JPS5895988A - Control system for ac/dc converter - Google Patents
Control system for ac/dc converterInfo
- Publication number
- JPS5895988A JPS5895988A JP56194746A JP19474681A JPS5895988A JP S5895988 A JPS5895988 A JP S5895988A JP 56194746 A JP56194746 A JP 56194746A JP 19474681 A JP19474681 A JP 19474681A JP S5895988 A JPS5895988 A JP S5895988A
- Authority
- JP
- Japan
- Prior art keywords
- converter
- control system
- pole
- change
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/66—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal
- H02M7/68—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters
- H02M7/72—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/75—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/757—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
- Inverter Devices (AREA)
- Protection Of Static Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明位、特に発電機と直結し九多4ii1回線又ll
1l極多回線直流送電システムにおける交直変換装置の
制御方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly advantageous in that it connects directly to a generator,
The present invention relates to a control method for an AC/DC converter in a 1l pole multiline DC power transmission system.
第1図は、直流送電装置の観略構成図を示し、交流量!
1ノ、1′は変換用変圧IS1.2′を介して、例えば
、多数個のすイリスタの直並列接続から成る変換器3.
3′に接続され、各サイリスタの点弧位相を制御するこ
とkより交流を直流に又は直流を交流に変換する。4.
4′唸平滑りアクドル、1は直流送電線路、815′は
計器用変圧!(P、T)、1.1′祉計器用変流器(C
,T)を示す。Figure 1 shows a schematic configuration diagram of a DC power transmission device, and shows the amount of alternating current!
1.1 and 1' are connected to a converter 3.1, 1', which is composed of a series-parallel connection of a large number of swivel resistors, for example, via a conversion transformer IS1.2'.
3' and converts alternating current into direct current or vice versa by controlling the firing phase of each thyristor. 4.
4' flat sliding axle, 1 is DC transmission line, 815' is instrument transformer! (P, T), 1.1' Current transformer for welfare meter (C
, T).
このような主回路構成における制御装置としては、定電
流制御囲路(ムC翼)1.1′及び定電圧制御回路(A
VR) e、el線それぞれ基準値1dp、Edpと検
出値Id、I−との偏差をw御電圧laK変換し、11
>制御電圧fAmは一一電圧遥択一踏ia、io’に入
力される。繭記制−電圧遥択−路XO%lo′は各櫨刺
−のうちで制御角を一番進める制御系tm−的に選択す
る−のであp、こ−で選択されえ一榊電圧E@は、制御
電圧I) (ツタ−路11、J 1’で上線、ド繊のり
iツメをかけられ点弧位相−#蘭絡12.11’に入力
される。繭配点弧位相制−−路11.11’祉−一電圧
鳶[相]に比例した点弧位榴を次定してすイリスタに点
弧指令を出力する。このようKしてl1lIllLされ
九交直変換鰻亀では、周知のごとく、電流マージン(4
りの切替により一方が@変換装置として定電流制御によ
り4にされ、匍7Jが逆変員装置として定電圧制御によ
多這転される。The control devices in such a main circuit configuration include a constant current control circuit (MuC wing) 1.1' and a constant voltage control circuit (A
VR) Convert the deviation between the reference value 1dp, Edp and the detected value Id, I- to the w control voltage laK for the e and el lines, 11
>The control voltage fAm is inputted to the voltages ia and io'. Since the control system tm-wise selects the control system that advances the control angle the most among each of the control angles, the voltage selection path XO%lo' can be selected in this way. @ is the control voltage I) (Top line 11, J 1' is applied with the upper line and dome glue i tab and input to the ignition phase - # run connection 12.11'. Cocoon arrangement ignition phase system - The ignition position proportional to the voltage phase is determined and the ignition command is output to the iris register. The current margin (4
By switching between the two, one of them is changed to 4 by constant current control as a @ conversion device, and the hatch 7J is changed to 4 by constant voltage control as a reverse displacement device.
