JPS589952A - Electrical contact material - Google Patents
Electrical contact materialInfo
- Publication number
- JPS589952A JPS589952A JP56108535A JP10853581A JPS589952A JP S589952 A JPS589952 A JP S589952A JP 56108535 A JP56108535 A JP 56108535A JP 10853581 A JP10853581 A JP 10853581A JP S589952 A JPS589952 A JP S589952A
- Authority
- JP
- Japan
- Prior art keywords
- nitride
- iron group
- group metal
- contact material
- electrical contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 11
- 150000004767 nitrides Chemical class 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 8
- 239000004332 silver Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 2
- 230000000737 periodic effect Effects 0.000 claims abstract 2
- 229910052720 vanadium Inorganic materials 0.000 claims abstract 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- -1 iron group metals Chemical class 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000000956 alloy Substances 0.000 abstract description 25
- 229910045601 alloy Inorganic materials 0.000 abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract description 4
- 229910002804 graphite Inorganic materials 0.000 abstract description 3
- 239000010439 graphite Substances 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 1
- 230000003381 solubilizing effect Effects 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000003466 welding Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910017937 Ag-Ni Inorganic materials 0.000 description 1
- 229910017984 Ag—Ni Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Manufacture Of Switches (AREA)
- Contacts (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電流を通電開閉する機器に使用する電気接点材
料に関するものである〇
近年、ノーヒユーズブレーカを始めとする気中しゃ断器
や開閉器等の機器は小型、高性能化のすう勢にあり、こ
れに伴って接点材料への負荷が厳しくなり、接点性能の
向上が強く要請されている。[Detailed Description of the Invention] The present invention relates to electrical contact materials used in devices that conduct current and switch. In recent years, devices such as no-fuse breakers, air breakers, and switches have become smaller and more expensive. There is a trend toward improved performance, and as a result, the load on contact materials has become severer, and there is a strong demand for improved contact performance.
又機器の小型化により接点寸法の小型化、接触圧力の低
下の傾向にあり、これによって電流しゃ断時に生ずる消
耗、飛散が増大し接点の溶着や機器の絶縁劣化、さらに
定格電流開閉時に温度上昇が起り易いといった問題が生
じている。このような 。In addition, as devices become smaller, contact dimensions tend to become smaller and contact pressure decreases, which increases wear and tear that occurs when current is cut off, increases the risk of contact welding, insulation deterioration of devices, and increases temperature when switching at the rated current. There are problems that can easily occur. like this .
特性改善の要望に答えるものの一つとしてAg −Ni
−窒化物合金が開発されている。しかしながら、この合
金は、耐消耗性はすぐれているものの、接触抵抗が高く
、また耐溶着性でも十分満足するものでなく、その使用
範囲は限定されている。Ag-Ni is one of the solutions to meet the demand for improved characteristics.
-Nitride alloys are being developed. However, although this alloy has excellent abrasion resistance, it has high contact resistance and unsatisfactory welding resistance, so its range of use is limited.
本発明は以上の点に鑑みてなされたものであり耐溶着性
、耐消耗性、耐絶縁性を併せて具備し、かつ温度上昇が
低い実用性に優れた接点合金を提供するものである。更
に本発明合金は高価な銀量を可成り少くしても接点とし
て使用可能な安価な接点合金を提供するものである。The present invention has been made in view of the above points, and it is an object of the present invention to provide a contact alloy having excellent welding resistance, abrasion resistance, and insulation resistance, and having low temperature rise and excellent practicality. Furthermore, the alloy of the present invention provides an inexpensive contact alloy that can be used as a contact even when the amount of expensive silver is considerably reduced.
本発明による合金は、鉄族金属と銀にIVa、Va。The alloy according to the invention contains IVa, Va in iron group metal and silver.
Vla 、 Vlla、 ■族金属の窒化物及びグラフ
ァイト(G r)を分散含有せしめ、かつ鉄族金属中に
一部もしくは全ての窒化物を固溶せしめたことを特徴と
する電気接点材料である。This is an electrical contact material characterized by containing nitrides of group Vla, Vlla, and group (1) metals and graphite (Gr) dispersed therein, and in which some or all of the nitrides are dissolved in solid solution in the iron group metal.
