JPS5899102A - Activating method for alloy for occluding hydrogen - Google Patents
Activating method for alloy for occluding hydrogenInfo
- Publication number
- JPS5899102A JPS5899102A JP56197561A JP19756181A JPS5899102A JP S5899102 A JPS5899102 A JP S5899102A JP 56197561 A JP56197561 A JP 56197561A JP 19756181 A JP19756181 A JP 19756181A JP S5899102 A JPS5899102 A JP S5899102A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- heat
- alloy
- storage
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水g*蔵金合金賦活方法に関し、詳細には1例
えば蓄熱材として水素の吸蔵・放出(放熱・蓄熱)を繰
り返すことによって活性低下(水嵩吸蔵、4度の低下)
した水素吸蔵合金を、簡単な操作で賦活する方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for activating a water g* metal alloy. decrease)
The present invention relates to a method for activating hydrogen storage alloys with simple operations.
水嵩吸蔵合金は水素吸蔵時に発熱し、水素放出HK@熱
するという特有の性質があり、その性質を利用して蓄熱
材篩への用途開発が進められている。本発明者尋も水嵩
吸蔵合金の優れた蓄熱性能を利用し、各種プロ七ス制御
における熱余剰時の熱を蓄え、熱需要時に蓄蔵熱を放出
させることによって熱エネμギーの有効利用を図るべく
研究を進めておシ、既に@1図に示す様な方法を開発し
ている。即ち第1図は時間的間隔をおいて熱余剰と熱需
要が繰υ返されるプロセスにおける熱制御例を示す概略
図で、蓄熱装着は水素吸蔵合金の充填された蓄熱槽1と
富水素タンク2及び両者を結ぶ水素配管8m、8bで構
成され、水素配管8bには圧N橋4が設けられている。Water bulk storage alloys have the unique property of generating heat when storing hydrogen and releasing hydrogen, and development of applications for heat storage material sieves is underway by utilizing this property. The present inventor, Hiromu, also utilized the excellent heat storage performance of water bulk storage alloys to store heat during surplus heat in various process controls, and to release the stored heat during heat demand, thereby making effective use of thermal energy μ. We are conducting research to achieve this goal, and have already developed a method as shown in Figure @1. That is, Fig. 1 is a schematic diagram showing an example of heat control in a process in which heat surplus and heat demand are repeated at time intervals. and hydrogen pipes 8m and 8b connecting the two, and the hydrogen pipe 8b is provided with a pressure N bridge 4.
餐熱槽1には各種プロセスPからの熱媒が通過する熱交
換管5が配着されておシ、パルプVl〜■4の開閉によ
って蓄熱槽1と富水素タンク2の間で水素を移動させ、
*熱槽1内の水嵩吸蔵合金の水累吸賊時の発熱及び水素
放出時の吸熱を利用して、熱余IJ時の蓄熱と熱需要時
の放熱を行なう、即ちプロセスPにおける熱媒が熱余剰
伏U(冷却を要する状し)のときは、熱交換管すによっ
て供給される余−熱によって水素吸蔵合金の水素を放出
させ、それに伴なう吸熱によって熱媒を冷却すると共に
、放出水嵩はパルプvl * V 3を通して圧縮機4
に送り加圧した後パルプv4を通して蓄水素タンク2に
送シ込まれる。一方プロセスPにおけるMKが熱需委状
−(加熱を要する状態)のときは、パルプV 3 e
V4を閉じると共にパルプv2を開き、蓄水雪タンク2
から蓄熱槽1に水素を送って水嵩吸蔵合金に吸蔵させ、
このときに発生する熱によって熱交換管6内の熱媒を加
熱する。同上記吸蔵水嵩量及び放出水素量は、熱媒帰遠
路に設けた温度指示M14節器7によって熱媒の温度を
検知しその温度に応じ検知効果又は加熱効果を調整する
様、パルプ■1の開度會調節する。図中9#−i水素補
給ラインを示す、この方法であれば、水素放出時の吸熱
によって蓄熱され、水素吸蔵時の発熱によって加熱され
るので、熱余燭時の余剰熱を殆んどそのまま熱WINE
時の加熱に利用することができ、各種プロセスにおける
熱負荷変動のロードレベリングが可能になる。しかもこ
の蓄熱・放熱は水素の移動によって可逆的に起こるから
、水素吸蔵合金が活性を失なわない限シ長期間連続的に
行なうことところで本発明者等が水素吸蔵合金の活性寿
命を主体に研究を進めたところ、水素の吸蔵−放出回数
が増加するにつれて上記合金の活性は徐々に低下し、特
に水素吸蔵活性が大幅に低下して(ることが明らかにな
った。例えば第2図は、水素吸蔵合金としてMg−28
1’l嗟Niを使用したときの、水素吸蔵・放出繰返し
工程の経過時間とto、9〔士ΔH/MgをQ、07
atom/atomに般定したときの90優(即ち0.