次に、總2−は、原子力発電と[鎧し九駅徹l蘭鎗の龜
#I込電O主−路欝成−を示す。落2図において、原子
PIIで尭生じ九篇気はタービン14へ送られ、そのタ
ービン出力は発電機15、昇圧用変圧@1gを介して、
交#l母纏llK11統される。交#l竜−11は、変
換用変圧器is%reを介して―変換−in、xiに縁
続され、−記lIl[変換器20.l1ldll子力発
電によって祷られた交流電力を直流電力に変換し、前記
変換され九直流電力は更に逆ffi*! j j 。Next, 2- shows nuclear power generation and [Yorashi Nine Stations, Ranryo's Head, #I included electric power, and the main road]. In Figure 2, the air generated by the atomic PII is sent to the turbine 14, and the turbine output is transmitted through the generator 15 and the step-up transformer @1g.
Cross #l mother lll K11 is unified. The converter 11 is connected to the converter 20 . l1ldll The AC power generated by child power generation is converted to DC power, and the converted DC power is further reversed ffi*! j j.
gaKより交流電力に変換され負荷に供給される。24
〜2rは平滑リアクトル、II、jl!Iは本−1JO
は中Iksである。The gaK converts it into AC power and supplies it to the load. 24
~2r is a smooth reactor, II, jl! I is book-1JO
is medium Iks.
又、Jlは交#l母線x’tosttt数倉検出する周
波数検出器、12は、曽紀周献数検出湯IIO出力と周
波数基準値(f・)Kよシ、周波数の偏差を検出し、七
〇Sm数個差が所定値以上のと麿、その偏差t−出力す
る周波数偏差検出回路である。In addition, Jl is a frequency detector that detects the number of AC #l bus lines This is a frequency deviation detection circuit that outputs the deviation t- when the difference of several 70Sm exceeds a predetermined value.
崗、mho便宜上%頃変換器SO,本−21逆gIl燥
@X Z、中−SOで構成された極をP。For convenience, converter SO, this-21 inverse gIl dry @X Z, and P the pole composed of medium-SO.
極、伽の極を?、@と称す。The ultimate, the extreme of the fairy tale? , @.
さて、111m1lKおける変換器の制御としては、第
1I!で1111g4シた通pでhゐ。即ち、纂1図に
おける制御装置が、第2 g OF 1極、P嘗極に対
して各々設置堪れる。Now, as for the control of the converter in 111mlK, the first I! So 1111g4 Shitatsu p and hii. That is, the control device shown in Figure 1 can be installed for the second g OF 1 pole and the P pole, respectively.
さて、このような構成において、いま?1極で事故が発
生したとする。轟然のことながら、P1極はこの事故を
検出して、順変換器2#、逆変換器22を停止する。し
かしながら、この状態のt\放蓋しておくと、原子力の
発電々力と直流送電々力とがアンバランスとなる為に、
原子炉の中性子束が増加して原子炉はスクラムに到る。Now, with this kind of configuration, what now? Assume that an accident occurs at one pole. Unfortunately, the P1 pole detects this accident and stops forward converter 2# and inverse converter 22. However, if this state is left unattended, the nuclear power generation power and the DC power transmission power will become unbalanced.
The neutron flux in the reactor increases and the reactor reaches a scram.
従ってこのような場合には、例えば制御棒を挿入して、
すみやかに原子力の発電々力を減少させなければならな
いが、直流送電系の応答は、原子力系の応答とは比較に
ならないtXど^連である為に、結果的には原子炉はス
クラムに到る可能性が大きい。それ故、このような場合
を想定して、予め変換器や直流送電線輪などは、過負荷
運転が可能であるように設計し、例えば上記のとと<p
t極で事故が発生した場合には、?1極の負荷をすみ中
かにP、極に移して運転を継続する。即ち負荷移行を行
なう。Therefore, in such a case, for example, by inserting a control rod,
The power generated by nuclear power must be reduced immediately, but the response of the DC power transmission system is incomparable to the response of the nuclear power system, and as a result, the reactor will reach a scram. There is a high possibility that Therefore, assuming such a case, converters and DC transmission lines should be designed in advance so that overload operation is possible.
