JPS59107596A - Ceramic multilayer wiring circuit board - Google Patents
Ceramic multilayer wiring circuit boardInfo
- Publication number
- JPS59107596A JPS59107596A JP21690582A JP21690582A JPS59107596A JP S59107596 A JPS59107596 A JP S59107596A JP 21690582 A JP21690582 A JP 21690582A JP 21690582 A JP21690582 A JP 21690582A JP S59107596 A JPS59107596 A JP S59107596A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- circuit board
- multilayer wiring
- wiring
- wiring circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 15
- 239000004332 silver Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910010293 ceramic material Inorganic materials 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 239000012671 ceramic insulating material Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 239000004020 conductor Substances 0.000 description 38
- 238000002156 mixing Methods 0.000 description 11
- 238000010304 firing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910021493 α-cristobalite Inorganic materials 0.000 description 2
- PJQKUNRRFVDXDY-UHFFFAOYSA-N 3-(2-chloro-4-methylphenyl)-2-methylquinazolin-4-one;hydrochloride Chemical compound Cl.ClC1=CC(C)=CC=C1N1C(=O)C2=CC=CC=C2N=C1C PJQKUNRRFVDXDY-UHFFFAOYSA-N 0.000 description 1
- 241001556567 Acanthamoeba polyphaga mimivirus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 241001036794 Microsorum maximum Species 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
- 229910021491 α-tridymite Inorganic materials 0.000 description 1
- 229910021494 β-cristobalite Inorganic materials 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
- 229910021492 β-tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4673—Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
- H05K3/4676—Single layer compositions
Landscapes
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はセラミック多層配線回路板に係シ、特にセラミ
ック絶縁材料と銅、銀、金又はそれらの合金の導体パタ
ーンが交互に積層された低比誘電率で、かつ導体抵抗の
小さいセラミック多層配置線回路板に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ceramic multilayer wiring circuit board, and particularly to a ceramic multilayer circuit board in which a ceramic insulating material and a conductive pattern of copper, silver, gold or an alloy thereof are alternately laminated. This invention relates to a ceramic multilayer circuit board with a high dielectric constant and low conductor resistance.
従来、この種の回路板に用いられるセラミック板として
id熱伝導率、機械的強度、慮気絶縁性などの点からア
ルミナ磁器が採用されている。Conventionally, alumina porcelain has been used as a ceramic board for use in this type of circuit board due to its ID thermal conductivity, mechanical strength, and insulation properties.
しかしながら、高アルミナセラミックスは比誘電率が9
前後と大きく熱そのため、′亀子回路の信号伝達速度が
遅く、回路信号の高速伝送に対して不利になる。また、
高アルミナセラミックスの焼成温度は1500〜165
(I’と高温であシ、配線回路をセラミックスの焼成と
同時に形成するために適用できる導体はタングステンま
たはモリブデンなどの高融点金属材料に限定される。タ
ングステン及びモリブデンは焼結しがたい材料でちり、
また、室温の抵抗も5.2または5.5μΩ−鋸と大ぎ
い。高密度に回路を形成する場合、配線幅が小さくなる
だめ、単位長さ当シの抵抗が大きくなる。However, high alumina ceramics have a dielectric constant of 9
Because of the large amount of heat generated in the front and back, the signal transmission speed of the Kameko circuit is slow, making it disadvantageous for high-speed transmission of circuit signals. Also,
The firing temperature of high alumina ceramics is 1500-165
(The conductors that can be used to form wiring circuits at the same time as I' and high temperature are limited to high-melting point metal materials such as tungsten or molybdenum. Tungsten and molybdenum are materials that are difficult to sinter. Dust,
Also, the resistance at room temperature is as large as 5.2 or 5.5 μΩ. When forming a high-density circuit, the smaller the wiring width, the greater the resistance per unit length.
このため電圧降下による信号の伝達速度が遅くなる。This slows down the signal transmission speed due to the voltage drop.
このようなタングステン及びモリブデンの導体による問
題点をなくシ、銀、銅、金及びそれらの合金の配線口1
洛をセラミックの焼成と同時に形成するだめにガラス質
耐火材料とその間隙間ガラスよシなるセラミック板が提
案されている(特開昭′50−119814号公報)。Eliminating the problems caused by such tungsten and molybdenum conductors, wiring ports for silver, copper, gold and their alloys1
A ceramic plate made of a vitreous refractory material and a glass gap between them has been proposed in order to form a ceramic plate at the same time as firing the ceramic (Japanese Patent Application Laid-Open No. 119814/1983).
