を使用しないので、ハロゲン蒸気発生装
置も必要としない。Furthermore, since there is no need to seal the furnace, the material to be treated can be directly charged into the high-temperature fluidized bed. As a result, one item can be heated rapidly. Further, the base material can be easily quenched by taking the product out of the furnace in a high temperature state. Furthermore, since halogen vapor is not used, a halogen vapor generator is not required.
そのため2本発明では、構造も操作も簡単な流動層式炉
を使用することができる。また、熱媒体と□して流動状
態の処理剤粉末を利用するので、処理剤が品物の表面に
付着することがない。そのため。Therefore, in the present invention, a fluidized bed furnace that is simple in structure and operation can be used. Furthermore, since the processing agent powder in a fluid state is used as the heating medium, the processing agent does not adhere to the surface of the item. Therefore.
本方法によればきわめて平滑な材料表面を得ることがで
きる。さらに、流動層の温度分布が均一であるので1品
物表面に均一な厚さの炭化物層を形成することもできる
。また、二種類の炭化物形成元素の金属を同時に混合し
て処理剤成分として側木発明で使用する流動層式炉は、
一般に、乾燥。According to this method, an extremely smooth material surface can be obtained. Furthermore, since the temperature distribution of the fluidized bed is uniform, a carbide layer of uniform thickness can be formed on the surface of one product. In addition, a fluidized bed furnace in which two types of carbide-forming element metals are simultaneously mixed and used as a treatment agent component in the side wood invention,
Generally dry.
焼却、還元等の目的で通常使用されている流動層式炉で
よい。A fluidized bed furnace commonly used for incineration, reduction, etc. may be used.
アルミナは、処理剤中Fこ50〜70重景%(重量2重
量%は%と表記する)の範囲にあるのが有利である。ア
ルミナの配合量が50%未満の場合は、処理剤中の金属
粉末の割合が多くなり、処理剤全体が重量が大きくなっ
て処理剤の流動化が生じにくくなるので好ましくない。Advantageously, the alumina is present in the treatment agent in a range of 50 to 70% by weight (2% by weight expressed as %). If the amount of alumina blended is less than 50%, the proportion of metal powder in the processing agent increases, and the weight of the entire processing agent increases, making it difficult to fluidize the processing agent, which is not preferable.
また、逆1こ、アルミナが70%より多(なると、炭化
物層が形成しtこく(なるので、同様1こ好ましくない
。Also, if the amount of alumina is more than 70%, a carbide layer will be formed, which is also not preferable.
炭化物形成元素の金属とは、炭素と結合して炭化物を形
成しやすい金属をいい、第■a族元素のチタン、第Va
族x素のバナジウム、−オブ、タンタlv、そして第■
a族元素のクロム、および第■a族元素のマンガンが代
表的である。炭化物形成元素の合金としては、特に、
F e−V 、F e−Nb 、 F e−Crの炭化
物形成元素の金属又は合金を混合して、処理剤の成分と
して配合することもできる。Metals that are carbide-forming elements refer to metals that easily combine with carbon to form carbides, such as titanium, a group IV element, and Va
Group x element vanadium, -of, tanta lv, and th.
Representative examples include chromium, which is a group A element, and manganese, which is a group IV element. As alloys of carbide-forming elements, in particular,
Metals or alloys of carbide-forming elements such as Fe-V, Fe-Nb, and Fe-Cr can also be mixed and blended as a component of the treatment agent.
ハロゲン化アンモニウム塩トハ、 塩化アンモニウム(
NHaCll) 、臭化アンモニウム(NH4B r
) 。Ammonium halide salt, ammonium chloride (
NHaCll), ammonium bromide (NH4B r
).
沃化アンモニウム(NH4r ) 、 弗化アンモニウ
ム(NH4F)等からなる。ハロゲン化アンモニウム塩
は、炭化物形成元素の金属又は合金と反応して。It consists of ammonium iodide (NH4r), ammonium fluoride (NH4F), etc. Ammonium halide salts react with carbide-forming elemental metals or alloys.
炭化物形成に関与する炭化物形成元素のハロゲン化物の
ガスを発生させる。したがって、ハロゲン化アンモニウ
ム塩が05%より少ないと炭化物の形成の反応が弱く、
形成される炭化物層の厚さが薄い。しかし、8%より多
くなると1発生するハロゲン化物のガス量が増大して、
排気孔のつまりなどのトラブルが起こりやすくなるので
好ま°しくなU%。A halide gas of a carbide-forming element involved in carbide formation is generated. Therefore, if the amount of ammonium halide salt is less than 0.5%, the reaction of carbide formation is weak;
The thickness of the carbide layer formed is thin. However, when it exceeds 8%, the amount of halide gas generated increases,
U% is preferable because troubles such as exhaust hole clogging are more likely to occur.