以下本発明による合金の特徴を説明する。The characteristics of the alloy according to the present invention will be explained below.
既に知られているAg −Ni−窒化物合金についテ検
討を行った結果、銀の融点以下の焼結体では、ニッケル
及び窒化物粒子が単独に存在するだけであり、接点性能
面でもAg−Cd0と比べ大電流下での消耗はむしろ良
くない結果となった。しかし銀の融点以上で焼結すると
、ニッケル金属中に窒化物の7部または全部が固溶した
合金となり、電流の開閉時に発生するアーク熱での消耗
、飛散が少く、機器の絶縁劣化も少ない効果があること
かわかった。しかしながら、ニッケルや窒化物は耐酸化
性が悪く、開閉時に発゛生ずるアーク熱によって酸化し
、接触抵抗を増大させ機器の温度上昇が高くなる欠点が
あることを確認した。このため、使用範囲が狭く実用性
に乏しいことがわかった〇本発明者らはニッケルを含め
、鉄、コバルト等の鉄族金属や窒化物の酸化防止をはか
り、温度上昇をおさえ、且つ耐溶着性の向上につき種々
検討した結果、還元性に優れたGr を上記接点合金に
添加せしめると、Gr は電気開閉時の熱で分解して
還元ガスを発生し鉄族金属や窒化物を酸化から防止し接
触抵抗を小さく抑え、機器の温度上昇を低下せしめると
共にorの潤滑性により耐溶着性を高めることがわかっ
た。さらに、Grの添加により開閉時に発生するアーク
熱で窒化物が、分散されたGr と反応し炭化物を形成
するために起こる吸熱反応やN2ガス放出による消弧作
用により大幅に耐アーク消耗特性が改善される事が判っ
た。As a result of conducting a study on the already known Ag-Ni-nitride alloy, it was found that in a sintered body below the melting point of silver, only nickel and nitride particles exist independently, and in terms of contact performance, Ag- Compared to Cd0, the consumption under large current was rather poor. However, when sintered at a temperature above the melting point of silver, an alloy is created in which 7 or all of the nitrides are dissolved in the nickel metal, resulting in less wear and scattering due to the arc heat generated when the current is turned on and off, and less deterioration of the insulation of equipment. I found it to be effective. However, it has been confirmed that nickel and nitride have poor oxidation resistance and are oxidized by the arc heat generated during opening and closing, increasing contact resistance and increasing the temperature of the equipment. For this reason, it was found that the range of use was narrow and the practicality was poor. The present inventors have attempted to prevent oxidation of iron group metals such as nickel, iron and cobalt, and nitrides, suppress temperature rise, and create a welding-resistant material. As a result of various studies on improving the properties, we found that when Gr, which has excellent reducing properties, is added to the above contact alloy, the Gr decomposes with the heat of electrical switching and generates reducing gas, preventing iron group metals and nitrides from oxidizing. It was found that the contact resistance was kept low, the temperature rise of the equipment was reduced, and the welding resistance was improved due to the lubricity of the or. Furthermore, due to the addition of Gr, the arc heat generated during opening and closing causes nitrides to react with dispersed Gr to form carbides, resulting in an endothermic reaction and arc extinguishing action due to the release of N2 gas, which greatly improves arc wear resistance. I knew it would happen.
第1図は、この反応の自由エネルギー変化を示すもので
ありほとんど/!;000Kにて、この反応が進行する
ことがわかる。Figure 1 shows the free energy change of this reaction, which is almost /! It can be seen that this reaction progresses at 000K.
鉄族金属はFe 、 Co 、 Ni等であり、2〜1
.0重量%であり好ましくは2O−j(7重量%が適当
である。2重量%以下では鉄族金属が鎖中に分散し、窒
化物のり溶が起きず耐消耗性が向上しない。また60重
量%以上ではarを添加しても接触抵抗が低下せず温度
上昇特性の向上効果がない。Iron group metals include Fe, Co, Ni, etc., and 2 to 1
.. 0% by weight, preferably 2O-j (7% by weight is appropriate. If it is less than 2% by weight, the iron group metal will be dispersed in the chain, nitrides will not dissolve and the wear resistance will not improve. If it exceeds the weight percentage, even if ar is added, the contact resistance will not decrease and there will be no effect of improving the temperature rise characteristics.
