JPS5896639A - Polyolefin resin composition containing surface treatment reinforcing agent - Google Patents
Polyolefin resin composition containing surface treatment reinforcing agentInfo
- Publication number
- JPS5896639A JPS5896639A JP19603981A JP19603981A JPS5896639A JP S5896639 A JPS5896639 A JP S5896639A JP 19603981 A JP19603981 A JP 19603981A JP 19603981 A JP19603981 A JP 19603981A JP S5896639 A JPS5896639 A JP S5896639A
- Authority
- JP
- Japan
- Prior art keywords
- copolymer
- reinforcing material
- acrylic acid
- methacrylic acid
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、反応被覆された強化材料を1 9オレフイン
に充填し機械的性能、表面外観、成形加工性等の緒特性
が著しく改良された表面処理強化材料配合のポリオレフ
ィン樹脂組成拘に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a polyolefin blended with a surface-treated reinforcing material, which has significantly improved properties such as mechanical performance, surface appearance, and moldability by filling a 19 olefin with a reactively coated reinforcing material. This relates to resin composition constraints.
近年、ナイロン、ABS(アクリロニトリル/ブタジェ
ン/スチレン共重合体)、−リカーボネートIリアセタ
ール等の汎用エンジニアリング樹脂が従来から慣用され
ていた金属、木材、セラ(ツケ材料・こ取って代りつつ
ある。In recent years, general-purpose engineering resins such as nylon, ABS (acrylonitrile/butadiene/styrene copolymer), and -recarbonate I-lyacetal have been replacing conventionally used metals, wood, and ceramics.
さら・こ、〆リエチレンやポリプロピレン等のボ9ルフ
ィン類はその熱変形温度、剛性度、硬度などを向上し、
より広範囲な応用・こ展開すべ(多(の研究がなされて
きた。Sara・Ko,〆Polyfins such as polyethylene and polypropylene have improved heat deformation temperature, rigidity, hardness, etc.
Research has been carried out on a wider range of applications and developments.
これらポリオレフィンの改良研究はtIこ〆すtレフイ
ン繊維伏の強化材や微細な無機質強化材を充填し、剛性
度、熱変形温度などを改良したものが多い。Many of the researches on improving these polyolefins include filling them with reinforced fibers or fine inorganic reinforcing materials to improve their rigidity, heat distortion temperature, etc.
時骨こ無機質強化材は低価格なことから?りすレフイン
のコスト/性能の位置づけが他材料に比べ優位瞥こあり
、多くの用途昏こ展開されはじめている。Is this inorganic reinforcement material due to its low price? The cost/performance position of squirrel resin is superior to other materials, and many applications are beginning to be developed.
しかし、仁れらの強化材をポリオレフィン1ζ添加する
と剛性度等は一般的に向上するが、伸びが著しく低トし
衝撃強度も著しく低くなるという欠点を有していた。However, when the reinforcing material of Nire et al. is added to polyolefin 1ζ, the rigidity etc. are generally improved, but the elongation is significantly lowered and the impact strength is also significantly lowered.
また通電ポリオレフィンと強化材の組成物は、溶融混練
して恨造されるが微小粒径の強化材を用いると分散状態
が不良となり外観や衝撃強度の不良原因となる。さらに
高充填系組成物彎こなると溶融混練ができない拳もある
。Furthermore, the composition of the energized polyolefin and the reinforcing material is formed by melt-kneading, but if a reinforcing material with a fine particle size is used, the dispersion state becomes poor, which causes poor appearance and impact strength. Furthermore, some highly filled compositions cannot be melted and kneaded.
これらの欠点を改良するため命こ強化材の表面壷ζ種々
の表面処理をおこなうことによって、分散不良を改良し
衝撃強度を向上する多くの提案がなされてきた。In order to improve these defects, many proposals have been made to improve the impact strength by applying various surface treatments to the surface of the life-reinforcing material.
例えば強化材の表面をシランカップリング剤やチタン系
カップリング剤で処理しで使用する事は知られているが
その補強効果は低いものである。For example, it is known to treat the surface of a reinforcing material with a silane coupling agent or a titanium-based coupling agent, but the reinforcing effect is low.
また、界面活性剤、高級脂肪酸およびその金属−などを
強化材料の表面普こ被覆することや溶融混練時−ζ添加
することも知られでいるが、ξれらの物質は一般に低分
子量物であるためoJffi化現象が生じ剛性度を低F
させる問題がある。高級脂肪酸の金ri4@を添加する
と成形加工の際、幌品表面・ζブリードして外観を損っ
たり金型腐食等の問題が発生してくる。It is also known to coat the surface of reinforcing materials with surfactants, higher fatty acids, and their metals, or to add them during melt-kneading, but these substances are generally low molecular weight substances. Because of this, the oJffi phenomenon occurs and the rigidity is lowered.
There is a problem with this. If gold ri4@, which is a higher fatty acid, is added, problems such as bleeding on the surface of the hood and ζ will impair the appearance and corrosion of the mold will occur during molding.
これらの問題を解決し高物性、高成形加工性を有する樹
脂複合体の開発が求められている。There is a need to develop a resin composite that solves these problems and has high physical properties and high moldability.
