[go: up one dir, main page]

JPS59107304A - Semi-transmitting mirror - Google Patents

Semi-transmitting mirror

Info

Publication number
JPS59107304A
JPS59107304A JP21755282A JP21755282A JPS59107304A JP S59107304 A JPS59107304 A JP S59107304A JP 21755282 A JP21755282 A JP 21755282A JP 21755282 A JP21755282 A JP 21755282A JP S59107304 A JPS59107304 A JP S59107304A
Authority
JP
Japan
Prior art keywords
thin film
semi
dielectric
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21755282A
Other languages
Japanese (ja)
Inventor
Hiroshi Kono
洋 河野
Takeo Matsudaira
松平 他家夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP21755282A priority Critical patent/JPS59107304A/en
Publication of JPS59107304A publication Critical patent/JPS59107304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain a semi-transmitting mirror by which a light is scarcely absorbed, and a light quantity ratio of a transmitted light and a reflected light is not varied by a waveform by joining two rectangular prisms through a thin film part formed by combining a silver thin film and two kinds of dielectric thin films whose refractive indexes are different from each other. CONSTITUTION:Two rectangular prisms 5, 6 are prepared, and after one prism 6 is washed, a silver thin film 7 is vapor-deposited on a plane opposed to the right angle part of the prism 6. Subsequently, on said film, a dielectric thin film 8 (example: a silicon dioxide thin film) is laminated, and on this film, a dielectric thin film 9 (example: a titanium dioxide thin film) whose refractive index is higher than that of the dielectric thin film 8 is laminated. Also, ultraviolet hardened resin 10 having a refractive index almost equal to the refractive index of the prisms 5, 6 is applied so as to surround the surface of the dielectric thin film 9 and each side face of the dielectric thin film 8 and the silver thin film 7, and thereafter, the other prism 5 is superposed on the resin 10, joined by irradiating the ultraviolet rays, and an object semi-transmitting mirror is obtained.

Description

【発明の詳細な説明】 本発明は、銀薄膜と誘電体薄膜を組み合わせたFs腰部
が2個の直角プリズムの接合面に介在された半透過鏡に
関し、特に可視域で透過光と反射光との光量比(以下、
単に「光量比」という。)が波長によって変化しない半
透過鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semi-transmissive mirror in which an Fs waist part made of a combination of a silver thin film and a dielectric thin film is interposed between the joint surfaces of two right angle prisms, and particularly relates to a semi-transmissive mirror in which transmitted light and reflected light are separated in the visible range. light intensity ratio (hereinafter,
It is simply called "light ratio." ) relates to a semi-transmissive mirror that does not change with wavelength.

従来、この種の半透過鏡としては1.薄膜部の構成によ
って大別され、(1)低屈折率誘電体層と高屈折率誘電
体層を交互に数層重ねた誘電体多層膜、(2)クロム、
アルミニウム又は銀等の金属単層膜、(3)アルミニウ
ム、銀等の金属wjl1Mを誘電体薄膜で挾みこんだ薄
膜部、を有するものが知られている。
Conventionally, this type of semi-transparent mirror has 1. They are broadly classified according to the structure of the thin film part, (1) dielectric multilayer film in which several low refractive index dielectric layers and high refractive index dielectric layers are stacked alternately, (2) chromium,
A device having a single layer film of metal such as aluminum or silver, and (3) a thin film portion in which metal wjl1M such as aluminum or silver is sandwiched between dielectric thin films is known.

しかしながら、(1)の誘電体多層膜は、光量比を制御
することが困難であり、更に膜構成が季層膜であること
から、製造原価が高くなる欠点があった。次に、(2)
の金属単層カ染は、例えばクロム又はアルミニウムの金
属単層膜の場合には、光吸収が大きくなることから効率
の低下を招き、鎖車層膜の場合には、光吸収が少なくな
るが、光量比が波長によって著しく変化する欠点があっ
た。
However, the dielectric multilayer film of (1) has the disadvantage that it is difficult to control the light intensity ratio and that the film structure is a seasonal film, resulting in high manufacturing costs. Next, (2)
For example, in the case of a metal single layer film of chromium or aluminum, the light absorption increases, resulting in a decrease in efficiency, and in the case of a chain wheel layer film, the light absorption decreases, but However, there was a drawback that the light intensity ratio changed significantly depending on the wavelength.