窒化物としてはチタン、ジルコニウム、ニオブ、クロム
、モリプデベマンガン、鉄、パ1ナジウム、タンタル等
のIVa 、 Va 、 Via 、 Vlla 、■
族の窒化物が効果があり、その量としてはj〜SO重量
%が好ましく、特に10−23重量%が特性が良い。窒
化物が5重1tq6以下では鎖中の窒化物量が少な過ぎ
て耐消耗性が不充分であり、SO重量%以上ではor
を添加しても接触抵抗が低下せず温度上昇特性の向上が
認められない。次にGr の有効範囲は/−11重量%
であり好ましくは3〜7重量%である。1重量−以下で
は鉄族金属や窒化物が上記範囲内であっても温度上昇特
性の向上が認められず、またl/重量%以上では合金製
造が困難であり実用性がない。Examples of nitrides include titanium, zirconium, niobium, chromium, manganese molypide, iron, palladium, tantalum, etc. IVa, Va, Via, Vlla, ■
Group nitrides are effective, and the amount thereof is preferably from j to 23% by weight, with particularly good properties at 10-23% by weight. If the nitride is less than 5 times 1 tq6, the amount of nitride in the chain is too small and the wear resistance is insufficient, and if it is more than 5% by weight of SO, or
Even if added, the contact resistance did not decrease and no improvement in temperature rise characteristics was observed. Next, the effective range of Gr is /-11% by weight
and preferably 3 to 7% by weight. If it is less than 1% by weight, no improvement in temperature rise characteristics will be observed even if the iron group metal or nitride is within the above range, and if it is more than 1% by weight, it will be difficult to manufacture the alloy and it will not be practical.
次に実施例によって本発明による接点合金の特徴を具体
的に説明する。Next, the characteristics of the contact alloy according to the present invention will be specifically explained using examples.
実施例1
第1表、第2表、第3表及び第4表に示した割合で各粉
末を配合し、混合後成型体を作り、該成型体を水素雰囲
気中で//!;000の温度で焼結したOこの焼結体を
再加圧して気孔率が殆んど零の合金を作製した。合金中
第弘表のものは比較材としての従来の合金である。Example 1 Each powder was blended in the proportions shown in Table 1, Table 2, Table 3, and Table 4, and after mixing, a molded body was made, and the molded body was placed in a hydrogen atmosphere. The sintered body was sintered at a temperature of 0.000 °C and then pressed again to produce an alloy with almost zero porosity. The alloys listed in Table 1 are conventional alloys for comparison.
1″ 単位:重量%第q表
単位二重量%
第2図は本発明による合金のl実施例(A −J)の1
000倍拡大の顕微鏡組織写真である。第2図で白色の
部分が銀相、薄灰色部がニッケル相、そのニッケル相周
辺の濃い灰色の粒子がTiN相、不規則形状で黒色部が
グラファイト相である。図でわかるように本発明合金は
焼結過程中に鉄族金属と窒化物が反応し、鉄族金属中に
窒化物が固溶し、析出した合金組織構造になっている。1″ Unit: Weight % Table Q
Unit duplex weight % Figure 2 shows one example (A-J) of the alloy according to the invention.
This is a micrograph of the structure magnified 1,000 times. In FIG. 2, the white part is the silver phase, the light gray part is the nickel phase, the dark gray particles around the nickel phase are the TiN phase, and the irregularly shaped black part is the graphite phase. As can be seen from the figure, the alloy of the present invention has an alloy structure in which the iron group metal and nitride react with each other during the sintering process, and the nitride forms a solid solution in the iron group metal and precipitates.
上記硬質相が骨格形成するために耐熱性に富んだ耐アー
ク消耗の少い特性を示すものと考えられる。It is thought that because the hard phase forms a skeleton, it exhibits characteristics of high heat resistance and low arc wear resistance.