強化材料と樹脂の相溶性が良好でかつ両者間に強い化学
結合が存在しでいれば強化材料の分散性が良好であF)
種々の力学的性質が向上するものと考えられでいる。た
とえば、特公昭66−18080には二重結合残基を有
するアクリル酸(もしくはメタクリシ酸)共重合体を粉
体表面に反応被覆する方法が提案されでいる。If the reinforcing material and the resin have good compatibility and a strong chemical bond exists between them, the dispersibility of the reinforcing material will be good (F)
It is believed that various mechanical properties are improved. For example, Japanese Patent Publication No. 66-18080 proposes a method of reaction-coating the surface of powder with an acrylic acid (or methacrylic acid) copolymer having double bond residues.
該提案では一9tレフイン醗ここれを適用する場合−こ
共重合体中の二重結合を19ルフィンに付加させるため
に一すオレフィン中■こパーオキサイドを添加すること
を推奨しポリオレフィンとの結合を生ぜしめる方法につ
いて述べているが、−リオレフィンがパーすキサイドに
よって分解または架橋するなどのトラブVはさけられな
い。In this proposal, when applying this to 19T reflexine, it is recommended to add 2 this peroxide to the 19T olefin in order to add the double bond in this copolymer to 19T refin, and bond with the polyolefin. However, problems such as decomposition or crosslinking of -lyolefin by peroxide cannot be avoided.
またポリオレフィンとの相溶性を高める方法嶺こづいで
は伺らg陵しておらず、しかもアクリ少酸(もしくはメ
タクリtし酸)共重合体のような極性の高い?97−と
ポリオレフィンは親和性を示さす強化材粉体の分散をむ
しろ阻害するものである。In addition, there are no known methods to increase compatibility with polyolefins, and what is more, it is highly polar, such as acrylic acid (or methacrylic acid) copolymers. 97- and the polyolefin rather inhibit the dispersion of the reinforcing material powder, which exhibits affinity.
強化材料とポリオレフィン樹脂間に化学結合を導入する
と力学的性質は高められると予想されるが、ぼりオレフ
ィン樹脂との相溶性を保ちつつ強化材料との開場ζ化学
結合を導入することは知られておらず分散硅のよい系で
の強化材料とポリオレフィン樹脂間の完全な結合はいま
まで期待できなかった。It is expected that introducing a chemical bond between the reinforcing material and the polyolefin resin will improve mechanical properties, but it is not known that introducing an open ζ chemical bond with the reinforcing material while maintaining compatibility with the polyolefin resin. Until now, complete bonding between reinforcing materials and polyolefin resins could not be expected in systems with good dispersion.
本発明者等は、強化材料のポリオレフィン中への完全な
分散をはかると同時唾こ強化材料表面と19<レフイン
5IBH間の結合を完全なものとするべく鋭意研究した
結嘔本発明を完成する・こ至った。即ち、本発明は
(1)n−ヘキサンに可溶でしかもメタクリル酸又はア
クリル酸を5モル%以上含有する態量平均分子量to、
ooo以上のメタクリtし酸又はアク99し酸の共重合
体で表面を反応被覆した強化材を配合したポリオレフィ
ン樹脂組成物゛。The present inventors completed the present invention by conducting intensive research to completely disperse the reinforcing material into the polyolefin and at the same time perfecting the bond between the surface of the reinforcing material and 19<refin 5IBH.・It has come to this. That is, the present invention provides (1) a substance having a weight average molecular weight to that is soluble in n-hexane and contains 5 mol% or more of methacrylic acid or acrylic acid;
A polyolefin resin composition containing a reinforcing material whose surface is reactively coated with a copolymer of methacrylic acid or acrylic acid of 00 or more.
(2) メタクリル酸又はアクリル酸の共重合体の一
成分として側鎖醗こ炭素数8以上の長さくD 7 tk
キル鎮を有するアクリル酸エステルを用いる事を特徴
とする(1)記載のポリオレフィン樹脂組成物。(2) As a component of a copolymer of methacrylic acid or acrylic acid, the side chain has a length of 8 or more carbon atoms and has a length of D 7 tk.
The polyolefin resin composition according to (1), characterized in that an acrylic ester having a compound is used.
(8) メタクリtし酸共重合体としてメタクリrし
酸6〜40モーレ%、メタクリfし酸メチル0〜lOモ
〜%、側鎖に炭素数8以上の長さのアルキrし鎮を有す
るアクリル酸エステル60〜90モル%の組成である三
元共重合体を用いることを特徴とする(1)記載のポリ
オレフィン樹脂組成物。(8) As a methacrylic acid copolymer, it has 6 to 40 mole% of methacrylic acid, 0 to 10 mole% of methyl methacrylate, and an alkyl group having a length of 8 or more carbon atoms in the side chain. The polyolefin resin composition according to (1), characterized in that a terpolymer having a composition of 60 to 90 mol% of acrylic acid ester is used.
(4)強化材料としてメタクリHし酸と中和反応を示す
塩基性無機質強化材料を用いる事を特徴とする(1)記
載のポリオレフィン樹脂組成物。(4) The polyolefin resin composition according to (1), characterized in that a basic inorganic reinforcing material that exhibits a neutralization reaction with methacrylic acid is used as the reinforcing material.