しかしこのセラミック板の組成に基づいてセラミック多
層配線回路板を製造する場合、セラミック板と導体との
熱膨張係数を十分に調整することができな1八ため、焼
成後の冷却過程でセラミックスに亀裂が生じ、或は導体
の断線又はショートを生じる問題が生じる。However, when manufacturing a ceramic multilayer circuit board based on the composition of this ceramic board, it is not possible to sufficiently adjust the coefficient of thermal expansion between the ceramic board and the conductor18, so the ceramic cracks during the cooling process after firing. This may cause problems such as disconnection or short-circuiting of conductors.
本発明の目的は、セラミック絶線材料と、銅、銀、金又
献それらの合金の導体パターンが交互に積層されたセラ
ミック多層配線回路板において、セラミック材料の熱膨
張係数を制御することによって配線に用いる導体ペース
トとの適合性を高め、セラミックの亀裂及び導体の断線
又はショートを防止できるセラミック多層配線回路板を
提供することにある。An object of the present invention is to provide wiring by controlling the coefficient of thermal expansion of the ceramic material in a ceramic multilayer wiring circuit board in which ceramic insulation material and conductor patterns of copper, silver, gold, or their alloys are alternately laminated. It is an object of the present invention to provide a ceramic multilayer wiring circuit board that has improved compatibility with a conductor paste used in the present invention and can prevent ceramic cracks and conductor disconnections or short circuits.
本帛明は、結晶形の異なる酸化ケイ素を少なくとも2種
以上を含み、その間隙に介在するガラスとから、構成さ
れたセラミック材料と、銅、銀、金又はそれらの合金と
からなる配線導体とを組合せることによって、セラミッ
ク材料の熱膨張係数を配線導体の熱膨張係数に近い値に
制御できるようにしたものである。The present invention relates to a wiring conductor made of a ceramic material containing at least two types of silicon oxide with different crystal forms and glass interposed in the gap, and a wiring conductor made of copper, silver, gold, or an alloy thereof. By combining these, it is possible to control the thermal expansion coefficient of the ceramic material to a value close to that of the wiring conductor.
導電性のすぐれた導体材料として、銀(1,6μΩ・C
rri)、銅(1,7μΩ・Crrl)、金(2,2μ
Ω・crn)が知られている。この材料の融点は各々、
961tll’、1083t:”及び1063Cである
。セラミック多層配線回路板にこれらの導体を使うため
には、この融点よシ低温度で焼結できるセラミック材料
を選定しなければならない。導体材料の融点よシ高温度
で焼成すると、印刷法により形成された導体は溶解し、
断線まだはショートをおこす恐れがちる。Silver (1.6 μΩ・C
rri), copper (1,7μΩ・Crrl), gold (2,2μ
Ω・crn) is known. The melting point of each of these materials is
961tll', 1083t:'' and 1063C. In order to use these conductors in ceramic multilayer circuit boards, it is necessary to select a ceramic material that can be sintered at a temperature lower than this melting point. When fired at high temperatures, the conductor formed by the printing method melts and
If the wire is disconnected, there is a risk of a short circuit.
また、セラミック材料としては比誘電率の小さい材料が
必要である。比誘電率εrと成気信号遅れtdとの間に
は次式が成り立つことが知られている。Further, as the ceramic material, a material with a small dielectric constant is required. It is known that the following equation holds true between the dielectric constant εr and the atmospheric signal delay td.
ゾtr −L
td二□
に
こでtdは実装遅れ、Crは材料の比誘電率、tは信号
の伝送距離、Cは光の速度である。したかって、比誘電
率の小さい材料を選ぶことによシ、信号の伝送速度を速
くすることができる。zotr -L td2□ td is the implementation delay, Cr is the dielectric constant of the material, t is the signal transmission distance, and C is the speed of light. Therefore, by selecting a material with a small dielectric constant, the signal transmission speed can be increased.
ここで本発明者らは、無機材料の中で比誘に率の小さめ
ものとして酸化ケイ素に着目した。しかし酸化ケイ素の
みでば1400C以上でなければ焼、詰しないので低温
焼結材料として低軟化点ガラスを用い、このガラスによ
って酸化ケイ素を・焼結するようにしたものである。Here, the present inventors focused on silicon oxide, which has a relatively small dielectric constant among inorganic materials. However, silicon oxide alone cannot be sintered or packed unless the temperature is 1400C or higher, so a low softening point glass is used as the low-temperature sintering material, and silicon oxide is sintered with this glass.