処理剤の粉末粒度は、いずれも60メツシーから850
メツシユの範囲のものが好ましい。60メツシーより粗
いと、処理剤を流動化させるためtこ多量の流動化ガス
を必要とする。その結果1発生したハロゲン化物のガス
が、多量の流動化ガスにより吹き払われて品物の表面に
到達できな(なり5次化物形成が進まないので好ましく
ない。逆1こ850メツシーより細かくなると、粉末が
浮遊しやすくなり、取扱いが困難になるので、同様に好
ましくない。The powder particle size of the processing agent ranges from 60 to 850.
Those in the mesh range are preferred. If it is coarser than 60 mesh, a large amount of fluidizing gas is required to fluidize the processing agent. As a result, the halide gas generated is blown away by a large amount of fluidizing gas and cannot reach the surface of the item (this is not preferable because the formation of 5-dimensional compounds does not proceed. This is also undesirable since the powder tends to float and becomes difficult to handle.
流動化ガスとしては、処理剤と接触しても反応が生じな
いように不活性ガスが使用される。なかでも、普通純度
のアルゴンの使用が一般的である。As the fluidizing gas, an inert gas is used so that no reaction occurs when it comes into contact with the processing agent. Among these, argon of ordinary purity is commonly used.
流動化ガスは、所定の圧力、流量で流動層式炉内に注入
される。その結果、処理剤粉末は、炉内に吹き上げられ
、しかも引続き流入する流動化ガスの圧力により落下せ
ず、浮遊状態で炉内を移動する流動層となる。しかし、
処理剤の流動化に必要な流動化ガスの圧力、流量は、処
理剤粉末の粒度に応じて異なる。例えば、処理剤粉末粒
度が約80メツシエ程度の場合は、流動化ガスの圧力は
。The fluidizing gas is injected into the fluidized bed furnace at a predetermined pressure and flow rate. As a result, the processing agent powder is blown up into the furnace, and does not fall down due to the pressure of the fluidizing gas that subsequently flows in, forming a fluidized bed that moves in the furnace in a suspended state. but,
The pressure and flow rate of the fluidizing gas required to fluidize the processing agent vary depending on the particle size of the processing agent powder. For example, if the particle size of the processing agent powder is about 80 mesh, the pressure of the fluidizing gas will be .
15〜2kg/d、流量は4〜6 l ;/ minの
範囲が好ましい。Preferably, the flow rate is 15 to 2 kg/d and the flow rate is 4 to 6 l/min.
本発明の被処理材としては1炭素を含む材料が使用でき
る。また、炭素を含む材料としては、炭素を含む鉄、ニ
ッケル、コバルトなどの金属材料1および黒鉛を主体と
した炭素材料が含まれる。被処理材中に含まれる炭素と
、処理剤中の炭化物形成元素が結合して、被処理材表面
に炭化物形成元素の炭化物を形成するので1本発明に使
用の被処理材は01%以上の炭素を含むことが必要であ
る。As the material to be treated in the present invention, a material containing 1 carbon can be used. In addition, examples of materials containing carbon include carbon-containing metal materials 1 such as iron, nickel, and cobalt, and carbon materials mainly composed of graphite. The carbon contained in the treated material and the carbide-forming element in the treatment agent combine to form a carbide of the carbide-forming element on the surface of the treated material. It is necessary to contain carbon.
0.1%より炭素量が小さいと、炭化物層の形成が困難
であったり、実用的な厚さの炭化物形成に長時間を要す
ることがある。If the carbon content is less than 0.1%, it may be difficult to form a carbide layer, or it may take a long time to form a carbide layer to a practical thickness.
本発明の加熱工程は、熱媒体である流動層を加熱するこ
とにより行う。加熱の具体的手段は、流動層を含む硫動
層式炉を電気炉等の外部加熱器内に装入して、外部から
流動層を加熱する方式、あるいは流動層式炉内に設けら
れた加熱器により。The heating step of the present invention is performed by heating a fluidized bed that is a heat medium. Specific heating methods include placing a sulfur bed furnace containing a fluidized bed into an external heater such as an electric furnace and heating the fluidized bed from the outside, or heating the fluidized bed from the outside. By heater.