068 a t om/a * om )が反応するの
に要する時間〕の関係を示したものであ〕。Heat exchange tubes 5 through which heat mediums from various processes P pass are arranged in the heat storage tank 1, and hydrogen is transferred between the heat storage tank 1 and the hydrogen-rich tank 2 by opening and closing the pulps Vl to 4. let me,
*Using heat generated during water accumulation absorption and heat absorption during hydrogen release of the water bulk storage alloy in the heat tank 1, heat storage during heat surplus IJ and heat release during heat demand are performed, that is, the heat medium in process P is When there is a heat surplus U (a condition requiring cooling), the hydrogen in the hydrogen storage alloy is released by the excess heat supplied by the heat exchange pipe, and the heat medium is cooled by the accompanying heat absorption, and the hydrogen is released. The water volume is passed through the pulp vl * V 3 to the compressor 4
After being pressurized, it is sent to the hydrogen storage tank 2 through pulp v4. On the other hand, when MK in process P is in a heat demand state (condition requiring heating), pulp V 3 e
Close V4 and open Pulp V2, water storage snow tank 2
From there, hydrogen is sent to the heat storage tank 1 and stored in the water bulk storage alloy.
The heat generated at this time heats the heat medium in the heat exchange tube 6. The above-mentioned absorbed water volume and released hydrogen amount are determined by using pulp ■1 so that the temperature of the heating medium is detected by the temperature indicator M14 moderator 7 installed in the heating medium return path and the detection effect or heating effect is adjusted according to the detected temperature. Adjust the opening. 9#-i hydrogen replenishment line is shown in the figure. With this method, heat is stored by heat absorption during hydrogen release and heated by heat generation during hydrogen storage, so the surplus heat during the afterburning process is almost completely retained. heat wine
It can be used for heating at various times, and enables load leveling of heat load fluctuations in various processes. Moreover, since this heat storage and heat release occur reversibly due to the movement of hydrogen, it must be carried out continuously for a long period of time as long as the hydrogen storage alloy does not lose its activity. As a result, it became clear that as the number of hydrogen storage and desorption increases, the activity of the above alloy gradually decreases, and in particular, the hydrogen storage activity significantly decreases (for example, as shown in Figure 2). Mg-28 as a hydrogen storage alloy
When using 1'l Ni, the elapsed time of the hydrogen absorption and release repetition process and to, 9 [ΔH/Mg, Q, 07
When generalized to atom/atom, 90 points (i.e. 0.
068 a t om/a * om)].
時間の経過と共に水素吸蔵速度は大幅に低下してくる。As time passes, the hydrogen storage rate decreases significantly.
即ち充填直後のto、9は約50秒と極めて短いが、1
00時間経過するとtO,9け約90秒。In other words, to,9 immediately after filling is extremely short at about 50 seconds, but 1
After 00 hours have elapsed, tO, about 90 seconds.
200時間経過後は約170秒と徐々に長(なり。After 200 hours, it gradually increases to about 170 seconds.