上述のようにして作成した合金についてASTM試験機
により通電特性と消耗特性の評価な行った。The alloys prepared as described above were evaluated for current conduction characteristics and wear characteristics using an ASTM tester.
条件としては、ACloOV 、 !;OA 、 pf
iO、接触圧力200gr 、開離力200gr 、接
点形状!X!;X/、!;Mとし、2万回の開閉を行っ
た。2万回開閉での電圧のバラツキ巾と消耗量の結果を
第5表に示す。The conditions are ACloOV, ! ;OA, pf
iO, contact pressure 200gr, separation force 200gr, contact shape! X! ;X/,! ;M, and opened and closed 20,000 times. Table 5 shows the results of voltage variation and amount of wear after 20,000 times of opening and closing.
第5表
ASTMテスト前后の接点につき、X線回折により表面
に形成されている相につき分析をした結果、第j忰の結
果を得た。As a result of analyzing the phase formed on the surface of the contact points before and after the ASTM test in Table 5 by X-ray diffraction, the results of the Jth period were obtained.
これより、Ag −Ni −TiN K Grが入るこ
とによ1)Ni○、 TiO2の形成がほとんどなくな
り、このため電圧降下が低くなったものと考えられる。From this, it is considered that the introduction of Ag--Ni--TiN-K-Gr 1) almost eliminated the formation of Ni◯ and TiO2, which led to a lower voltage drop.
第6表
実施例2
実施例1で作成した合金、A6 、 B2 、 C2及
び比較材DI 、 D2 、 D3 、 D4 の合
金から可動接点llX7XJJIIの寸法に、固定接点
1fXf×28の寸法に切削加工したのち台金に抵抗鑑
付けで接合せしめこれをjOA定格の配線用しゃ断器に
組込み・下記に示す試験条件にて接点性能評価をした結
果、第を表を得た。Table 6 Example 2 The alloys prepared in Example 1, A6, B2, C2 and comparative materials DI, D2, D3, D4 were machined to dimensions of a movable contact 11X7XJJII and a fixed contact 1fXf×28. Afterwards, it was bonded to the base metal by resistance rating, and this was assembled into a jOA-rated circuit breaker.The contact performance was evaluated under the test conditions shown below, and the results shown in Table 1 were obtained.
試験条件:
過負荷試験: AC220V 、 200Apf !;
0回耐久試験: AO22’OV 、 !;0Apf
311回温度上昇試験:AC220vl!;oA2H短
絡試験: AC220V 、 7.!KA pfOJ
/PO−Co v 2po−c。Test conditions: Overload test: AC220V, 200Apf! ;
0 times durability test: AO22'OV, ! ;0Apf
311 times temperature rise test: AC220vl! ;oA2H short circuit test: AC220V, 7. ! KA pfOJ
/PO-Cov 2po-c.
第7表
第7表で示すように本発明合金は消耗量が少く温度上昇
が低く、絶縁耐圧も高く高性能の接点特性を有している
ことがわかる。Table 7 As shown in Table 7, it can be seen that the alloy of the present invention has low wear, low temperature rise, high dielectric strength, and high performance contact characteristics.
本発明合金は上述の通−り接点性能が優れているのみで
なく、鉄族金属、窒化物を多量に含有しており高価な銀
量を大巾に節減できるので工業的価値の高いものである
。The alloy of the present invention not only has excellent contact performance as mentioned above, but also contains large amounts of iron group metals and nitrides, and can greatly reduce the amount of expensive silver, so it is of high industrial value. be.
第1図は炭化物と窒化物との反応エネルギーを示す図、
第2図は本発明合金の一実施例の合金組織を示す顕微鏡
写真である。Figure 1 is a diagram showing the reaction energy between carbides and nitrides,
FIG. 2 is a micrograph showing the alloy structure of an example of the alloy of the present invention.
Claims (3)
Vlla + ■族金属の窒化物がS −S O重量%
、ゲラフィトl〜l/重量東鉄族金属2〜60重量%、
残部銀がらなり、窒化物が鉄族金属中及び鋼中に分散し
たことを特徴とする電気接点材料。(1) IVa+ Va + vIa+ of the periodic table of elements
Vlla + Nitride of group metal is S - SO wt%
, Gelaphyte 1 to 1/weight East iron group metal 2 to 60% by weight,
An electrical contact material characterized in that the balance consists of silver and nitrides are dispersed in iron group metals and steel.