直接流動層を加熱する方式のいずれでもよい。加熱され
た流動層は1品物に接触して品物を加熱し。Any method that directly heats the fluidized bed may be used. The heated fluidized bed contacts one item and heats the item.
その結果9品物表面での炭化物層形成が生ずる。As a result, a carbide layer was formed on the surface of the nine products.
加熱処理温度は、700℃〜1200℃の範囲内で選択
される。700℃未満では、被処理材表面に十分な厚さ
の炭化物層が形成されない。他方。The heat treatment temperature is selected within the range of 700°C to 1200°C. If the temperature is lower than 700° C., a carbide layer of sufficient thickness will not be formed on the surface of the treated material. On the other hand.
1200℃を越えると、処理剤が密着固化しやすくなり
、又、被処理材の材質の劣化をまねくおそれもあり、好
ましくない。If the temperature exceeds 1200° C., the treatment agent tends to stick and solidify, and there is also a risk of deterioration of the material of the material to be treated, which is not preferable.
処理時間は、必要とする炭化物層の厚さ、および被処理
材の材質を考慮して、0.5時間から16時間の間で選
択される。加熱時間が0.5時間より短かいと、十分な
厚さの炭化物層が得られない場合がある。また、16時
間を越えて加熱すると。The treatment time is selected between 0.5 and 16 hours, taking into consideration the required thickness of the carbide layer and the material of the material to be treated. If the heating time is shorter than 0.5 hours, a carbide layer of sufficient thickness may not be obtained. Also, if heated for more than 16 hours.
被処理材の材質劣化が起きやす(なる。一般に・一定厚
さの炭化物層を得るためには、高い処理温度では比較的
短い処理時間、低い処理温度では比較的長い処理時間を
必要とする。Material deterioration of the treated material is likely to occur.Generally, in order to obtain a carbide layer of a constant thickness, a relatively short treatment time is required at a high treatment temperature, and a relatively long treatment time is required at a low treatment temperature.
以下9本発明の詳細な説明する。Hereinafter, nine aspects of the present invention will be described in detail.
実施例1
第2図に示す流動層式炉を用いて9本発明の炭化物被覆
処理を行った。なお、流動層式炉は、炉本体1の下部に
、ガス供給通路2が開口し、開口部の直上に、炉内を二
つFこ仕切る散気板8が設けら4ている。散気板3は厚
さ方向10貫通する多数のガス分散孔を有する。炉本体
1の頂部1こは、取りはずし自在の蓋4がかぶせられ、
蓋4の一部には、ガス排出通路5が開口している。炉本
体1の外周シこは、加熱器6が設置されている。また、
炉本体1は、耐熱鋼製であり、かつ形状は直径60n×
高さs o fpl柱形状である。Example 1 The carbide coating treatment of the present invention was carried out using the fluidized bed furnace shown in FIG. In the fluidized bed furnace, a gas supply passage 2 is opened in the lower part of the furnace body 1, and a diffuser plate 8 is provided 4 directly above the opening to partition the inside of the furnace into two parts. The diffuser plate 3 has a large number of gas dispersion holes extending through the thickness direction 10. The top of the furnace body 1 is covered with a removable lid 4,
A gas exhaust passage 5 is opened in a part of the lid 4. A heater 6 is installed on the outer periphery of the furnace body 1. Also,
The furnace body 1 is made of heat-resistant steel and has a shape of 60n in diameter x
It has a columnar shape with a height of s o fpl.
上記流動層式炉の散気板8上に、処理剤粉末1〜を置い
た。その処理剤中の各成分の配合割合は。Processing agent powders 1 to 1 were placed on the diffuser plate 8 of the fluidized bed furnace. What is the blending ratio of each component in the processing agent?
100〜200メ、シュ)およびL5%の塩化アンモニ
ウム粉末(80メツシー)でありだ。ついで、流動化ガ
スとしてアルゴンガスを、圧力15に’j/d、流量6
l/lr+in ”C’ 、 カス供給通路2より処
理剤粉末は流動化し、流動層7が形成された。100-200 mesh) and L5% ammonium chloride powder (80 mesh). Then, argon gas was added as a fluidizing gas at a pressure of 15'j/d and a flow rate of 6.
l/lr+in "C', the processing agent powder was fluidized from the waste supply passage 2, and a fluidized bed 7 was formed.