800時間経過後には約290秒と充填初期の約6倍も
の時間がかかる。従って連続操作を長く続ける為には水
素吸蔵速度の遅延を何らかの方法で回復させる必要があ
シ、その為の具体策としては水素吸蔵)放出時のコント
ロール定数のfi!、例えは比例WJJfvのゲインを
大きくする。微分動作を大11(する、戒いは圧力制御
ではなく所謂2位置−−(台金充填系に波状の急激な水
素圧変動を繰〕点し与え、水#IA吸絨速度の低下を防
止する方法)尋が考えられるが、これらの方法は操作が
極めてms″′!:あると共に、熱媒l晶度のオーバー
Vニートやハンチング等の危険性があるので実用的な方
法とFiぎい雌^。After 800 hours have elapsed, it takes about 290 seconds, about six times as long as the initial filling time. Therefore, in order to continue continuous operation for a long time, it is necessary to recover the delay in the hydrogen absorption rate by some method, and the specific measure for this is fi! of the control constant during hydrogen absorption and release. , for example, increase the gain of proportional WJJfv. The precept is not to control the pressure, but to apply the so-called 2-position (repeatedly wave-like rapid fluctuations in hydrogen pressure to the base metal filling system) to prevent the water #IA suction speed from decreasing. However, these methods are extremely difficult to operate, and there is also the risk of over V neatness of the heating medium crystallinity, hunting, etc., so it is difficult to find a practical method. ^.
本発明者等は上記の様な事情に着目し、連続使用によっ
て水素吸蔵spJの低下し九水素吸蔵合金を簡朧な方法
で賦活させる方法の開発を期して研究を進めてきた。′
本発明はかかる研究の結果完成されたものであって、そ
の構成は、水嵩吸蔵合金を用いて水素の@蔵・放出を繰
シ返し行なう工程において、該合金の水嵩吸蔵活性が低
下した時点で該合金を定常運転時の平衡解離圧よルも羅
い水素圧力に鳴らすか、或いは上記平衡解離圧よシも低
い水素圧力Kmらし、該合金の水素吸蔵活性を賦活させ
るところに要旨が存在する。・本発明では、第2図に示
した如く長時間の連続使用によって水素吸蔵活性が低下
した水嵩吸蔵合金に、定常運転時の平衡解離圧よりも高
圧の水嵩を作用させる(水素吸蔵時)か、或いは合金充
填系の水素を積極的に吸引除去して水素圧を急激に低下
させ(水素放出時)、この様な刺激によって水嵩吸蔵活
性を新鮮な4のと同程度まで賦活することができる。The present inventors have focused on the above-mentioned circumstances and have conducted research with the aim of developing a method for reducing the hydrogen storage spJ through continuous use and activating the nine-hydrogen storage alloy in a simple manner. ′
The present invention was completed as a result of such research, and its configuration is such that in the process of repeatedly storing and releasing hydrogen using a water bulk storage alloy, when the water bulk storage activity of the alloy decreases, The gist lies in activating the hydrogen storage activity of the alloy by exposing the alloy to a hydrogen pressure that is lower than the equilibrium dissociation pressure during steady operation, or by setting the hydrogen pressure to Km that is lower than the equilibrium dissociation pressure. .・In the present invention, as shown in Fig. 2, water volume at a pressure higher than the equilibrium dissociation pressure during steady operation is applied to the water volume storage alloy whose hydrogen storage activity has decreased due to long-term continuous use (during hydrogen storage). , or by actively suctioning and removing hydrogen from the alloy-filled system to rapidly lower the hydrogen pressure (during hydrogen release), such stimulation can activate water bulk storage activity to the same level as fresh 4. .
例えば第8図は、7182図の例において操作開始後8
20時間経過し、tO,9が800eまで活性低下し九
水素吸蔵合金(Mg−28,8*N i)の充填糸に、
22.5 kg/、−の水素圧をかけて87Mgを1
、Ft52とし、一定時間賦活処理した後の水素吸蔵速
度(tg、g)と、その後引き続いて水素吸蔵・放出を
繰シ返した後、再び活性が低下したときに今度は合金充
填系の水素を積極的に吸引除去し水素圧を低下させて賦
活処理した場合の、一連の水素吸蔵速度を測定し九賽験
グラフである。For example, FIG. 8 shows the example of FIG.