即ち、酸化ケイ素は異なる結晶形からなる種々の化合物
に分類される。例えば室温で安定な材料として石英ガラ
ス、α−石英、α−クリストバライト、α−トリジマイ
トなどがある。高温度ではさらにβ−石英、β−クリス
トバライト、β−トリジマイトなどがある。本発明では
これらの結晶形の異なる酸化ケイ素の少くとも2種以上
を混合することに特徴がある、混合する)由はセラミッ
ク材料の熱膨張系数を制御することにある。セラも
ζ°ラック料はその組成が央まると熱膨張係数はぼへ
決るのが一般的である。本発明では結晶形の異なる酸化
ケイ素を2種類以上混合し、低融点のガラスで焼結した
セラミックスであるだめ、セラミックスの熱膨張係数を
至温から400Cの範囲をとるとI X 1 o−”/
ll;’〜20 X 1 o−’/Cまで任意に制御す
ることが可能である。これは酸化ケイ素の結晶形により
熱膨張係数が異なることによるだめである。例えば、石
英ガラスの熱膨張係数は0、5 X 1 o−’/c、
石英のそれは12〜15X10−’/l:’クリストバ
ライトのそれは200Cまでは10 X 1 o−’/
cであるが、200C付近でα−クリストバライトがβ
−クリストバライトに相転移する際の異常熱膨張を加え
ると室温から400Cまでの熱、彬張系数は23 X
1 o−6/cにになる。トリジマイトもαとβの転移
を加えると23 X 10−6/Cの熱膨張係数をもつ
。したがって、これらの酸化ケイ素の熱膨張係数を整理
すると、第1表の如きものとなる。That is, silicon oxide is classified into various compounds consisting of different crystal forms. For example, materials that are stable at room temperature include quartz glass, α-quartz, α-cristobalite, α-tridymite, and the like. At high temperatures, there are also β-quartz, β-cristobalite, β-tridymite, etc. The present invention is characterized by mixing at least two or more of these silicon oxides having different crystal forms.The reason for mixing is to control the coefficient of thermal expansion of the ceramic material. Generally speaking, the coefficient of thermal expansion of a ζ° rack material decreases as its composition becomes more concentrated. In the present invention, the ceramic is made by mixing two or more types of silicon oxide with different crystal forms and sintered with low melting point glass, so if the coefficient of thermal expansion of the ceramic is in the range from the lowest temperature to 400C, IX 1 o-" /
It is possible to arbitrarily control the range from ll;' to 20 X 1 o-'/C. This is due to the fact that the coefficient of thermal expansion differs depending on the crystal form of silicon oxide. For example, the coefficient of thermal expansion of quartz glass is 0.5 x 1 o-'/c,
That of quartz is 12 to 15 x 10-'/l; that of cristobalite is 10 x 1 o-'/l up to 200C.
c, but around 200C, α-cristobalite becomes β
- Adding the abnormal thermal expansion during phase transition to cristobalite, the heat from room temperature to 400C, the Akbari series number is 23
1 o-6/c. Tridymite also has a coefficient of thermal expansion of 23 x 10-6/C when α and β transitions are added. Therefore, the thermal expansion coefficients of these silicon oxides are as shown in Table 1.
第 1 表
このため、結晶形の異なる酸化ケイ素を2種以上混合す
ることによってセラミック材料の熱膨張係数を任意に調
整することができる。Table 1 Therefore, by mixing two or more silicon oxides with different crystal forms, the coefficient of thermal expansion of the ceramic material can be adjusted as desired.
また多層配線回路板を作成するためには絶縁体であるセ
ラミック材料間に配線導体が必要であり、さらにセラミ
ック各層間の配線導体を接続するためのスルホール用導
体が必要である。導体に用いる銀、銅および金の熱膨張
係数は各々1.91X10′″’/C,17,OX i
、 0−’/U及び14.2X10−’/l:”である
。セラミックスの熱膨張係数はこれらの導体の熱膨張1
系数と差が大きすぎるなら焼成後の冷却過程でセラミッ
クスに亀裂を生じたシ、あるいは導体の@線を生じ多層
回路板に不都合である。このだめにも、セラミック材料
の熱膨張系数は任意に選定できることが必要となる。本
発明において、セラミック材料の熱J彫ノ長係数を導体
の熱膨張係数に近似させることができる。In addition, in order to create a multilayer wiring circuit board, wiring conductors are required between ceramic materials that are insulators, and through-hole conductors are also required to connect the wiring conductors between each ceramic layer. The thermal expansion coefficients of silver, copper, and gold used for conductors are each 1.91X10''''/C, 17,OX i
, 0-'/U and 14.2X10-'/l:''.The coefficient of thermal expansion of ceramics is the thermal expansion of these conductors 1
If the difference from the series number is too large, cracks may occur in the ceramic during the cooling process after firing, or conductor @ lines may be formed, which is inconvenient for multilayer circuit boards. To solve this problem, it is necessary that the coefficient of thermal expansion of the ceramic material can be arbitrarily selected. In the present invention, the thermal J profile coefficient of the ceramic material can be approximated to the thermal expansion coefficient of the conductor.