ついで、炉本体1の頂部の蓋4をとり、流動層7中に被
処理材(次素工具鋼JISSK4.高さ’200n×径
7訂)8を支持具を介してつりさげた。ついで、加熱器
6により炉本体1の外部より流動N7を950℃tこ加
熱した。その温度で2時間加熱処理を行った後、そのま
ま冷却せしめた。Next, the lid 4 on the top of the furnace body 1 was removed, and a material to be treated (Next Tool Steel JISSK 4, height '200n x diameter 7 edition) 8 was suspended in the fluidized bed 7 via a support. Next, the flow N7 was heated to 950° C. from the outside of the furnace body 1 by the heater 6. After heat treatment was performed at that temperature for 2 hours, it was allowed to cool as it was.
このようにして得らねた被処理材の表面を目視したとこ
ろ、処理剤の付着もなく、平滑な材料表面であった。そ
して、その断面を顕微鏡観察したところ、第3図の顕微
鏡写真に示すように、4〜6μmの被覆層が均一に形成
されていることが認められた。この層をX線回折で分析
したところ、バナジウム次化物(VC)層であることが
確認された。また、この層の硬さを測定したところ、約
Hv3、500の硬度を示した。When the surface of the thus obtained treated material was visually observed, it was found that there was no adhesion of the treatment agent and the material surface was smooth. When the cross section was observed under a microscope, it was found that a coating layer of 4 to 6 μm was uniformly formed, as shown in the micrograph of FIG. When this layer was analyzed by X-ray diffraction, it was confirmed that it was a subvanadium oxide (VC) layer. Further, when the hardness of this layer was measured, it showed a hardness of approximately Hv3.500.
実施例2
処理剤の各成分の配合割合を45%のツーロチタン粉末
(45%チタン含有、100〜150メツシー)%7.
5%の塩化アンモニウム粉末(80メツV −) オヨ
ヒR部アルミナ粉末(80メツシー)としたべ処理剤1
kgを用意した。この処理剤を使用し、実施例1と同一
の被処理材に対して。Example 2 The blending ratio of each component of the treatment agent was 45% Tulo titanium powder (45% titanium content, 100 to 150 mesh)%7.
5% ammonium chloride powder (80 METSU V-) Oyohi R part alumina powder (80 METSU V-) and base treatment agent 1
I prepared kg. This treatment agent was used on the same treated material as in Example 1.
同一の条件で炭化物被覆を行った。得られたJISSK
4材表面の断面顕微鏡写真を第4図に示す。4〜5μm
の平滑な被覆層が形成されていた。この層をX線回折し
たところ、チタン炭化物(TiC)層であることが確認
された。また、この層の硬さを測定したところ、約Hv
!3000の硬度を示した。Carbide coating was performed under the same conditions. Obtained JISSK
Figure 4 shows a cross-sectional micrograph of the surface of the 4 materials. 4-5μm
A smooth coating layer was formed. When this layer was subjected to X-ray diffraction, it was confirmed that it was a titanium carbide (TiC) layer. In addition, when we measured the hardness of this layer, it was found that it was approximately Hv
! It showed a hardness of 3000.
また、上記と同一の処理剤を使用し、超硬合金(WC−
6%Co )を被処理材として、実施例1と同一条件
で炭化物被覆処理を行った。その結果。In addition, using the same treatment agent as above, cemented carbide (WC-
A carbide coating treatment was performed under the same conditions as in Example 1 using 6%Co2) as the treated material. the result.
超硬合金の表面ンこ1〜2μmのチタン次化物層が形成
された。A titanium subride layer with a thickness of 1 to 2 μm was formed on the surface of the cemented carbide.
実施例8
処理剤の各成分の配合割合を、40%のクロム粉末(1
00〜150メツシエ)、1%の臭化アンモニウム粉末
(80メツシユ)、残部アルミナ粉末(80メツシエ)
とした処理剤1kgを用意した。この処理剤を使用し、
JISSK4材を被処理材として、他は、実施例1と同
一条件で炭化物被覆処理を行った。その結果、被処理材
の表面に第6図のw4微鏡写真に示すような4〜5μm
の平滑な被覆層が形成された。X線回折により、この層
がクロム炭化物層であることを確認した。Example 8 The blending ratio of each component of the treatment agent was changed to 40% chromium powder (1
00-150 mesh), 1% ammonium bromide powder (80 mesh), balance alumina powder (80 mesh)
1 kg of processing agent was prepared. Using this processing agent,
Carbide coating treatment was carried out under the same conditions as in Example 1 except that JISSK4 material was used as the material to be treated. As a result, the surface of the treated material was 4 to 5 μm thick as shown in the W4 micrograph in Figure 6.