(6)強化材が、メタクリーレ酸又はアクリpし酸の共
重合体をタルク(粒径l〜5μ)表面醤こ被覆したのち
流動パラフィン(比重0.855f/−、g5C粘度1
60センチメイズ)に対して10wt%混合した場合の
26Cにおける粘度が600センチlイズ以トとなるこ
とを特徴とする(1)記載のポリオレフィン樹脂組成物
。(6) The reinforcing material is made of liquid paraffin (specific gravity 0.855 f/-, g5C viscosity 1
The polyolefin resin composition according to (1), characterized in that the viscosity at 26C is 600 centimeters or more when mixed at 10 wt% with respect to 60 centimeters.
拳と関するものである。It has to do with fists.
本発明に使用されるメタクリIし酸(又はアクリル酸)
共重合体は、n−ヘキサンに可溶であることが必須条件
である。この条件はポリオレフィンとの相溶性を規定す
るものであり、この条件をより定量的にあられす場合に
は、流動パラフィン/タルク分散体の粘度で示される。Methacrylic acid (or acrylic acid) used in the present invention
It is essential that the copolymer be soluble in n-hexane. This condition defines the compatibility with the polyolefin, and when expressed more quantitatively, it is expressed by the viscosity of the liquid paraffin/talc dispersion.
すなわち、本発明のメタクリル酸(又はアクI) Hし
酸)共重合体で表面反応被覆したタルク(粒径l〜6μ
)を流動パラフィン(比ff10.866f/j、25
C粘度160センチーイズ)・こlO重量%晃合した場
合の25Cでの粘度が500センチ4イズ(tut”c
psと略す)以Fとなることが望ましい。That is, talc (particle size l~6μ) whose surface is coated with the methacrylic acid (or acrylic acid) copolymer of the present invention
) to liquid paraffin (ratio ff10.866f/j, 25
The viscosity at 25C is 500 centimeters (tut"
(abbreviated as ps) or below is desirable.
本発明の共重合体中のカルボン酸基は強化材料との倫面
な結合−こ寄与する。強化材料の表面骨ζ水酸基があれ
ば水素結合が、また強化材料として金属化合物などの無
@質材料を用いた場合には、赤外吸収スペクトルで該メ
タクリル酸共重合体を用いて表面反応被覆した無機質材
料と無被覆材料の差スペクトルを調とカルボン酸が反応
したときに生じるう刀の吸収ピークが表われており弛固
な化学結合が存在する。The carboxylic acid groups in the copolymers of the present invention contribute to an ethical bond with the reinforcing material. If there are bone ζ hydroxyl groups on the surface of the reinforcing material, hydrogen bonding can be detected, and if a non-metallic material such as a metal compound is used as the reinforcing material, the surface reaction coating using the methacrylic acid copolymer can be observed in the infrared absorption spectrum. The difference spectrum between the inorganic material and the uncoated material shows the absorption peak that occurs when carboxylic acid reacts, indicating the presence of loose chemical bonds.
本発明被覆強化材とメリオレフィン単独またはぼリオレ
フィンとゴムのブレンド物とを一溶融混練して樹脂組成
物を得る際にえられる粘度低F効果と化学結合力は被覆
強化材が上記?トリックス中身こ凝秦物を作ることなく
、均−争こ分散し、しかも化学的に一体となることを目
的としている。The viscosity low F effect and chemical bonding strength obtained when a resin composition is obtained by melt-kneading the coating reinforcing material of the present invention and meliolefin alone or a blend of meliolefin and rubber are the same as those of the coating reinforcing material mentioned above. The purpose of Trix is to disperse the contents evenly, without creating agglomerates, and to make them chemically unified.
このことによって、本発明被覆強化材をlすすレフイン
中吻こ分散して得られる組成Oは高い機械的特性、実用
物性および成形加工性を示す。As a result, the composition O obtained by dispersing the coated reinforcing material of the present invention in a soot resin exhibits high mechanical properties, practical physical properties, and moldability.
従って、n−ヘキサンに不溶のメタクリや酸共重合体で
被覆し、その被覆強化材を260で流IIIハラフィン
祷こ10重量%混合した場合の粘度が500 cpsQ
−ヒの場合には、優れた機械的特性、実用物性を有する
組成物は得られない。Therefore, when coated with methacrylate or acid copolymer insoluble in n-hexane and mixed with 10% by weight of 260 Flow III halafine as a coating reinforcement material, the viscosity is 500 cpsQ.
- In the case of H, a composition having excellent mechanical properties and practical physical properties cannot be obtained.
本発明組成物では耐衝撃性、抗張力、伸びなどの力学的
な物性が飛嗜的に向上する。このことは輸化材とグリオ
レフイン間の接合を完全看こせしめたことと強化材の?