また、(3)の薄膜部も(2)の鎖車層膜の場合と同様
、光量比が波長によって変化する欠点があった。いり“
れにせよ、従来の半透過鏡は、光量比の波長依存性を改
善するまでには至っていなかつIこ 。
Further, the thin film portion (3) also has a drawback that the light amount ratio changes depending on the wavelength, as in the case of the chain wheel layer film (2). “Iri”
In any case, conventional semi-transmissive mirrors have not yet improved the wavelength dependence of the light intensity ratio.

第1図は、鎖車W7jllJからなる薄膜部を使用した
従来の半透過鏡を示し、この半透過鏡は、鎖車層膜1を
接着剤2と共に、2個の直角プリズム3.4の対向平面
に介在させて接合してなる。イして、入射光rはプリズ
ム3を通って銀ψ層Il*1によって反射光Rと透過九
王とに分りられる。この半透過鏡は、可視域の中心波長
600 II mにJ3いて光量比をほば1:1に調整
したものの、その分光特性は第2図の反射光曲線「と透
過光曲線tで示されるように、その光量比が波長によっ
て著しく変化し、かつ光吸収率が7〜10%も占めるこ
とになる。
FIG. 1 shows a conventional semi-transmissive mirror using a thin film part consisting of a chain wheel W7jllJ, in which a chain wheel layer film 1 is attached together with an adhesive 2 to two rectangular prisms 3.4 facing each other. It is joined by interposing it on a plane. Then, the incident light r passes through the prism 3 and is separated into reflected light R and transmitted light by the silver ψ layer Il*1. Although this semi-transmissive mirror has a center wavelength of 600 II m in the visible range and the light intensity ratio is adjusted to approximately 1:1, its spectral characteristics are shown by the reflected light curve ``and transmitted light curve t'' in Figure 2. As such, the light quantity ratio changes significantly depending on the wavelength, and the light absorption rate accounts for 7 to 10%.

本発明は、以上の欠点を除去するためになされたもので
゛あり、薄膜部が、反射光の通る一方の直角プリズムか
ら透過光の通る他方の直角プリズムに向かって順に、第
1誘電体薄膜と、前記第1誘電体薄膜の屈折率よりも低
い屈折率を有する第2誘電体N膜と、銀薄膜とを積層し
てなることから、光吸収を少なくし、かつ光量比の波長
依存性を少なくした半透過鏡を提供することを目的とし
ている。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and the thin film portion is formed of a first dielectric thin film in order from one right-angle prism through which reflected light passes to the other right-angle prism through which transmitted light passes. A second dielectric N film having a refractive index lower than that of the first dielectric thin film, and a silver thin film are laminated to reduce light absorption and increase the wavelength dependence of the light quantity ratio. The purpose of the present invention is to provide a semi-transmissive mirror with reduced transmission.

以下、本発明を実施例図面を参照して詳細に説明づ゛る
Hereinafter, the present invention will be explained in detail with reference to embodiment drawings.

第3図は本発明による半透過鏡の一実施例を示す断面図
である。先ず、硝種BK−7(屈折率n= 1.52 
)からなる光学ガラスを索材にして、断面を直角ニー等
辺三角形に成型研磨加工した2個のプリス゛ム5.6を
用意し、一方のプリズム6を洗浄後、真空蒸着装置内に
設置して、1 X1O−51−Orr程度に排気づる。
FIG. 3 is a sectional view showing an embodiment of a semi-transmissive mirror according to the present invention. First, glass type BK-7 (refractive index n = 1.52
) are used as cable material, and two prisms 5 and 6 are prepared which are shaped and polished to have a right-angled equilateral triangular cross section, and after cleaning one of the prisms 6, they are placed in a vacuum evaporation device. Exhaust to about 1 X1O-51-Orr.