原料の粒度は粒子径が湘い1・1どセラミック基板が密
になシ、表面の凹凸も小さくなる。理想的には粒子径が
10μm以下を用いる。When the particle size of the raw material is widened to 1.1, the ceramic substrate becomes denser and the surface unevenness becomes smaller. Ideally, particles with a diameter of 10 μm or less are used.
本発明において、上記のようす酸化ケイ素を比較的低温
度で焼結させるため、の低軟化点ガラスは化学的に安定
であって比誘電率が低く、導体として用いられる銅、銀
、会名はそれらの合金の融点よりも低い温度で軟化する
ものがよい。このようなガラスとして、硼ケイ酸バリウ
ム系ガラス、硼ケイ酸マグネシウム系ガラス等が好適な
例として挙げることができるが、2種以上の低軟化点ガ
ラスを混合して用いることもできる。なお、酸化鉛を含
むガラスも低軟化点ガラスとして用いることもできる。In the present invention, since silicon oxide is sintered at a relatively low temperature, the low softening point glass is chemically stable and has a low dielectric constant. Those that soften at a temperature lower than the melting point of those alloys are preferred. Preferred examples of such glass include barium borosilicate glass, magnesium borosilicate glass, etc., but two or more types of low softening point glasses may be mixed and used. Note that glass containing lead oxide can also be used as the low softening point glass.
酸化ケイ素とガラスの混合比率は特に制限がない。但し
、ガラスが少量すぎると酸化ケイ素を結合できなくなる
。したがって酸比ケイ素の量は5〜95重量%、理想的
“ては20〜80%が良い。There are no particular restrictions on the mixing ratio of silicon oxide and glass. However, if the amount of glass is too small, it will not be possible to bond silicon oxide. Therefore, the amount of silicon in acid ratio is preferably 5 to 95% by weight, ideally 20 to 80%.
次に本発明の最終目的であるセラミック多層配線回路板
を作製する工程を説明する。Next, a process for producing a ceramic multilayer wiring circuit board, which is the final objective of the present invention, will be explained.
まず、酸化ケイ素の2種類以上の粉末とガラス粉末を所
定の混合側合で秤取し、結合剤、可塑剤及び溶剤とを混
合してスラリを作製する。結合剤はポリビニルブチラー
ル樹脂、メタアクリル酸樹脂などが用いられ、可塑剤は
フタル酸ジオクチル、溶剤はメタノール、トリクロルエ
チレンなどが用いられる。スラリはポリエステル樹脂フ
ィルムの上にドクターブレード法によシ0,1〜1.
OmrncDNさに流し出される。溶剤を乾燥除去する
ことによシ所定の厚さのグリーンセラミックシートが得
られる。グリーンシートはパンチ法、ドリル法などによ
シ所定の位置に所定の径の穴があけられ、さらに、穴の
部分に銀、銅、金又はそれらの合金の導体ペーストが印
刷され、配線導体の層間接線用のスルーホール導体部(
第1図中2で示す)になる。グリーンシートの表面には
所定の配線による導体(第1図中1で示す)パターンが
印刷される。First, two or more types of silicon oxide powder and glass powder are weighed out at a predetermined mixing ratio, and mixed with a binder, a plasticizer, and a solvent to prepare a slurry. The binder used is polyvinyl butyral resin, methacrylic acid resin, etc., the plasticizer used is dioctyl phthalate, and the solvent used is methanol, trichlorethylene, etc. The slurry is spread onto a polyester resin film using a doctor blade method.
It is leaked to OmrncDN. By drying and removing the solvent, a green ceramic sheet with a predetermined thickness is obtained. The green sheet is made by punching, drilling, etc. holes with a predetermined diameter at predetermined positions, and conductor paste of silver, copper, gold, or their alloys is printed on the hole portions to form wiring conductors. Through-hole conductor section for interlayer wiring (
(indicated by 2 in Figure 1). A conductor pattern (indicated by 1 in FIG. 1) of predetermined wiring is printed on the surface of the green sheet.