リオレフィシ中への分散性を良好なものとし強化材同志
の凝秦・こよる組成物中への欠陥の導入をさけうること
瞳ζあると推定される0本発明組成物に使用するn−ヘ
キサン・こ可溶なアクリル酸(又はメタクリル酸)共重
合体を用いること管こよってはじめて実施倒置こおいて
詳述する高度な力学的物性を発現せしめうることが出来
たのである。ことをこ耐折強度の改良は全く予期されQ
本発明の効果であり、n−ヘキサンへのJl性において
示されるポリオレフィンとの親和性が本効果の主因と推
定される。二重結合を介して〆°リオレフィンと化学的
−こ強固な接合を生せしめるよりもポリオレフィン力
とファンデ1ワールス宴程度のゆるい結合で外力に応じ
て変形しうる自由度を有している方が耐折強度−こは効
果的なのではないかと考えられるが詳細な事は不明であ
る。The composition of the present invention dramatically improves mechanical properties such as impact resistance, tensile strength, and elongation. This means that the bond between the imported wood and the gliorefin was completely revealed, and the reinforcement
The n-hexane used in the composition of the present invention is estimated to have good dispersibility in the refractory and to avoid introducing defects into the composition due to aggregation of reinforcing materials.・It was only by using this soluble acrylic acid (or methacrylic acid) copolymer that it was possible to exhibit the advanced mechanical properties described in detail in the actual inversion. This improvement in folding strength was completely expected.
This is an effect of the present invention, and it is presumed that the main cause of this effect is the affinity with polyolefin shown in the Jl property to n-hexane. Rather than creating a chemically strong bond with the polyolefin via a double bond, it has the flexibility to deform in response to external forces with a loose bond similar to the strength of polyolefin and Van de Waals. It is thought that this is effective for bending strength, but the details are unknown.
本発明で使用するメタクリル酸(又はアクリ1し酸)共
重合体中メタクリtし酸(又はアクリlし酸)成分の濃
度は6〜80モCし%の範囲「ζあり、好ましくは10
〜60モル%、より好ましくはlO〜40モtし%の範
囲1こある。The concentration of the methacrylic acid (or acrylic acid) component in the methacrylic acid (or acrylic acid) copolymer used in the present invention is in the range of 6 to 80%, preferably 10%.
The range is from 10 to 60% by mole, more preferably from 10 to 40% by mole.
この範囲外にある場合は強化材との充分な結合が達成で
きない。If it is outside this range, sufficient bonding with the reinforcing material cannot be achieved.
ア
本発明に使用されるメタクリル酸(又は簀クリ9し酸)
共重合体の重量平均分子量は10900以上であること
が望ましく、分子量が低い場合lこは充分な効果が期待
できない。A. Methacrylic acid (or methacrylic acid) used in the present invention
It is desirable that the weight average molecular weight of the copolymer is 10,900 or more; if the molecular weight is low, sufficient effects cannot be expected.
本発明罎こおいて使用される強化材はカルボン酸基と反
応しうる表面を有していればいかなるものでも用いられ
る。Any reinforcing material can be used in the present invention as long as it has a surface capable of reacting with carboxylic acid groups.
たとえば、周期律第1族の金属の炭酸塩、硅酸塩、水酸
化物もしくは酸化物、またはアlレミニウムの水酸化物
であって、たとえば炭酸カルシウム、炭酸マグネシウム
、炭酸バリウム、炭酸亜鉛等の炭酸塩、硅酸カーレシウ
ム、硫酸マグネシウム等の硅酸塩、水酸化力少シウム、
水酸化マグネシウム、水酸化アーレにラム等の水酸化物
、酸化力Cレシウム、酸化マグネシウム、酸化ベリリウ
ム、酸化亜鉛等の酸化物等が使用できる。For example, carbonates, silicates, hydroxides or oxides of metals of Group 1 of the periodic law, or hydroxides of aluminum, such as calcium carbonate, magnesium carbonate, barium carbonate, zinc carbonate, etc. Carbonates, silicates such as calcium silicate, magnesium sulfate, low hydroxide,
Magnesium hydroxide, hydroxides such as ram, oxidizing power C lesium, magnesium oxide, beryllium oxide, zinc oxide, and other oxides can be used.
また、麻などのセーレロースやがラス繊維などの繊維状
強化材にも適用される。It can also be applied to fibrous reinforcing materials such as hemp and other sererose fibers.
本発明に用いられるメタクリル酸(又はアクリIし酸)
共重合体はn−ヘキサンにcrJI@であることが必須
条件であって、通線側鎖に炭素数8以上のアルキル鎖を
有するアクリル酸(又はメタクリル酸)エステ?しとの
共重合体を用いることが望tしく、かかるアク9M酸(
又はメタクリル酸)エステルとしてアクリル酸−2−エ
チセヘキシIし、アクリセ酸うウリMt1アクリル酸ス
テアリlしなどをあげることが出来る。Methacrylic acid (or acrylic acid) used in the present invention
It is essential that the copolymer is crJI@ in n-hexane, and is an acrylic acid (or methacrylic acid) ester having an alkyl chain with 8 or more carbon atoms in the wire-carrying side chain. It is desirable to use a copolymer of 9M acid (
Alternatively, examples of the methacrylic acid ester include acrylic acid-2-ethycehexyl, acrylic acid ester, acrylic acid ester, and acrylic acid stearyl ester.
共富合比が極端に異なるとき−こはメチーレメタクリレ
ートなどの第三成分を用いた三元共!合体譬こすると、
n−ヘキサンへの溶解性が高められ本発明の効果をより
発現させることが出来る。When the co-wealth ratio is extremely different - this is a ternary combination using a third component such as methyl methacrylate! Using a combination analogy,
The solubility in n-hexane is increased, and the effects of the present invention can be further expressed.