What if an accident occurs at the t-pole? Transfer the load from one pole to the corner pole P and continue operation. That is, load migration is performed.
さて、負荷移行を行なう場合には、順変換鋏置儒の定電
流制御系の電流設定値を増加させればよい。注意すべき
事は、逆変換装置側の電線設定値を層変換装置よシ先に
増加させてはならないことである。もし、逆変換装置側
の電を設定値を先に増加させると、逆変換装置ては電流
!−ジンがなくなル、結果的に定電流制御系が動作して
、直流電圧を減少させる為に、直流電流は増加しても送
電々力性所望値まで増加しない。Now, when performing a load shift, it is sufficient to increase the current setting value of the constant current control system of the forward conversion scissors. It should be noted that the wire setting value on the inverter side should not be increased before the layer converter side. If the set value of the voltage on the inverter side is increased first, the current on the inverter side will increase! - As a result, the constant current control system operates and reduces the DC voltage, so even if the DC current increases, it does not increase to the desired value of power transmission capacity.
そこで、以上のことを念願において、再び菖2図Kji
!つて負荷移行について考えてみる。い鵞、第211o
P t *0lli変換−I J II テ事Mkt
1発生したとする。するとその事故を検出してその検出
信号を過信回線を介して、順変換器20側に伝送し、順
変換器2o1逆簀換器22を停止すると同時に%Pm極
の順変換器21の電流設定値を増加させて負荷移行を行
なえばよい。Therefore, with the above-mentioned wishes in mind, I once again tried
! Let's think about load migration. Goose, 211th o
P t *0lli conversion-I J II Teji Mkt
Suppose that 1 occurs. Then, the fault is detected and the detection signal is transmitted to the forward converter 20 side via the over-reliability line, and the forward converter 2o1 reverse converter 22 is stopped, and at the same time, the current setting of the forward converter 21 of the %Pm pole is set. The load may be shifted by increasing the value.
しかしながら、この方式では、高信頼度、高適度の過a
amが必要不可欠であるが、近年このよう竜高儒鯛度、
高速度の過信−纏は、立地jllKよ如非常にmsであ
る。However, with this method, high reliability and high degree of excess a
am is indispensable, but in recent years there has been a rise in
High speed overconfidence is very ms like location jllk.
便って、通倍回−に依存しないで、すみやかyc負#移
行を行なえる制御方式が要望されている、
従って、本発明の目的は、このような要望を満たすべく
なされた吃のであって、通信回線に依存し、2いで、す
みやかに負荷移行をなしとげ、原子炉のスクラムを防止
する為の交直変換装置の制御方式を提供することにある
。In general, there is a need for a control system that can quickly shift yc to negative # without depending on the current cycle.Therefore, an object of the present invention is to provide a control system that is capable of quickly shifting yc to negative # without depending on the current cycle. The object of the present invention is to provide a control system for an AC/DC converter that relies on a communication line, and that is capable of quickly accomplishing a load shift and preventing a scram in a nuclear reactor.
以F、図面を参照して本発明を説明する。Hereinafter, the present invention will be described with reference to the drawings.
第3図は、本発明の一実施例を示す定電流制御系の回路
図でおる。第2図と同一要素は同一符号で示す。第3図
において、SSは加算器で、この加X器33には、通常
は電流設定値Idpと電流検出値Idが加えられ、定電
流制御アンプ34により、定電流制御が行なわれている
。もし、第2図の交流量−11の周波数が変動して、周
波数偏差が所定値を越えると、周波数偏差検出回路32
が出力し、加算器3Jに加えられ、結果的に電fL設定
値を増加又は減少させる。FIG. 3 is a circuit diagram of a constant current control system showing one embodiment of the present invention. Elements that are the same as those in FIG. 2 are designated by the same reference numerals. In FIG. 3, SS is an adder, and a current setting value Idp and a current detection value Id are normally added to this X adder 33, and a constant current control amplifier 34 performs constant current control. If the frequency of the alternating current amount -11 in FIG. 2 fluctuates and the frequency deviation exceeds a predetermined value, the frequency deviation detection circuit 32
is outputted and added to the adder 3J, resulting in increasing or decreasing the electric current fL set value.