スルーホールと導体パターンが形成されたブリー/シー
hvi<セラミックス、第1図中3で示すン多層の積層
さnた後、焼成される。銅導体が印刷されたグリーンシ
ートの焼成には窒素と水素の混合ガスと水蒸気の雰囲気
が用いられる。焼成温度は900〜1000rの範囲が
望ましい。これは)実用されたガラスの種類、原料の酸
化ケイ素とガラスの混合比率により異なる。時間は最高
温度で10分間から1時間保持すればよい。また、導体
に銀まだは金が:吏用された場合には焼成に窒素ガスま
たは空気雰囲気を用いることができる。これは銀または
金が酸化されないことによる。焼成温度は銀の場合に8
00〜9001Z”%金の場合に800〜100(I’
が理想的である。After laminating a multilayer ceramic material with through-holes and conductor patterns, as shown by 3 in FIG. 1, it is fired. An atmosphere of a mixed gas of nitrogen and hydrogen and water vapor is used to fire the green sheet printed with copper conductors. The firing temperature is preferably in the range of 900 to 1000 r. This varies depending on the type of glass used and the mixing ratio of silicon oxide and glass as raw materials. The temperature may be maintained at the maximum temperature for 10 minutes to 1 hour. Further, when silver or gold is used as the conductor, a nitrogen gas or air atmosphere can be used for firing. This is because the silver or gold is not oxidized. The firing temperature is 8 for silver.
00~9001Z''% 800~100 (I'
is ideal.
以上のような工程を通して、スルーホール導体と層間に
導体配線をもつセラミック多層配線回路板が製造される
。Through the steps described above, a ceramic multilayer wiring circuit board having through-hole conductors and conductor wiring between layers is manufactured.
以下、本発明の詳細な説明する。各南中、部とあるのは
重−計部を、%とあるのは重量%を意味する。The present invention will be explained in detail below. In each Nanchu, "part" means the weight part, and "%" means weight %.
原料に用いる低軟化点ガラスの組成とその特性を第2表
に示す。Table 2 shows the composition and properties of the low softening point glass used as the raw material.
セラミック材料の基本となる低軟化点ガラス、酸化ケイ
素の混合比率と焼結温度及び焼結体の特性を第3表に示
す。第4表から明らかなように、得られる焼結体の比誘
電率は4.0〜5.0で大差がないが、熱膨張係数はa
、 2 X 1 o−6/cから10.3 X 10”
’/C迄ある。酸化ケイ素とガラスとの混合比率、酸化
ケイ素の種類をかえることによシ熱膨張係数を制御する
ことが可能である。Table 3 shows the mixing ratio of low softening point glass and silicon oxide, which are the basis of the ceramic material, the sintering temperature, and the characteristics of the sintered body. As is clear from Table 4, the dielectric constant of the obtained sintered body is 4.0 to 5.0, which is not much different, but the coefficient of thermal expansion is a
, 2 X 1 o-6/c to 10.3 X 10"
There are up to '/C. It is possible to control the coefficient of thermal expansion by changing the mixing ratio of silicon oxide and glass and the type of silicon oxide.
J cd v5−4 間 −−−56−−
−−−−リ リ → リ →0 0
o Oo
。Between J cd v5-4 ---56--
−−−−Ri Ri → Ri →0 0
o Oo
.
旧k (:) (:) CHI 11
’) k k k E −(
)Q o o 叩 0 の 0 0 0 0
0 0■ ← I+F+LrI 寸 の
べ −へ1へ
朧 ミ ミ ミ ζ ζ 灸 ζ ζ
ミ ミ種
o o o o o ロ
ロ旧 の ト00 ■
寸 棗 ミ ζ 灸 ■−へ cf5
寸 叩 0 ト ■ ■ 〇 −へ
へ へ べ へ へ へ へ へ の
■0ζミ)ミ0ミζミ
COω
N −−へ −へ へ
口q
ζ ζ ミ 拠 ミ ζ
ミcf′5 の の の の 吟 の
の 呻o 。old k (:) (:) CHI 11
') k k k E −(
) Q o o hit 0 of 0 0 0 0
0 0■ ← I+F+LrI Dimension Be -he 1 Oboro Mi Mi Mi ζ ζ Moxibustion ζ ζ
Mimi species o o o o o o ro
old 00 ■
Size Natsume Mi ζ Moxibustion ■-to cf5
Hit 0 ■ ■ 〇 -to
He he he he he he he to ■0ζmi)mi0miζmiCOω N −−he −he heguq ζ ζ mi based mi ζ
Mi CF'5's ``Gin'''s ``Gin''''.