After 20 hours, the activity of tO,9 decreased to 800e, and the filling thread of nine hydrogen storage alloy (Mg-28,8*Ni)
Applying hydrogen pressure of 22.5 kg/-, 87 Mg was
, Ft52, the hydrogen absorption rate (tg, g) after activation treatment for a certain period of time, and after repeated hydrogen absorption and release, when the activity decreases again, this time the hydrogen of the alloy filled system is This graph shows a series of hydrogen absorption rates measured when activation treatment is performed by actively suctioning and removing and lowering the hydrogen pressure.
第8図からも明らかな様に、第1回目の賦活処m(高圧
水素処[)A[よって水素吸蔵合金の水素吸蔵速度to
、sl約44秒となシ、充填初期〇水素@蔵店性を回復
する。また第2回目の賦活処理(低圧水素処理)BKよ
って処理後の水雪襲蔵IjA4度tO,9は約52秒と
なシ、やは如充填初期の水嵩吸蔵活性まで尿っている。As is clear from FIG. 8, the first activation treatment m (high-pressure hydrogen treatment
, sl is approximately 44 seconds, and the initial filling hydrogen is restored. In addition, after the second activation treatment (low-pressure hydrogen treatment) BK, the water and snow storage IjA 4 degrees tO,9 after the treatment was about 52 seconds, and the water volume storage activity reached the initial stage of filling.
即ち連M@坤によって活性の低下した水素吸蔵合金を定
常運転時の平輛解醋圧よシも品圧又は低圧の水素で刺撤
すると、新鮮な水素吸蔵合金と同程度まで水嵩吸蔵活性
を回復させることができる。In other words, if a hydrogen storage alloy whose activity has been reduced due to continuous operation is removed with hydrogen at normal pressure or low pressure during steady operation, the water bulk storage activity will be increased to the same level as a fresh hydrogen storage alloy. It can be recovered.
従って上eの賦活処理を随時5j!施することにょシ。Therefore, 5j! I'm going to give it to you.
高レベルの水素吸蔵速度を長時間持続させることができ
る。A high level of hydrogen storage rate can be sustained for a long time.
この様な高圧又は低圧水素処理によって賦活される増肉
は必ずしも明確にされた訳ではないか。The thickness increase activated by such high-pressure or low-pressure hydrogen treatment has not necessarily been clarified.
次の様に考えることができる。You can think of it as follows.
■操業開始の直後は水素の吸蔵・放出によって合金譜面
にミクロクラックが発生し表面積が増加する為に高レベ
ルの水素吸蔵速度が傳られるが。■ Immediately after the start of operation, microcracks occur in the alloy sheet due to hydrogen absorption and release, increasing the surface area, resulting in a high level of hydrogen absorption rate.
時間−1JX経過するにつれて水嵩吸蔵時の熱によって
主クロクラックが焼結して徐々に活性が低下してくる。As time -1JX elapses, the main black cracks are sintered by the heat generated during water occlusion, and the activity gradually decreases.
しかし上記賦活処理によって定常時よシも急激な水素の
吸蔵又は放出を行なうと1合金表面の焼結物に再びミク
ロクラックが発生し、表1IlildIが拡大して水素
吸蔵活性を回復する。However, when hydrogen is absorbed or released more rapidly than in the steady state by the above activation treatment, microcracks occur again in the sintered material on the surface of the alloy 1, and Table 1IlildI expands to recover the hydrogen storage activity.
■操業開始直後は水素の吸蔵・放出によって合金内に格
子欠陥ができ、これが水素吸蔵活性に好影響を及はして
bると考えられるが1時間経過と共にひずみが緩和され
て活性点が減少し、水素吸蔵活性が低下してくる。しか
し上記賦活処理によって合金内に再びひずみの大きい格
子欠陥ができ。■Immediately after the start of operation, lattice defects are formed in the alloy due to hydrogen storage and release, and this is thought to have a positive effect on hydrogen storage activity, but as one hour passes, the strain eases and the number of active sites decreases. However, the hydrogen storage activity decreases. However, due to the above activation treatment, large strain lattice defects are created within the alloy again.