次に、銀をタングステン製のボードにて電熱により加熱
蒸発させ、プリズム6の直角部に対向りる平面上に銀薄
膜7(膜厚d−15run)を1層する。次に、この銀
薄膜7上に二酸化ケイ素(SiOz>を電子銃により蒸
着させて二酸化ケイ素薄膜8(光学的膜厚nd=  1
.46x68? 100r+m)を積層する。次に、同
様にしてこの二酸化ケイ素薄II*8上に二酸化チタン
(’r’ i 02)薄膜9(光学的膜厚nd== 2
,3x43 ’=  10100nを積層覆る。
Next, silver is heated and evaporated using electric heat using a tungsten board, and one layer of silver thin film 7 (film thickness d-15 runs) is formed on the plane facing the right angle part of prism 6. Next, silicon dioxide (SiOz) is deposited on this silver thin film 7 using an electron gun to form a silicon dioxide thin film 8 (optical thickness nd=1).
.. 46x68? 100r+m) are laminated. Next, in the same manner, a titanium dioxide ('r' i 02) thin film 9 (optical film thickness nd == 2
, 3x43' = 10100n.

そして、プリズム5.6の屈折率(11= 1.52 
)とほぼ等しい屈折率を有する紫外線硬化樹脂10は、
二酸化チタン薄膜9の表面と、これと銀薄膜7及び二酸
化ケイ素薄膜8の各外側面とを包囲づるように塗布され
、他方のプリズム5をこの樹脂10の表面に重ね、紫外
線を照射しC接合する。
Then, the refractive index of prism 5.6 (11 = 1.52
) The ultraviolet curing resin 10 has a refractive index almost equal to
It is applied so as to surround the surface of the titanium dioxide thin film 9 and the outer surfaces of the silver thin film 7 and silicon dioxide thin film 8, and the other prism 5 is placed on the surface of this resin 10, and ultraviolet rays are irradiated to form a C bond. do.

以」この構造で注目されるのは、プリズム5側からプリ
ズム6側に向かって順に、第1誘電体薄膜としC比較的
高屈折率を有する二酸化チタン薄膜9、第2誘電体薄膜
として比較的低屈折率を右する二酸化ケイ素薄膜8、次
いで銀IN!07を積層している。このような積層構造
は、各種実験を行つIこ結果、本発明の目的を達成する
ために、最適な積層構造を見出して選定している。
What is noteworthy about this structure is that in order from the prism 5 side to the prism 6 side, the first dielectric thin film C is a titanium dioxide thin film 9 having a relatively high refractive index, and the second dielectric thin film is a relatively high titanium dioxide thin film 9. Silicon dioxide thin film 8, which has a low refractive index, and then silver IN! 07 is laminated. As a result of various experiments, the most suitable laminated structure was found and selected in order to achieve the object of the present invention.

本例の半透過鏡の分光特性は、第4図の反射光曲線1・
及び入射光曲線【に示すように波長依存性が極めて少な
く、まl〔合成曲線(r +t >に示すように光吸収
を5〜7%にまで少なくさせている。
The spectral characteristics of the semi-transparent mirror in this example are reflected light curve 1 and
As shown in the incident light curve, the wavelength dependence is extremely low, and the light absorption is reduced to 5 to 7% as shown in the composite curve (r + t >).

したがって、本発明によれば、光量比が可視域において
はば1:1となる優れた半透過鏡が実現できる。また、
薄膜部は紫外線硬化樹脂により密封されていることから
、本発明による半透過鏡は、化学的及び機械的な耐久性
にも優れている。
Therefore, according to the present invention, an excellent semi-transmissive mirror with a light quantity ratio of 1:1 in the visible range can be realized. Also,
Since the thin film portion is sealed with an ultraviolet curing resin, the semi-transparent mirror according to the present invention also has excellent chemical and mechanical durability.