このような構成において、前記と同様にP。In such a configuration, P as described above.
極の逆変換器22儒で事故が発生したとする1このま一
装置しておくと、P、極の送電々力は減少する。(事故
の種類によってはp、億の送電々、力が増加する場合本
考えられるが、とソでは減少と仮定する。)すると、第
2図における交流量@xrの周波数が上昇し、その偏差
は周波数検出器31、周波数偏差検出回路32によって
検出され、加算器JJに、電流設定値Idpと同極性で
加えられるので、等測的に電tN、一定値が増加したこ
とになり、鍵全極、即ちP、極の送電々力が増加し負荷
移行が行なわれる。If an accident occurs with the pole inverter 22, and if this device is left alone, the power transmission power of the pole will decrease. (Depending on the type of accident, it is conceivable that the power transmitted by p and 100 million increases, but it is assumed that it decreases.) Then, the frequency of the alternating current @xr in Figure 2 increases, and the deviation is detected by the frequency detector 31 and the frequency deviation detection circuit 32, and is added to the adder JJ with the same polarity as the current setting value Idp. Therefore, the electric current tN, a constant value, has increased isometrically, and the total key The power transmission power of the pole, ie, P, increases and load shifting occurs.
第3図のような構成では、健全極のみならず事故極、即
ち、上記例ではP、極の電#L、設定値も増加するが、
P1極はいづれ停止させるので、上記のような構成でも
間離ない。しかしながら、もつとすぐれた負荷移行制御
を行なわせようとするならば、第4図のような構成にす
ることによシ実現出来る。すなわち第4図において、3
5は高感度の不足電圧検出器、36はワンショット回路
、3rは反転素子、J8はアンド素子でわる1、尚、第
4図の回路は当然のことながら、Pl極、Ps*ともに
設置されている。さてこのような構成において、前記と
同じ(p+極の2変換−22@で事故が発生したとする
。In the configuration shown in Fig. 3, not only the healthy pole but also the failure pole, that is, in the above example, P, the electrode #L of the pole, and the set value increase.
Since the P1 pole will be stopped eventually, even with the above configuration, there will be no separation. However, if it is desired to perform excellent load transfer control, it can be achieved by using a configuration as shown in FIG. In other words, in Figure 4, 3
5 is a high-sensitivity undervoltage detector, 36 is a one-shot circuit, 3r is an inverting element, and J8 is an AND element.In the circuit shown in Fig. 4, as a matter of course, both the Pl pole and Ps* are installed. ing. Now, suppose that in such a configuration, an accident occurs at the same (p+ pole 2 conversion -22@) as described above.
先ず、p+&については、−事故発生に伴い直流電圧や
ti流電流のしよう乱を招く為に、第4凶にふ・Qブる
不足電圧検出器35が動作して、ワンショット回路36
、反転素子37、アンド素子38を介して、周波数偏差
検出回路32の出力はロックされ、電流設定値は一定の
ま\でめる。しかるに健全極側であるPmfIでは、直
流電圧−?直流電流のしよう乱は発生しないので、周波
数偏差検出回路J2の出力はロックされず、等価的に電
ft、設定値が増加して負荷移行が行なわれる。First, regarding p+&, in order to cause disturbances in the DC voltage and ti current due to the occurrence of an accident, the 4th fault/Q undervoltage detector 35 operates, and the one-shot circuit 36
, an inverting element 37, and an AND element 38, the output of the frequency deviation detection circuit 32 is locked, and the current setting value is kept constant. However, at PmfI, which is the healthy pole side, the DC voltage -? Since no DC current disturbance occurs, the output of the frequency deviation detection circuit J2 is not locked, and equivalently the current ft and the set value increase to perform a load shift.