乙れらのメタアクリル酸(又はアクリル酸)共重合体を
慢造する方法は、特別費ζ限定されたものではなく塊状
重合、水溶液中での重合、何機溶媒中での重合、照射重
合等の方法がいずれも可能である。The methods for producing methacrylic acid (or acrylic acid) copolymers are not limited to special costs, but include bulk polymerization, polymerization in an aqueous solution, polymerization in a solvent, and irradiation polymerization. Both methods are possible.
上記メタアクリIし酸【又はアクリル酸)共重合体の使
用量は、強化材M處を基準1こして0、1〜20%の範
囲が好ましく、より好ましくはto−Qto%の範囲会
ζある。The amount of the methacrylic acid (or acrylic acid) copolymer used is preferably in the range of 0.1 to 20% based on the reinforcing material M, more preferably in the range of to-Qto%. .
本発明・こ用いるメタクリ−レ@(又はアクリル酸)共
重合体を強化材表面に反応被覆するために、各種の方法
が採用される。7
たとえば上記のメタクリル酸(又はアクリル酸)共重合
体の溶液を攪拌中に強化材・こ添加して混合し、被覆反
応と同時もしくは被覆反応せしめた後唾こ、溶媒を除去
、乾燥する方法がある。あるいはまた、強化材と本発明
の、共重合体上ツアーを均−看こ混合したのちに共重合
反応を行なう方法も重合と同時に被覆できるので好まし
い方法である。Various methods can be employed to reactively coat the surface of the reinforcing material with the methacrylate (or acrylic acid) copolymer used in the present invention. 7 For example, a method in which a reinforcing material is added to and mixed with the solution of the above-mentioned methacrylic acid (or acrylic acid) copolymer while stirring, and at the same time as the coating reaction or after the coating reaction, saliva and solvent are removed and dried. There is. Alternatively, a method in which the reinforcing material and the copolymer of the present invention are homogeneously mixed and then a copolymerization reaction is carried out is also a preferred method since coating can be performed simultaneously with polymerization.
と配力法で得られた被覆強化材はf!rli〆りすレフ
イン単独またはポリオレフィンとゴムのブレンド物等に
配合される。The coating reinforcement material obtained by the distribution method is f! rli〆Refin can be used alone or in a blend of polyolefin and rubber.
本発明醗こ使用されるポリすレフイン@7j脂としては
、たとえばポリエチレン(高密度、低ン、結晶性エチレ
ン−プロピレンブロック共1に合体、ポリブテン、ポリ
−4−メチーレペンテンー1等がある。また本発明・と
使用できるゴムとしては天然ゴム、イノブレン、ブタジ
ェンゴム、SBゴム、エチレン−プロピレンゴム、エチ
レン−ブテン共重合体等がある。Examples of the polystyrene resin used in the present invention include polyethylene (high-density, low-density, crystalline ethylene-propylene blocks combined into one, polybutene, poly-4-methylpentene-1, etc.). Rubbers that can be used with the present invention include natural rubber, inobrene, butadiene rubber, SB rubber, ethylene-propylene rubber, and ethylene-butene copolymer.
これらの7トリツクス物質と本発明被覆強化材との配合
は、従来から知られている各種の溶融混線方法で行なう
ことができる。These 7 trix materials and the coating reinforcing material of the present invention can be blended by various conventionally known melt intermixing methods.
本発明被覆強化材の〆りすレフイン系樹脂への配合量は
着しく高いものであって、もよくほとんど最啜充塙にな
るまで充填可能である。The amount of the coating reinforcing material of the present invention added to the finishing resin is relatively high, and it is possible to fill the resin to almost full capacity.
強化材配合濃度は、用途の要求性能1こ応じ°C1択す
べきであるが、?リオレフィン系樹脂20〜80重量%
・こ対しで被覆強化材80〜20!龜%の範囲で可能で
ある。The concentration of the reinforcing material should be selected depending on the required performance of the application. Lyolefin resin 20-80% by weight
・Coated reinforcement material 80-20! It is possible within a range of 3%.
本発明の配合組成物は上記組成以外瞭ζ必要尋こ応じて
安定剤、紫外線吸収剤、町l112111.滑剤、顔料
、難燃剤、帯電防止剤、増結剤、発泡剤、溶剤その他の
添加剤を含んでいてもかよりない。The compounded composition of the present invention may contain stabilizers, ultraviolet absorbers, etc. as required. It may contain lubricants, pigments, flame retardants, antistatic agents, binders, blowing agents, solvents and other additives.
以F1本発明の特長をより具体的普ζ説明するために実
施例、参考例によって本発明をさら曇こ詳細Qこ説明す
るが、以トの実tiI4M、参考例によって本発明の範
囲が限定されるものでないことは勿論である。なお、実
施例、参考例において用いられる部、%は各々重量部、
重量%である。Hereinafter, in order to more specifically explain the features of the present invention, the present invention will be explained in more detail using Examples and Reference Examples.However, the scope of the present invention will be limited by the following Examples and Reference Examples. Of course, this is not something that can be done. In addition, parts and % used in Examples and Reference Examples are parts by weight, respectively.