なお、本発明は実施例に挙げたものに限定されず、第1
誘電体薄膜物質としては二酸化チタンの代わりに、酸化
セリウム(n = 2.3) 、酸化ジルコニウム(n
 = 2.0)又は酸化タンタル(n−2,0)などで
もよく、第2誘電体III!物質としては二酸化ケイ素
の代わりに弗化マグネシウム(11−1,38)、クリ
オライト(、Jl = 1.32 ) 、チオライト(
n = 1.32 )などでもよい。また、実施例では
光量比を1:1のものを挙げたが、この光量。
Note that the present invention is not limited to those listed in the examples, but
Instead of titanium dioxide, cerium oxide (n = 2.3) and zirconium oxide (n
= 2.0) or tantalum oxide (n-2,0), etc., and the second dielectric III! As substances, instead of silicon dioxide, magnesium fluoride (11-1,38), cryolite (, Jl = 1.32), thiolite (
n = 1.32). In addition, in the example, the light amount ratio was 1:1, but this light amount.

比については、銀薄膜の膜厚を調整することにより、容
易に変化させることがで、きる。更に、2個の直角プリ
ズムの接合構造については、実施例に示しkもの以外に
、第5図に示すようにプリズム5の直角部に対向!l−
る平面と、プリズム11の一方の傾斜面とを接合しても
よく、本例の透過光Tはプリズム11の他方の傾斜面に
て反射する。
The ratio can be easily changed by adjusting the thickness of the silver thin film. Furthermore, regarding the joining structure of two right-angled prisms, in addition to the one shown in the embodiment, as shown in FIG. l-
The plane may be joined to one inclined surface of the prism 11, and the transmitted light T in this example is reflected by the other inclined surface of the prism 11.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半透過鏡を示す断面図、第2図は前回に
よる半透過鏡の分光特性図、第3図は本発明の実施例に
よる半透過鏡を示す断面図、第4図は前実施例による半
透過鏡の分光特性図及び第5図は本発明の他の実施例に
よる半透過鏡を示す断面図である。 5.6.11・・・直角プリズム、7・・・銀薄膜、8
・・くJ化りイ索薄膜、9・・・二酸化チタン薄膜、1
0・・・紫外線硬化樹脂 第21カ 派畏入   °″”3 %今回 凌五入
Fig. 1 is a sectional view showing a conventional semi-transmissive mirror, Fig. 2 is a spectral characteristic diagram of the semi-transmissive mirror according to the previous example, Fig. 3 is a sectional view showing a semi-transmissive mirror according to an embodiment of the present invention, and Fig. 4 is a sectional view showing a semi-transmissive mirror according to an embodiment of the present invention. The spectral characteristic diagram of the semi-transmissive mirror according to the previous embodiment and FIG. 5 are cross-sectional views showing the semi-transmissive mirror according to another embodiment of the present invention. 5.6.11... Right angle prism, 7... Silver thin film, 8
...J-shaped wire thin film, 9...Titanium dioxide thin film, 1
0...Ultraviolet curing resin 21st class °''”3% this time

Claims (1)

【特許請求の範囲】[Claims] (1) 2個の直角プリズムを接合した接合面に光半透
過用の薄膜部を介在してなる半透過鏡において、前記薄
膜部が、前記薄膜部によって反射される反射光の通る一
方の前記直角プリズムがら前記薄膜部を透過する透過光
の通る他方の前記直角プリズムに向かって順に、第1誘
電体薄膜と、前記第1誘電体薄膜の屈折率よりも低い屈
折率を有する第2誘電体薄膜と、銀薄膜とを積層してい
ることを特徴とする半透過鏡。
(1) In a semi-transmitting mirror formed by interposing a thin film part for semi-transmitting light on the joint surface of two right-angle prisms, the thin film part is connected to one of the two rectangular prisms through which the reflected light reflected by the thin film part passes. A first dielectric thin film and a second dielectric having a refractive index lower than the refractive index of the first dielectric thin film in order from the right angle prism toward the other right angle prism through which the transmitted light passing through the thin film portion passes. A semi-transparent mirror characterized by laminating a thin film and a thin silver film.
JP21755282A 1982-12-10 1982-12-10 Semi-transmitting mirror Pending JPS59107304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21755282A JPS59107304A (en) 1982-12-10 1982-12-10 Semi-transmitting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21755282A JPS59107304A (en) 1982-12-10 1982-12-10 Semi-transmitting mirror