水嵩吸蔵活性が高レベルtで回復する。Water bulk storage activity is restored at high levels t.
同第2,8図でIr1Mg−28,acsNiを例にと
って絞明したが、この様な経時的活性低下及び賦活効果
は他の水素吸蔵合金(例えばLaNi3゜TIF6N1
.T1Co、ZrMn、2.LaCO5、V、Mg$1
の場合も、程度の差はあるものの傾向は同様である。In Figures 2 and 8, Ir1Mg-28 and acsNi are used as examples, but such activity reduction and activation effects over time are also observed in other hydrogen storage alloys (e.g. LaNi3゜TIF6N1).
.. T1Co, ZrMn, 2. LaCO5, V, Mg$1
In the case of , the trend is similar, although there are differences in degree.
また上記の賦活処理を第1図の様な蓄熱制御工程で行な
う場合は、プロセスPWcシける熱媒の熱余剰及び熱需
要が零のときにパルプv5を閉、バwプV6を開にして
熱媒を迂回させ1次いで蓄熱#l内を減圧するか戚いは
高圧氷雪を供給するだけでよ(、操作が極めて簡単であ
ると共に実操業自体を中断する必要もない。同賦活時に
おける合金充項糸の加圧又は減圧は、刺叡効果を高める
うえで可及的短時聞内で一望に行なうべきであるが。In addition, when the above activation treatment is performed in the heat storage control process as shown in Fig. 1, when the heat surplus and heat demand of the heating medium that is used in the process PWc is zero, the pulp v5 is closed and the vapor valve V6 is opened. All you have to do is bypass the heating medium and then reduce the pressure inside the heat storage #1 or supply high-pressure ice/snow (the operation is extremely simple and there is no need to interrupt the actual operation. Pressurization or depressurization of the filled threads should be carried out at once within as short a time as possible in order to enhance the embroidery effect.
賦活後の定常解離圧への後mけ必ずし4−気に行なう必
要けなく段階的に行なってもよい。It is not necessary to carry out the process for 4 times after activation to reach a steady dissociation pressure, but it may be carried out in stages.
本発明lJ概略以上の様に槽底されておシ、水素@蔵活
性の低下した水素吸蔵合金を極めて簡単な操作で賦活す
ることができるので、この賦活処理を定期的に’)1m
することによって、該合金の蓄熱材等としての特性を長
期間高レベルに維持し褐る°ことになつ念。 。Outline of the present invention As described above, the hydrogen storage alloy whose hydrogen storage activity has decreased can be activated by an extremely simple operation.
By doing so, the properties of the alloy as a heat storage material, etc. can be maintained at a high level for a long period of time, and it will be possible to prevent browning. .
#I1図II′i本発明が適用される水素吸蔵合金の実
用例を示す贋略睨明図、第2図は水素吸蔵合金の経時的
な水素吸蔵速度の変化を示すグラフ、傅8図は賦活処理
による活性回復伏況を示すグラフである。
1・・・蓄熱槽 2・・・蓄水嵩タンクRm、
gb・・・水嵩配管 4・・・加圧機出願人 工
!1ilI技#院長
同 東洋紡績株式会社
第1頁の続き
0発 明 者 田中治尋
鈴鹿型−の宮町803番地の1
0出 願 人 東洋紡績株式会社
大阪市北区堂島浜二丁目2番8#I1 Figure II'i A simplified perspective diagram showing a practical example of a hydrogen storage alloy to which the present invention is applied. Figure 2 is a graph showing changes in hydrogen storage rate over time of a hydrogen storage alloy. It is a graph showing activity recovery trends due to activation treatment. 1... Heat storage tank 2... Water storage bulk tank Rm,
gb...Water bulk piping 4...Pressure machine applicant! Toyobo Co., Ltd. Page 1 continued 0 Inventor: Osamu Tanaka 803-803 Miyamachi, Suzuka type Applicant: Toyobo Co., Ltd. 2-2-8 Dojimahama, Kita-ku, Osaka
Claims (1)
行なう工程において、*合金の水素吸蔵活性が低下した
時点で該合金を定常運転時の平衡解離圧よ)も高い水素
圧力に曝らすか、或いは上記平両解雌圧よりも低い水素
圧力に曝らすことを特徴とする水嵩吸蔵合金の賦活方法