Weight%.
実施例1−1〜8
アクリルI!I!2−エチIしく2−EHAと略記1、
A成分と称す)19.6FとメタアクリIし酸メチル(
MMAと略記し、B成分と称す)1.25f、メ多クリ
Cし酸(MAAと略記し、C成分と称す)1.6fを水
100を中でラウロイtレバーtキナイドを融媒−ζ用
いて60〜65Cで重合した。ポリ7−は増法暑こより
分離、積装、乾燥した。得られた共重合体はn−ヘキサ
ンに可溶であった。同様の条件でA成分としてアク91
し酸ラウリtしくLAと略記する)およびアクリIし酸
ステアリ+(SAと略記する)を用いて共重合体を作製
した。Examples 1-1 to 8 Acrylic I! I! 2-ethyl, abbreviated as 2-EHA 1,
19.6F (referred to as component A) and methyl methacrylic acid (referred to as component A)
Melt 1.25f of MMA (abbreviated as component B), 1.6f of metacrylic acid (abbreviated as MAA and call component C) in 100% of water, and melt laurot-t-quinide as a medium-ζ. Polymerization was carried out at 60 to 65C. Poly 7- was separated by heat treatment, loaded, and dried. The obtained copolymer was soluble in n-hexane. Under similar conditions, Aku91 was used as the A component.
A copolymer was produced using lauric acid (abbreviated as LA) and acrylic acid stearic acid+ (abbreviated as SA).
比較例1−1〜6
実施例1と同様の条件でA成分としてアクリーレ酸メチ
ル(MAと略記する)、メタクリーレ酸グリシジルLG
MAと略記する)およびメタクリーレ酸ヒドロキシエチ
ル(HEMAと略記する)を用いて共重合体を作製した
。Comparative Examples 1-1 to 6 Methyl acrylate (abbreviated as MA) and glycidyl methacrylate LG as component A under the same conditions as Example 1
A copolymer was produced using hydroxyethyl methacrylate (abbreviated as MA) and hydroxyethyl methacrylate (abbreviated as HEMA).
また、A成分としてMAを用いB成分を含まない系、A
成分を含まない系で共重合体を作製した。In addition, a system that uses MA as the A component and does not contain the B component, A
A copolymer was produced in a system containing no components.
この実施例1および比較例1で作製した共重合体のn−
ヘキサンへの溶解性およびこの共重合体を以Fの実施例
又は比較例で示すよう命こn−ヘキサン又はクロqホf
レム:林化成製平均粒径8.9μ)、を流動パラフィン
−と10%の濃度で混合しB型粘度計で26Cでの粘度
を測定した。The n-
The solubility in hexane and the copolymer's solubility in hexane or copolymer were as shown in the Examples or Comparative Examples below.
Rem: manufactured by Hayashi Kasei (average particle diameter 8.9μ)) was mixed with liquid paraffin at a concentration of 10%, and the viscosity at 26C was measured using a B-type viscometer.
その結果を第1表に示す。The results are shown in Table 1.
実施例2−1〜8
実施例1−1で得られた共重合体10Fをn−ヘキサン
12009に溶解し、この溶液とタルクtooorとを
捕壊機中で室温で10分間混合攪拌しながらペースト伏
看こした。真空乾燥機を用いて脱溶媒後1800で2時
間熱風乾燥しtこ。その後、小型粉砕機で粉砕し、反応
被覆した充填剤を得た。Examples 2-1 to 8 Copolymer 10F obtained in Example 1-1 was dissolved in n-hexane 12009, and this solution and talc tooor were mixed and stirred at room temperature for 10 minutes in a crusher to make a paste. I looked down. After removing the solvent using a vacuum dryer, dry with hot air at 1800 ℃ for 2 hours. Thereafter, it was pulverized using a small pulverizer to obtain a reaction-coated filler.
この充4@とM、1.8.0のエチレン−プロピレンブ
ロック共重合体(以ドブロックPPと称す)とを第2表
に示す割合で卓上型ニーダ−(入江商会製PBV−08
−H型)を用いて樹脂温度210Cで5分子i11溶融
混練しロールでシート化した。This 4@ and M, 1.8.0 ethylene-propylene block copolymer (hereinafter referred to as Doblock PP) were mixed in a tabletop kneader (PBV-08 manufactured by Irie Shokai Co., Ltd.) in the proportions shown in Table 2.
-H type) at a resin temperature of 210 C and melt-kneaded 5 molecules i11 and formed into a sheet with a roll.
得られた樹脂組成物を圧縮成形し、ASTM規格および
JIS規格に従って物性を測定した。得られた結果は第
2表の通り−である。The resulting resin composition was compression molded, and its physical properties were measured according to ASTM and JIS standards. The results obtained are shown in Table 2.
比較例2−1〜8
実施例礒で用いたブロックPPと無被榎タルクとを実施
例2と同様に溶融混線、圧縮成形し物性を測定した。得
られた結果を第2表に示す。Comparative Examples 2-1 to 2-8 The block PP used in Examples and uncoated talc were melt mixed and compression molded in the same manner as in Example 2, and the physical properties were measured. The results obtained are shown in Table 2.