以上説明したごとく、本発明によれば、順変換器が接続
される交流母線の周波数変化分が所矩櫨以上になったと
き、順変換器側の電流設定wLt−増減させる仁とによ
シ、通信回線に依存しない、又6極独立にハード構成が
可能な高信頼の負荷移行を行なうことができると云う者
しい効果を有する。As explained above, according to the present invention, when the frequency change of the AC bus to which the forward converter is connected exceeds a certain value, the current setting wLt on the forward converter side is changed to , it has the remarkable effect of being able to perform highly reliable load migration that does not depend on communication lines and can be configured in hardware independently of the six poles.
尚、本発明は双極1回−を例として説明したが、多極1
回線でも同様に実施出来るものである。Although the present invention has been explained using bipolar one-time as an example, multi-polar one-time
This can be implemented in the same way with a line.
jli1図は直流送電の概略図、182図は双極1回線
の主回路構成図、第3図、第4図は本発明の一実施例を
示すブロック図である。
1.1′・・・交流母線、2.2′・・・変換用変圧器
、3.3′・・・変換器、4.4′・・・平滑リアクト
ル、5・・・直流送電線路、6.6′・・・計器用変圧
器、7.1′・・・計器用変流器、8.8′・・・定電
流制御回路、9.9′・・・定電圧制御(ロ)路、io
、io’・・・制御電圧選択回路、11.11′・・・
制御電圧リミッタ(ロ)路、12.12′・・・点弧位
相制御回路、13・・・原子炉、14・・・タービン、
15・・・発電機、16・・・昇圧用変圧器、17・・
・交流母線、18.19・・・変換用変圧器、20.2
1・・・−変換器、22.23・・・逆変換器、24〜
21・・・平滑リアクトル。
28.29・・本線、3o・・・中性線、31・・・周
波数検出−132・・・周波数偏差検出回路、33・・
・加J!L器、34・・・定電流制御アンプ、35・・
・不足電圧検出回路、36°°・ワンショット回路、3
1゛°°反1本子、38・・・アンド素子。
出−人代塩入 wm士 綿 江 武 彦第2WI
館3111
L健
fIs4I!lFig. 182 is a schematic diagram of DC power transmission, Fig. 182 is a main circuit configuration diagram of a bipolar single line, and Figs. 3 and 4 are block diagrams showing an embodiment of the present invention. 1.1'... AC bus, 2.2'... Conversion transformer, 3.3'... Converter, 4.4'... Smoothing reactor, 5... DC transmission line, 6.6'...Instrument transformer, 7.1'...Instrument current transformer, 8.8'...Constant current control circuit, 9.9'...Constant voltage control (b) road, io
, io'...control voltage selection circuit, 11.11'...
Control voltage limiter (b) path, 12.12'... Ignition phase control circuit, 13... Nuclear reactor, 14... Turbine,
15... Generator, 16... Step-up transformer, 17...
・AC bus bar, 18.19... Conversion transformer, 20.2
1...-Converter, 22.23... Inverse converter, 24-
21...Smooth reactor. 28.29...Main line, 3o...Neutral line, 31...Frequency detection-132...Frequency deviation detection circuit, 33...
・Ka J! L unit, 34... constant current control amplifier, 35...