Publications (1)

Publication Number Publication Date
JPS59107304A true JPS59107304A (en) 1984-06-21

Family

ID=16706043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21755282A Pending JPS59107304A (en) 1982-12-10 1982-12-10 Semi-transmitting mirror

Country Status (1)

Country Link
JP (1) JPS59107304A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147106A (en) * 1986-12-10 1988-06-20 Matsushita Electric Ind Co Ltd Optical parts
JPS63223702A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Optical member
WO2004074887A1 (en) * 2003-02-21 2004-09-02 Mitsui Chemicals, Inc. Reflector and application thereof
JP2012108508A (en) * 2010-11-15 2012-06-07 Leica Microsystems Cms Gmbh Optical element for light distribution
JP2017138544A (en) * 2016-02-05 2017-08-10 リコーイメージング株式会社 Optical instrument and prism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627106A (en) * 1979-08-10 1981-03-16 Canon Inc Beam splitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627106A (en) * 1979-08-10 1981-03-16 Canon Inc Beam splitter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147106A (en) * 1986-12-10 1988-06-20 Matsushita Electric Ind Co Ltd Optical parts
JPS63223702A (en) * 1987-03-13 1988-09-19 Matsushita Electric Ind Co Ltd Optical member
WO2004074887A1 (en) * 2003-02-21 2004-09-02 Mitsui Chemicals, Inc. Reflector and application thereof
US7224527B2 (en) 2003-02-21 2007-05-29 Mitsui Chemicals, Inc. Reflector and application thereof
JP2012108508A (en) * 2010-11-15 2012-06-07 Leica Microsystems Cms Gmbh Optical element for light distribution
CN102540479A (en) * 2010-11-15 2012-07-04 徕卡显微系统复合显微镜有限公司 Optical element for distributing light
JP2017138544A (en) * 2016-02-05 2017-08-10 リコーイメージング株式会社 Optical instrument and prism

Similar Documents

Publication Publication Date Title
US4367921A (en) Low polarization beam splitter
US5061050A (en) Polarizer
JPH01315704A (en) Dielectric laminate analyzer
JP3153334B2 (en) Multilayer filter for ultraviolet irradiation equipment
JPS59107304A (en) Semi-transmitting mirror
JP3222546B2 (en) Multilayer reflector of ultraviolet irradiation device and ultraviolet irradiation device
JP3153333B2 (en) Multilayer filter for ultraviolet irradiation equipment
JPH0528361B2 (en)
JP2566634B2 (en) Multi-layer antireflection film
JPS62297800A (en) Multilayer-film reflecting mirror for x-ray
JPS6028603A (en) Prism type beam splitter
JPH0242201B2 (en)
JPS6238402A (en) Optical filter
JPS6239801A (en) Semi-transparent mirror
JPS6340289B2 (en)
JPS6239401B2 (en)
JPH0223301A (en) Adhesive strength intensifying structure of optical parts
JPS6028601A (en) Prism type beam splitter
JPS62187802A (en) Beam splitter
JP3002059B2 (en) Optical filter
JPS61145501A (en) Total reflection metallic mirror
JPH03295834A (en) Heat ray reflecting glass
JPS62234105A (en) Light and radio wave separating film
JPH06167604A (en) Ir tranmission and visible ray reflection type mirror
JPH01287503A (en) Light beam splitter