A smooth coating layer was formed. X-ray diffraction confirmed that this layer was a chromium carbide layer.
また、上記と同一の処理剤を使用し、黒鉛を被λ↑
処理剤として、実施例1と同一条件で炭化物被覆処理を
行った。その結果、黒鉛の表面には、2〜8μmの平滑
なりロム炭化物が形成された。Further, a carbide coating treatment was performed under the same conditions as in Example 1 using the same treatment agent as above and using graphite as the λ↑ treatment agent. As a result, a 2-8 μm smooth ROM carbide was formed on the surface of the graphite.
なお、いずれのクロム炭化物層も、約Hv15001跡
を有することが測定された。In addition, it was measured that each chromium carbide layer had traces of approximately Hv15001.
実施例4
処理剤の各成分の配合割合を、50%のフェロニオブ粉
末(65%のチタンおよび3.4%のタンタル含有、1
00〜150メツシュ)、25%の塩化アンモニウム粉
末(80メノシ:L)、および残部アルミナ粉末とした
処理剤1kgを用意した。Example 4 The blending ratio of each component of the treatment agent was 50% ferroniobium powder (containing 65% titanium and 3.4% tantalum, 1
00 to 150 mesh), 25% ammonium chloride powder (80 mesh: L), and the remainder alumina powder (1 kg) was prepared.
また流動化ガスの圧力を2にり/d、流量を41/mi
nとして、処理剤を流動化した。この処理剤を使用し、
JISSKDIIを被処理材として、実施例1と同一条
件で炭化物被覆を行った。その結果、JISSKDII
材の表面に+1〜2prnの平滑な被覆層が形成された
。X線回折r酬ト研fによる分析結果から、そ
の層がニオブ炭化物(NbC)層であることが確認され
た。また、X線マイクロアナライザーの元素分析により
、上記被覆層には、ニオビ(ム、炭素のほかにタンタル
も存在することが確めらjた・なお、この層の硬さは約
Hv2500であった。In addition, the pressure of the fluidizing gas was set to 2/d, and the flow rate was set to 41/mi.
The processing agent was fluidized as n. Using this processing agent,
Carbide coating was performed using JISSKDII as the material to be treated under the same conditions as in Example 1. As a result, JISSKDII
A smooth coating layer of +1 to 2 prn was formed on the surface of the material. Based on the results of analysis by X-ray diffraction and research, it was confirmed that the layer was a niobium carbide (NbC) layer. In addition, elemental analysis using an X-ray microanalyzer confirmed that tantalum was also present in the coating layer in addition to niobium and carbon.The hardness of this layer was approximately Hv2500. .
実施例5
創
処理前の各成分の配合割合を、85%のフェロマンff
ン粉末Cq 7%マンガン含有、100〜150メツシ
ー)、3%の塩化アンモニウム粉末(80メツシユ)、
および残部アルミナ粉末(80メツシー)とした処理剤
1kgを用意した。この処理剤を使用し、JISSK4
材を被処理材として。Example 5 The blending ratio of each component before wound treatment was 85% Ferromanff.
3% ammonium chloride powder (80 mesh),
and 1 kg of a processing agent with the remainder being alumina powder (80 meth) was prepared. Using this processing agent, JISSK4
wood as the material to be treated.
実施例1と同一条件で炭化物被覆を行った。その結果、
JISSK4材の表面には、7〜8μmの平滑な被覆層
が形成された。X線回折1こより、この層がマンガン次
化物層であることが確認された。Carbide coating was performed under the same conditions as in Example 1. the result,
A smooth coating layer of 7 to 8 μm was formed on the surface of the JISSK4 material. From X-ray diffraction, it was confirmed that this layer was a submanganese compound layer.
この層の硬さは、約Hv1400であった。The hardness of this layer was approximately Hv1400.