比較例2−4〜8
比較例1で得られた共重合体を用いて溶媒とし°Cクロ
ロホ!レムを使用してタルク表面処理した。このタルク
とブロックPPとを第2表に示す充填量で実施例2と同
様の方法で樹脂組成物を得た。Comparative Examples 2-4 to 8 The copolymer obtained in Comparative Example 1 was used as a solvent at °Cchloropho! The talc surface was treated using Rem. A resin composition was obtained using the talc and block PP in the filling amounts shown in Table 2 in the same manner as in Example 2.
物性測定の結果を第2表に示す。The results of physical property measurements are shown in Table 2.
引張強度:単位t7(ASTMD−688)伸 び二
単位%(ASTMD−688)アイゾツト術−強度二単
位像・譚/百ノツチ付(ASTMD−256)
一折強度二単位 回 (JIS P8116)実施例
8−1〜8
実施例1で得られた共重合体を用いて微粉炭酸力セシウ
ム(平均粒子m0.15μ、白石カルシウム製ブリリア
ント■)を充填剤として実施例1と同様の方法で反応被
覆充填剤を得た。Tensile strength: Unit t7 (ASTMD-688) Elongation 2 units % (ASTMD-688) Izotsu technique - Strength 2 unit image/tan/100 notches (ASTMD-256) 1 fold strength 2 units times (JIS P8116) Example 8-1 to 8 Using the copolymer obtained in Example 1, reaction coating was filled in the same manner as in Example 1 using finely divided cesium carbonate (average particle m0.15μ, Brilliant ■ manufactured by Shiraishi Calcium) as a filler. obtained the drug.
この反応被覆剤を用いてブロックPPと第8表・こ示す
配合割合で25M8−軸押出機で混−押出を行ない80
μ季のフィーレムを作成し、凝秦物(ブン)の数を万能
投影機で測定した。また、混練押出時のスクリエー負荷
(2)を測定した。その結眼を第8表に示す。Using this reactive coating agent, mixed extrusion was carried out with block PP in a 25M8-screw extruder at the compounding ratio shown in Table 8.
I created a field of μ seasons and measured the number of lumps using a universal projector. In addition, the scratch load (2) during kneading and extrusion was measured. The eyelids are shown in Table 8.
比較例8−1〜8
実施例8で用いた微粉炭酸カルシウム(無被覆)を用い
°C実施例8と同様轡ζ毘練押出を行ないフィルムを作
成しrこ。Comparative Examples 8-1 to 8 Using the finely powdered calcium carbonate (uncoated) used in Example 8, films were prepared by extrusion at °C in the same manner as in Example 8.
そのフィルムのブソの数および押出時スクリュー負荷を
測定しその結果を第8表1ζ示す。The number of holes in the film and the screw load during extrusion were measured and the results are shown in Table 8.1ζ.
第 8 表
(、本ty当りのブツの90.111!1程度の大きさ
)実施例4
実施例1−2.1−8で得られた共重合体を用いて実施
例2−2と同様の方法で反応被覆したりrレフとブロッ
クPPとの混練#Ii膚組成物を授た。Table 8 (size of about 90.111!1 pieces per ty) Example 4 Same as Example 2-2 using the copolymer obtained in Example 1-2.1-8. #Ii skin composition was prepared by reaction coating or kneading Rref and block PP using the method described in the following.
この樹脂組成物を圧縮成形し、ASTM規格およびJI
S規格に従って物性を測定した。得られた結果を第4表
−と示す。This resin composition is compression molded and conforms to ASTM standards and JI standards.
Physical properties were measured according to S standard. The results obtained are shown in Table 4.
第4表 参考例Table 4 Reference example
Claims (1)
アクリル酸をb七M%以上含有する重量平均分子量to
、oooa上のメタクリを酸又はアクリル酸の共重合体
で表面を反応被覆した強化材を配合したポリオレフィン
樹脂組成物。 (2) メタクリル酸又はアクリル酸の共重合体の一
成分として側鎖曇ζ炭票数8以上の長さのアルキ重鎖を
有するアクリル酸エステルを用いる拳を特徴とする特許
請求の範囲第1項記載のメリオレフィン樹脂組成物。 (8) メタクリル酸共重合体としてメタクリル酸6
〜40モル%、メタクリル酸メチ〜0〜10モを%、側
鎖に炭素数8以上の長さの1ルキル鎖を有するアクリル
酸エステΦ60〜90モル%の組成である三元共重合体
を用いることを特徴とする特許錆求範囲!1項記載のポ
リオレフィン樹nd組成物。 (4) 強化材料としてメタクリル酸と中和反応を示
す塩基性無機質強化材料を用いる事を特徴とする請求 フイン酸物1脂組成物。 (5) 強化材が、メタクリル酸又はアクリを酸の共
重合体をタリリン(粒径1〜5μ)表面に被覆したのち
流動パラフィン(比重0. 8 5 61/ad26C
粘度160センチボイズ)に対しで10wt%混合した
場合の26Cにおける粘度が600センチギイズUPと
なるζとを特徴とする特許請求の範囲第1項記載のポリ
オレフィン樹脂組成物。[Scope of Claims] (1) Weight average molecular weight to which is soluble in n-hexane and contains methacrylic acid or acrylic acid at 7M% or more
A polyolefin resin composition containing a reinforcing material whose surface is reaction-coated with a copolymer of acid or acrylic acid. (2) Claim 1 characterized by a fist using an acrylic acid ester having an alkyl heavy chain having a side chain cloudy ζ carbon number of 8 or more as one component of a copolymer of methacrylic acid or acrylic acid. The meliolefin resin composition described. (8) Methacrylic acid 6 as methacrylic acid copolymer
~40 mol%, ~0~10 mol% of methi methacrylate, and Φ60~90 mol% of acrylic acid ester having a 1-alkyl chain with a length of 8 or more carbon atoms in the side chain. Patent rust search range characterized by using! The polyolefin wood composition according to item 1. (4) The claimed finic acid 1-fat composition, characterized in that a basic inorganic reinforcing material that exhibits a neutralization reaction with methacrylic acid is used as a reinforcing material. (5) The reinforcing material is a copolymer of methacrylic acid or acrylic acid coated on the surface of tallylin (particle size 1 to 5μ), and then liquid paraffin (specific gravity 0.8561/ad26C).