。(Note) In the process of repeatedly storing and desorbing hydrogen using a hydrogen storage alloy, when the hydrogen storage activity of the alloy decreases, the alloy is brought to a high hydrogen pressure (the equilibrium dissociation pressure during steady operation). A method for activating a water bulk storage alloy, characterized by exposing it to hydrogen pressure or exposing it to a hydrogen pressure lower than the above-mentioned normal internal pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197561A JPS5899102A (en) | 1981-12-07 | 1981-12-07 | Activating method for alloy for occluding hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197561A JPS5899102A (en) | 1981-12-07 | 1981-12-07 | Activating method for alloy for occluding hydrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5899102A true JPS5899102A (en) | 1983-06-13 |
JPH0260601B2 JPH0260601B2 (en) | 1990-12-17 |
Family
ID=16376541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56197561A Granted JPS5899102A (en) | 1981-12-07 | 1981-12-07 | Activating method for alloy for occluding hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5899102A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851690A (en) * | 1994-10-05 | 1998-12-22 | Sanyo Electric Co., Ltd. | Hydrogen absorbing alloys |
JP2002146449A (en) * | 2000-11-02 | 2002-05-22 | Toyota Motor Corp | Regeneration method of hydrogen storage alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS509599A (en) * | 1973-05-31 | 1975-01-31 | ||
JPS55104901A (en) * | 1978-12-26 | 1980-08-11 | Standard Oil Co | Method of regenerating hydride |
-
1981
- 1981-12-07 JP JP56197561A patent/JPS5899102A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS509599A (en) * | 1973-05-31 | 1975-01-31 | ||
JPS55104901A (en) * | 1978-12-26 | 1980-08-11 | Standard Oil Co | Method of regenerating hydride |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851690A (en) * | 1994-10-05 | 1998-12-22 | Sanyo Electric Co., Ltd. | Hydrogen absorbing alloys |
JP2002146449A (en) * | 2000-11-02 | 2002-05-22 | Toyota Motor Corp | Regeneration method of hydrogen storage alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH0260601B2 (en) | 1990-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1078633A (en) | Hydride heat pump | |
EP0013456B1 (en) | Method of regenerating disproportionated hydrides | |
JP2000100461A5 (en) | ||
JPS5899102A (en) | Activating method for alloy for occluding hydrogen | |
US5174367A (en) | Thermal utilization system using hydrogen absorbing alloys | |
JPS6350301A (en) | Hydrogen storage/release method | |
JPH0755284A (en) | Compression metal hydride heat pump | |
CN1206494C (en) | Reaction device using hydrogen storage alloy and its control method | |
JPH06103987A (en) | Hydrogen filling method and hydrogen filling device | |
JP3403892B2 (en) | Method and apparatus for improving hydrogen purity | |
JP2643235B2 (en) | Metal hydride heating and cooling equipment | |
JPS5889678A (en) | Absorption of fluctuation in heat load in batch type operation | |
JP2023160004A (en) | Hydrogen production system | |
JPS5819955B2 (en) | Air conditioning equipment | |
JPH02279501A (en) | Device for maintaining hydrogen purity in generator by metal hydride | |
JPH0214600B2 (en) | ||
JP2580402B2 (en) | Heat utilization system | |
JPH085173A (en) | Pulse tube refrigerator | |
JP3018777B2 (en) | Heat sink device for spacecraft | |
JPH0810094B2 (en) | Method for controlling heat pump using metal hydride | |
JP2783693B2 (en) | Method of generating hydrogen from metal hydride | |
JPS63286672A (en) | Heat pump system utilizing metallic hydride | |
JPH0237159A (en) | Hydrogen engine system using hydrogen storage alloy | |
JPS5720485A (en) | Cryogenic refrigerating plant | |
JPS591949B2 (en) | Control method for heat exchange device with built-in hydrogen storage metal |