第1図は、従来技術の概略を示す説明図、第21:炉本
体、2:ガス供給通路、8;散気板。
31ニガス分散孔、4=蓋、5二がヌ排出通路。
6;加熱器、7:流動層、8:被処理材本願出願人
株式会社 豊田中央研究所
代理人
第1図
第2図
(−X4ω)
(X400)
(x4ω)FIG. 1 is an explanatory diagram showing an outline of the prior art. 21: Furnace main body, 2: Gas supply passage, 8: Diffuser plate. 31 is the gas dispersion hole, 4 is the lid, and 52 is the nu discharge passage. 6: Heater, 7: Fluidized bed, 8: Material to be treated Applicant Toyota Central Research Institute Co., Ltd. Agent Figure 1 Figure 2 (-X4ω) (X400) (x4ω)
Claims (1)
物形成元素の金属又は、それらの合金。 およヒ0.5〜8重量%のハロゲン化アンモニウム堆の
三種類の粉末よりなる処理剤を、流動層式炉中に置き、
ついで、流動化ガスを導入して前記処理剤を流動化して
、前記流動層式炉中に流動層を形成せしめた後、炭素を
含む材料を前記流動層中に埋設し、加熱処理を行うこと
により炭素を含む材料表面に炭化物層を形成させること
を特徴とする炭素を含む材料の炭化物被覆方法。Claims: 50 to 70% by weight of alumina, 50 to 30% by weight of carbide-forming element metals, or alloys thereof. and 0.5 to 8% by weight of a treatment agent consisting of three types of ammonium halide powder powders are placed in a fluidized bed furnace,
Next, a fluidizing gas is introduced to fluidize the processing agent to form a fluidized bed in the fluidized bed furnace, and then a material containing carbon is buried in the fluidized bed and heat treated. A method for coating a carbon-containing material with a carbide, comprising forming a carbide layer on the surface of the carbon-containing material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21374982A JPS59107990A (en) | 1982-12-06 | 1982-12-06 | Carbide coating method for carbon-containing materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21374982A JPS59107990A (en) | 1982-12-06 | 1982-12-06 | Carbide coating method for carbon-containing materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107990A true JPS59107990A (en) | 1984-06-22 |
JPH0258348B2 JPH0258348B2 (en) | 1990-12-07 |
Family
ID=16644382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21374982A Granted JPS59107990A (en) | 1982-12-06 | 1982-12-06 | Carbide coating method for carbon-containing materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107990A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243274A (en) * | 1984-05-17 | 1985-12-03 | Toyota Central Res & Dev Lab Inc | Method for covering carbide |
JPS60258470A (en) * | 1984-06-04 | 1985-12-20 | Toyota Central Res & Dev Lab Inc | Method for coating carbide |
US4844949A (en) * | 1986-07-07 | 1989-07-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of surface treatment and apparatus used therefor |
WO2011067975A1 (en) * | 2009-12-02 | 2011-06-09 | 東洋炭素株式会社 | Production method for carbon material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4894434A (en) * | 1972-03-14 | 1973-12-05 | ||
JPS5213508A (en) * | 1975-07-23 | 1977-02-01 | Seikosha Kk | Manufacture of preside cermet products |
-
1982
- 1982-12-06 JP JP21374982A patent/JPS59107990A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4894434A (en) * | 1972-03-14 | 1973-12-05 | ||
JPS5213508A (en) * | 1975-07-23 | 1977-02-01 | Seikosha Kk | Manufacture of preside cermet products |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243274A (en) * | 1984-05-17 | 1985-12-03 | Toyota Central Res & Dev Lab Inc | Method for covering carbide |
JPS60258470A (en) * | 1984-06-04 | 1985-12-20 | Toyota Central Res & Dev Lab Inc | Method for coating carbide |
US4844949A (en) * | 1986-07-07 | 1989-07-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of surface treatment and apparatus used therefor |
WO2011067975A1 (en) * | 2009-12-02 | 2011-06-09 | 東洋炭素株式会社 | Production method for carbon material |
JP2011116584A (en) * | 2009-12-02 | 2011-06-16 | Toyo Tanso Kk | Method for producing carbon material |
CN102666379A (en) * | 2009-12-02 | 2012-09-12 | 东洋炭素株式会社 | Production method for carbon material |
Also Published As
Publication number | Publication date |
---|---|
JPH0258348B2 (en) | 1990-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4686117A (en) | Method of forming a carbide layer | |
US4844949A (en) | Method of surface treatment and apparatus used therefor | |
JP3173054B2 (en) | Surface treatment method for metal materials | |
JPS60251274A (en) | Nitride coating method | |
CA1336150C (en) | Method and apparatus for surface treatment | |
AU587848B2 (en) | Surface treating method and apparatus | |
JP2584217B2 (en) | Surface treatment method | |
JPS59107990A (en) | Carbide coating method for carbon-containing materials | |
US5620521A (en) | Method for surface treatment | |
JPS60258470A (en) | Method for coating carbide | |
JPS60243274A (en) | Method for covering carbide | |
JPH076052B2 (en) | Surface treatment method and apparatus | |
JPH02274865A (en) | Method and device for managing surface treatment agents |