The polyolefin resin composition according to claim 1, characterized in that the viscosity at 26C is 600 centimeter UP when mixed at 10 wt% with respect to a viscosity of 160 centimeter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19603981A JPS5896639A (en) | 1981-12-04 | 1981-12-04 | Polyolefin resin composition containing surface treatment reinforcing agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19603981A JPS5896639A (en) | 1981-12-04 | 1981-12-04 | Polyolefin resin composition containing surface treatment reinforcing agent |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5896639A true JPS5896639A (en) | 1983-06-08 |
Family
ID=16351172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19603981A Pending JPS5896639A (en) | 1981-12-04 | 1981-12-04 | Polyolefin resin composition containing surface treatment reinforcing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5896639A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650818A (en) * | 1984-06-25 | 1987-03-17 | Nippon Petrochemicals Co., Ltd. | Polyolefine compositions comprising (a) mica and (b) a ethylene-acrylic acid polymeric coupling agent |
US5039718A (en) * | 1987-05-22 | 1991-08-13 | Imperial Chemical Industries Plc | Fillers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618030A (en) * | 1979-07-19 | 1981-02-20 | Ishishiba Service Kk | Gas diesel engine with supercharger for vehicle |
JPS5618031A (en) * | 1979-07-24 | 1981-02-20 | Daihatsu Motor Co Ltd | Feeding method of fuel to diesel engine with combined feed of auxiliary gaseous fuel |
-
1981
- 1981-12-04 JP JP19603981A patent/JPS5896639A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618030A (en) * | 1979-07-19 | 1981-02-20 | Ishishiba Service Kk | Gas diesel engine with supercharger for vehicle |
JPS5618031A (en) * | 1979-07-24 | 1981-02-20 | Daihatsu Motor Co Ltd | Feeding method of fuel to diesel engine with combined feed of auxiliary gaseous fuel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650818A (en) * | 1984-06-25 | 1987-03-17 | Nippon Petrochemicals Co., Ltd. | Polyolefine compositions comprising (a) mica and (b) a ethylene-acrylic acid polymeric coupling agent |
US5039718A (en) * | 1987-05-22 | 1991-08-13 | Imperial Chemical Industries Plc | Fillers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6149783B2 (en) | Thermoplastic resin composition and molded article thereof | |
JPH05247312A (en) | Poly(vinyl chloride)blend and additive therefor | |
JPS58111846A (en) | polypropylene composition | |
JPS5842631A (en) | Strengthening accelerator for filler-containing thermoplastic polymer | |
CN109666219B (en) | Polypropylene/shear thickening gel composite material and application thereof in bumper | |
JPH0641346A (en) | Composite material, its production and resin molding material containing the same | |
WO2002051933A1 (en) | Polypropylene resin composition with improved surface hardness and scratch resistance properties | |
JPS5896639A (en) | Polyolefin resin composition containing surface treatment reinforcing agent | |
JPS592294B2 (en) | Glass fiber reinforced polyolefin composition | |
JPS59206447A (en) | Propylene resin composition | |
JP2736545B2 (en) | Magnesium hydroxide particles | |
JPH0154367B2 (en) | ||
JPS6099148A (en) | Impact-resistant polypropylene composition | |
JPH02502195A (en) | flexible thermoplastic composition | |
JP3595002B2 (en) | Antistatic styrenic resin composition | |
JP3278183B2 (en) | Flame retardant resin composition | |
JP3356364B2 (en) | Polyolefin resin composition | |
JPS62273240A (en) | Polypropylene resin composition resistant to high voltage | |
JP3115438B2 (en) | Polyacetal resin composition | |
JPH0635524B2 (en) | Thermoplastic resin composition | |
JPH0344105B2 (en) | ||
JP2943252B2 (en) | Resin composition | |
JP3303996B2 (en) | Weather resistant resin composition with excellent antistatic properties | |
DE69722428T2 (en) | COMPATIBLE COMPOSITIONS OF SYNDIOTACTIC POLYSTYRENE AND OTHER THERMOPLASTIC POLYMERS | |
JPH09183876A (en) | Propylene resin composition |