・Undervoltage detection circuit, 36°°・One shot circuit, 3
1゛°° anti-single element, 38...and element. Out - Shioiri Wm Master Watae Takehiko 2nd WI Building 3111 L KenfIs4I! l
Claims (1)
圧制御系或いは定電圧制御系を有し友逆変換装置によ多
構成された多極1回線又祉l極多回繍、の交直変換装置
において、前記順変換装置が接続される交流母線の周波
数の変化分を検出する周波数検出器を設け、前記周波数
の変化分が所定値以上になつ九とき、その変化分に応じ
て、前記順変換装置の定電流制御系の電流設定値を増減
させることを特徴とする交直変換装置の制御方式。 (2) 各々、定電流制御系を有し九履変換装置及び
定電圧制御系或い社是余裕角制御系を有した逆変換装置
によ)構成された多極1回線又紘l極多回線の交直変換
装置において、前記順変換装置が接続される交流母線の
周波数の変化分を検出する周波数検出器を設け、前記周
波数の変化分が所定値以上になったとき、その変化分に
応じて健全極側の前記順変換装置の定電流制御系の電流
設定値を増減させることを特徴とする交直変換装置の制
御方式。[Claims] An AC/DC converter having a very large number of cycles is provided with a frequency detector for detecting a change in the frequency of an AC bus to which the forward converter is connected, and when the change in frequency exceeds a predetermined value, the A control method for an AC/DC converter, characterized in that the current setting value of a constant current control system of the forward converter is increased or decreased according to the amount of change. (2) Each converter has a constant current control system. In a multi-pole single circuit or multi-pole multi-circuit AC/DC converter configured with an inverse converter having a constant voltage control system or a margin angle control system, the AC to which the forward converter is connected A frequency detector is provided to detect a change in the frequency of the bus bar, and when the change in frequency exceeds a predetermined value, the current in the constant current control system of the forward conversion device on the healthy pole side is adjusted according to the change. A control method for an AC/DC conversion device characterized by increasing/decreasing a set value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56194746A JPS5895988A (en) | 1981-12-03 | 1981-12-03 | Control system for ac/dc converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56194746A JPS5895988A (en) | 1981-12-03 | 1981-12-03 | Control system for ac/dc converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5895988A true JPS5895988A (en) | 1983-06-07 |
JPH0421434B2 JPH0421434B2 (en) | 1992-04-10 |
Family
ID=16329534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56194746A Granted JPS5895988A (en) | 1981-12-03 | 1981-12-03 | Control system for ac/dc converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5895988A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56112828A (en) * | 1980-02-12 | 1981-09-05 | Tokyo Electric Power Co | Accdc interlocking system control system |
-
1981
- 1981-12-03 JP JP56194746A patent/JPS5895988A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56112828A (en) * | 1980-02-12 | 1981-09-05 | Tokyo Electric Power Co | Accdc interlocking system control system |
Also Published As
Publication number | Publication date |
---|---|
JPH0421434B2 (en) | 1992-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0075319B1 (en) | Control apparatus for d.c. power transmission system | |
JPS62210861A (en) | Series operation system of dc-dc converter | |
US3676766A (en) | Multiphase alternating current regulation system for transformer-coupled loads | |
JPH06269175A (en) | Power conversion system and control device for power converter | |
JPS5895988A (en) | Control system for ac/dc converter | |
JP3351631B2 (en) | Electric car control device | |
JPH0775344A (en) | Current loop control type pwm inverter | |
US4608626A (en) | Electrical inverter with minority pole current limiting | |
JPS5819169A (en) | Controlling method for pwm control converter | |
JPS6249812B2 (en) | ||
JP2754517B2 (en) | 12 pulse rectification load harmonic compensation method | |
JPS6341310B2 (en) | ||
CA1196686A (en) | Regulating system employing an rms composite controller | |
JP3599524B2 (en) | Power conversion system | |
JPH0398420A (en) | Power converter arm short circuit detection circuit | |
JPH0353872B2 (en) | ||
JPS6362984B2 (en) | ||
JPH04312324A (en) | Transversal current compensating method for parallel operation ups system | |
JPS6155347B2 (en) | ||
JP2675471B2 (en) | Power converter protection device | |
JPS5833774B2 (en) | Control device for frequency converter | |
JPS6148724B2 (en) | ||
JPS59149736A (en) | Frequency controller of dc transmission | |
JPS6347061B2 (en) | ||
JPS59197908A (en) | Constant-current controlling device |