Oミ り ミ ミ ζ 凝
ミ■ ω
C’+ 凶 −因 へ へ 艶
銭囚・1″〉ζミミミ
← (’J ω 寸 り Cト
■寸 寸 寸 寸 寸 寸 廿
寸実施例1
第3表の混合比率でセラミックス原料を100部秤取し
、ボールミルに入れて24時間混合する。Omi ri mi mi ζ hard mi ■ ω C'+ 笔 -cause to 网
Zeniho・1″〉ζ Mimimi← ('J ω size C
■ Dimension Dimension Dimension Dimension Dimension Dimension Example 1 Weigh out 100 parts of ceramic raw materials at the mixing ratio shown in Table 3, put them into a ball mill, and mix for 24 hours.
さらに、ポリビニルブチラール樹脂6,0部、フタル1
俊ジオクチル2.4部、トリクロルエチレン23、o@
B5パークロルエチレン9.0部及びブチルアルコール
6、0 gl(を入れ、再びボールミルで10時間混合
する。これによシ混合物はスラリーになる。スラリー・
はドクターブレードを用いてポリエステルフィルム上に
連続的に・享さ0.25mに成形する。最高温度120
Cで加熱して溶媒類を揮散させグリーンシートにする。Furthermore, 6.0 parts of polyvinyl butyral resin, 1 part of phthalate
Shundioctyl 2.4 parts, trichlorethylene 23, o@
Add 9.0 parts of B5 perchlorethylene and 6.0 g of butyl alcohol and mix again in a ball mill for 10 hours.The mixture becomes a slurry.
is continuously molded onto a polyester film using a doctor blade to a thickness of 0.25 m. Maximum temperature 120
Heat at C to volatilize the solvent and form a green sheet.
グリーンシートを所定の形状に切断する。パンチ法によ
り所定の位置にスルーホールをあけ、銀の導体ペースト
を印刷法によりスルーホール内に配線の層間接続用の導
体を形成する。また、シートの表面に所定パターンの配
線導体を印刷する。銀の導体が印刷された6枚のグリー
ンシートをガイド穴を用いて積み重ね、120Cで10
Kylcniの圧力で接着する。Cut the green sheet into a predetermined shape. A through hole is made at a predetermined position by a punching method, and a conductor for interlayer connection of wiring is formed in the through hole by a printing method with silver conductive paste. Further, a predetermined pattern of wiring conductors is printed on the surface of the sheet. Six green sheets printed with silver conductors were stacked using guide holes and heated at 120C for 10 minutes.
Glue with Kylcni pressure.
積層したグリーンシートを炉詰めして、空気雰囲気中で
焼成する。焼成温度は第3表の焼結温度で、約30分間
保持して焼成する。The stacked green sheets are packed in a furnace and fired in an air atmosphere. The sintering temperature is the sintering temperature shown in Table 3, and the sintering temperature is maintained for about 30 minutes.
以上の工程により導体層数6層のセラミック配線回路板
を得る。この回路板は導体に銀が用いられているので配
線幅80μm1配線の抵抗は0.4Ω/Crnである。Through the above steps, a ceramic wiring circuit board having six conductor layers is obtained. Since this circuit board uses silver as a conductor, the resistance of one wiring having a wiring width of 80 μm is 0.4Ω/Crn.
実施例2
第3表の混合比率でセラミック原料100部を秤取シ、
ボールミルに入れて24時間混合する。Example 2 Weighed out 100 parts of ceramic raw materials at the mixing ratio shown in Table 3.
Place in a ball mill and mix for 24 hours.
さらにメタアクリル竣樹脂5.9部、フタル酸ジオクチ
ル24部、トリクロルエチレン23.0部、ノシークロ
ルエチレン9.0部、ブチルアルコール6.0部を入れ
、再びボールミルで10時間混合する。Further, 5.9 parts of methacrylic final resin, 24 parts of dioctyl phthalate, 23.0 parts of trichloroethylene, 9.0 parts of no-cycloethylene, and 6.0 parts of butyl alcohol were added, and the mixture was again mixed in a ball mill for 10 hours.
これにより混合物はスラ°ノーになる。スラリーはドク
ターブレードを用いてポリエステルフィルム上に連続的
に厚さ0.25mmに成形する。シートは最高温度12
0Cで加熱し、溶剤類を揮散させグリーンシートをつく
る。グリーンシートは所定の形状に切断し、パンチ法に
より所定の位置にスルーホールと、ガイド穴を形成する
。銅の導体べ−ストを層間の接続用にスルーホールに埋
め、グリーンシー トの表面に配線パターンを形成する
。銅の導体ペーストが形成された6枚のグリーンシート
はガイド穴を用いて重ね、120Cで15Kr/aAの
圧力で接着する。This turns the mixture into a slurry. The slurry is continuously molded onto a polyester film using a doctor blade to a thickness of 0.25 mm. Seat maximum temperature 12
Heat at 0C to volatilize the solvent and create a green sheet. The green sheet is cut into a predetermined shape, and through holes and guide holes are formed at predetermined positions using a punching method. A copper conductor base is filled into the through holes for interlayer connections, and a wiring pattern is formed on the surface of the green sheet. Six green sheets on which copper conductive paste has been formed are stacked using guide holes and bonded at 120C with a pressure of 15 Kr/aA.