、モリブデン、マンガン、鉄、バナジウム、タンタルの
うち少くとも1種の窒化物であることを特徴とする特許
請求の範囲(1)項記載の電気接点材料。(2) The electricity according to claim (1), wherein the nitride is at least one nitride selected from titanium, zirconium, niobium, chromium, molybdenum, manganese, iron, vanadium, and tantalum. Contact material.
も1種であることを特徴とする特許請求の範囲(1)項
記載の電気接点材料。(3) The electrical contact material according to claim (1), wherein the iron group metal is at least one of nickel, iron, and cobalt.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56108535A JPS589952A (en) | 1981-07-10 | 1981-07-10 | Electrical contact material |
DE19823213265 DE3213265A1 (en) | 1981-04-10 | 1982-04-08 | ELECTRICAL CONTACT MATERIAL |
FR8206295A FR2503926B1 (en) | 1981-04-10 | 1982-04-09 | ELECTRIC CONTACT MATERIALS |
US06/367,603 US4457780A (en) | 1981-04-10 | 1982-04-12 | Electric contact materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56108535A JPS589952A (en) | 1981-07-10 | 1981-07-10 | Electrical contact material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS589952A true JPS589952A (en) | 1983-01-20 |
JPH0241571B2 JPH0241571B2 (en) | 1990-09-18 |
Family
ID=14487267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56108535A Granted JPS589952A (en) | 1981-04-10 | 1981-07-10 | Electrical contact material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS589952A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010419A1 (en) * | 1988-04-20 | 1989-11-02 | Siemens Aktiengesellschaft | Sintered contact material based on silver for use in electrical switchgear, in particular for contact pieces in low-voltageswitches |
US5246480A (en) * | 1988-04-20 | 1993-09-21 | Siemens Aktiengesellschaft | Sintered contact material based on silver for use in power engineering switch-gear, in particular for contact pieces in low-voltage switches |
-
1981
- 1981-07-10 JP JP56108535A patent/JPS589952A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010419A1 (en) * | 1988-04-20 | 1989-11-02 | Siemens Aktiengesellschaft | Sintered contact material based on silver for use in electrical switchgear, in particular for contact pieces in low-voltageswitches |
US5246480A (en) * | 1988-04-20 | 1993-09-21 | Siemens Aktiengesellschaft | Sintered contact material based on silver for use in power engineering switch-gear, in particular for contact pieces in low-voltage switches |
Also Published As
Publication number | Publication date |
---|---|
JPH0241571B2 (en) | 1990-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS589954A (en) | electrical contact materials | |
JPS589952A (en) | Electrical contact material | |
JPH036211B2 (en) | ||
JPH0151530B2 (en) | ||
JPS6383242A (en) | Arc-resistant conductive material | |
JPS5811753A (en) | electrical contact materials | |
CN100378884C (en) | Method for producing silver-oxide-based electrical contact material and product thereof | |
JPH0230370B2 (en) | DENKISETSUTENZAIRYONOSEIZOHO | |
JPS589953A (en) | electrical contact materials | |
JPS5929301A (en) | Electric contact material | |
JP2969774B2 (en) | Combination electrical contacts | |
JPS5884942A (en) | Electrical contact material | |
JPS5884938A (en) | electrical contact materials | |
JPS6059978B2 (en) | electrical contact materials | |
JPS5884947A (en) | electrical contact materials | |
JPS58100650A (en) | Electrical contact material | |
JPS5913578B2 (en) | electrical contact materials | |
JPS5884937A (en) | Electrical contact material | |
JPH0813065A (en) | Sintered material for electrical contact and production thereof | |
JPS5884945A (en) | electrical contact materials | |
JPS5884939A (en) | Electrical contact material | |
JPS5884944A (en) | electrical contact materials | |
JPS5896835A (en) | Electric contact material | |
JPS59159953A (en) | Electrical contact material | |
JPS6031891B2 (en) | conductive material |