積層したグリーンシートを炉詰めして、焼成する。焼成
雰囲気は水素を3〜7%含む窒素雰囲気で、ガス中にわ
ずかな水蒸気を導入し、有機結合剤の熱分解を促進させ
る。第3表の焼結温度で焼成し、セラミックスヲ得る。The stacked green sheets are packed in a furnace and fired. The firing atmosphere is a nitrogen atmosphere containing 3 to 7% hydrogen, and a small amount of water vapor is introduced into the gas to promote thermal decomposition of the organic binder. Ceramics are obtained by firing at the sintering temperatures shown in Table 3.
以上の工程により、導体層数6・研の配線回路板を得た
。この回路板には配線に銅が用いられているので線幅8
0μmの配線抵抗は0.4Ω/crnでちる。Through the above steps, a printed circuit board with six conductor layers was obtained. This circuit board uses copper for wiring, so the line width is 8.
The wiring resistance of 0 μm is equal to 0.4Ω/crn.
実施例3
実施例1と同様にグリーンシートを作製し、導体に全ペ
ーストを採用した。央怖列1と同様に空気雰囲気中で焼
成した。Example 3 A green sheet was produced in the same manner as in Example 1, and all paste was used for the conductor. Firing was carried out in an air atmosphere in the same manner as Ookiren 1.
導体層数6層の配線回路板の配線抵抗は線幅80μmで
0.45Ω/Cmである。The wiring resistance of a printed circuit board with six conductor layers is 0.45 Ω/Cm at a line width of 80 μm.
本発明によれば、比誘電率が低く、焼結温度力丈銀、銅
、金又はそれらの合金の融点以下とすることができるの
で配線抵抗の小さい導体を用いることができ、また熱膨
張係数を3 X 1 o−6/c〜10×10′″6/
U程度の範囲内で調整できるので、信号の伝達速度が速
く、かつ亀裂や導体の断線及びショートのないセラミッ
クス多層配線回路板を得ることができる。According to the present invention, the dielectric constant is low, and the sintering temperature can be set to be lower than the melting point of silver, copper, gold, or their alloys, so a conductor with low wiring resistance can be used, and the coefficient of thermal expansion is 3 x 1 o-6/c ~ 10 x 10'''6/
Since it can be adjusted within a range of approximately U, it is possible to obtain a ceramic multilayer wiring circuit board that has a high signal transmission speed and is free from cracks, conductor breaks, and short circuits.
第1図は本発明に係るセラミツ、り多層配線回路板の断
面図である。FIG. 1 is a sectional view of a ceramic multilayer wiring circuit board according to the present invention.
Claims (1)
金の導体パターンが交互に積層されたセラミック多層配
線回路板に2いて、セラミック絶縁材料は結晶形の異な
る酸化ケイ素を少なくとも2種以上含み、それらの酸化
ケイ素の間隙にガラスが介在していることを特徴とする
セラミック多層配線回路板。 2゜前記酸化ケイ素が、石英ガラス、石英、クリストバ
ライト又はトリシマライトであることを特徴とする特許
請求の範囲第1項記載のセラミック多層配線回路板。 3、前記セラミック材料は、比誘電率が6以下であるこ
とを特徴とする特許請求の範囲第1項記載のセラミック
多層配線回路板。[Claims] (2) A ceramic multilayer wiring circuit board in which ceramic insulating materials and conductive patterns of copper, silver, gold, or alloys thereof are alternately laminated; What is claimed is: 1. A ceramic multilayer wiring circuit board comprising at least two kinds of the above, and glass is interposed between the silicon oxides. 2. The ceramic multilayer wiring circuit board according to claim 1, wherein the silicon oxide is quartz glass, quartz, cristobalite or trisimalite. 3. The ceramic multilayer wiring circuit board according to claim 1, wherein the ceramic material has a dielectric constant of 6 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21690582A JPS59107596A (en) | 1982-12-13 | 1982-12-13 | Ceramic multilayer wiring circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21690582A JPS59107596A (en) | 1982-12-13 | 1982-12-13 | Ceramic multilayer wiring circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107596A true JPS59107596A (en) | 1984-06-21 |
JPH0412639B2 JPH0412639B2 (en) | 1992-03-05 |
Family
ID=16695747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21690582A Granted JPS59107596A (en) | 1982-12-13 | 1982-12-13 | Ceramic multilayer wiring circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107596A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158423U (en) * | 1985-03-22 | 1986-10-01 | ||
JPS62287658A (en) * | 1986-06-06 | 1987-12-14 | Hitachi Ltd | ceramic multilayer circuit board |
JPH02119164A (en) * | 1989-09-20 | 1990-05-07 | Hitachi Ltd | semiconductor module |
JP2002057248A (en) * | 1995-02-09 | 2002-02-22 | Kyocera Corp | Package and its mounting structure |
JP2002100704A (en) * | 1995-02-09 | 2002-04-05 | Kyocera Corp | Package and its mounting structure |
US7144618B2 (en) | 2002-10-09 | 2006-12-05 | Murata Manufacturing Co., Ltd. | Multilayer composite and method for preparing the same |
CN1331375C (en) * | 2002-10-09 | 2007-08-08 | 株式会社村田制作所 | Multi-layer structure unit and its manufacturing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4569000B2 (en) * | 2000-12-20 | 2010-10-27 | 日本電気硝子株式会社 | Low-frequency sintered dielectric material for high frequency and its sintered body |
JP5786878B2 (en) | 2013-02-06 | 2015-09-30 | Tdk株式会社 | Dielectric porcelain composition, electronic component and composite electronic component |
-
1982
- 1982-12-13 JP JP21690582A patent/JPS59107596A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158423U (en) * | 1985-03-22 | 1986-10-01 | ||
JPS62287658A (en) * | 1986-06-06 | 1987-12-14 | Hitachi Ltd | ceramic multilayer circuit board |
JPH0543316B2 (en) * | 1986-06-06 | 1993-07-01 | Hitachi Ltd | |
JPH02119164A (en) * | 1989-09-20 | 1990-05-07 | Hitachi Ltd | semiconductor module |
JPH0544190B2 (en) * | 1989-09-20 | 1993-07-05 | Hitachi Ltd | |
JP2002057248A (en) * | 1995-02-09 | 2002-02-22 | Kyocera Corp | Package and its mounting structure |
JP2002100704A (en) * | 1995-02-09 | 2002-04-05 | Kyocera Corp | Package and its mounting structure |
US7144618B2 (en) | 2002-10-09 | 2006-12-05 | Murata Manufacturing Co., Ltd. | Multilayer composite and method for preparing the same |
CN1331375C (en) * | 2002-10-09 | 2007-08-08 | 株式会社村田制作所 | Multi-layer structure unit and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0412639B2 (en) | 1992-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4764233A (en) | Process for producing a ceramic multi-layer circuit board | |
US4621066A (en) | Low temperature fired ceramics | |
JP3327556B2 (en) | Low dielectric loss glass | |
US4598167A (en) | Multilayered ceramic circuit board | |
US4861646A (en) | Co-fired metal-ceramic package | |
JP3226280B2 (en) | Method for manufacturing multilayer circuit board | |
US5024975A (en) | Crystallizable, low dielectric constant, low dielectric loss composition | |
JPH0249550B2 (en) | ||
JPS6245720B2 (en) | ||
US5141899A (en) | Low dielectric inorganic composition for multilayer ceramic package containing titanium silicate glass and crystal inhibitor | |
CA2050095A1 (en) | Dielectric composition containing cordierite and glass | |
JPH11505368A (en) | Conductive via-filled ink for ceramic multilayer circuit boards on support substrates | |
JPS59107596A (en) | Ceramic multilayer wiring circuit board | |
JPS6248097A (en) | Manufacture of multilayer circuit board | |
JPH0676227B2 (en) | Glass ceramic sintered body | |
JPS62278145A (en) | Sintered material of glass ceramic | |
JPH0617250B2 (en) | Glass ceramic sintered body | |
JPH09241068A (en) | Low temperature firing ceramics substrate | |
JPH05116985A (en) | Ceramic substrate | |
JPH01179740A (en) | Glass-ceramic composite | |
JPH0549624B2 (en) | ||
JP3047985B2 (en) | Manufacturing method of multilayer ceramic wiring board | |
JPH0450141A (en) | Glass-ceramic substrate | |
JPH0738214A (en) | Glass-ceramic substrate and manufacturing method thereof | |
JPH0832238A (en) | Multilayer wiring board, its production and production of sintered silica used for it |