[go: up one dir, main page]

JPS5891072A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS5891072A
JPS5891072A JP56188208A JP18820881A JPS5891072A JP S5891072 A JPS5891072 A JP S5891072A JP 56188208 A JP56188208 A JP 56188208A JP 18820881 A JP18820881 A JP 18820881A JP S5891072 A JPS5891072 A JP S5891072A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sintering
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56188208A
Other languages
Japanese (ja)
Other versions
JPS6152110B2 (en
Inventor
三浦 一則
服部 善憲
康史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP56188208A priority Critical patent/JPS5891072A/en
Publication of JPS5891072A publication Critical patent/JPS5891072A/en
Publication of JPS6152110B2 publication Critical patent/JPS6152110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は機械的強度に優れ、高い耐酸化性を有する高密
度窒化珪素焼結体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-density silicon nitride sintered body having excellent mechanical strength and high oxidation resistance.

窒化珪素焼結体は機械的強度、耐熱性、耐腐食性などの
緒特性に優れているために、例えばガスタービン部品の
ような高温構造材料としての用途がある。しかし、一方
索化珪素は共有結合性が高いために、焼結性に乏しく高
密度かつ高強度の焼結体を得ることは困難である。従来
位化珪素の製法には金属珪素を窒化焼結させる反応焼結
法、窒化珪素粉末に焼結助剤を添加して焼結するホット
プレス法、常圧焼結法がある。
Since silicon nitride sintered bodies have excellent properties such as mechanical strength, heat resistance, and corrosion resistance, they are used as high-temperature structural materials such as gas turbine parts. However, since silicon has a high degree of covalent bonding, it has poor sinterability and it is difficult to obtain a sintered body with high density and high strength. Conventional methods for producing silicon oxide include a reactive sintering method in which metallic silicon is nitrided and sintered, a hot press method in which a sintering aid is added to silicon nitride powder and sintered, and an atmospheric pressure sintering method.

反応焼結法では複雑な形状でも焼結できるが、密度が低
いため強度、耐酸化性が低い。まだポットプレス法では
強度、耐酸化性に最も優れているが、単純な形状しか焼
結できない。常圧焼結法ではかなυ高強度のものが得ら
れるが、焼結助剤が最も多く必要であシ、高温下の強厩
劣化が微しく耐酸化性も反応焼結法はどではないが低い
。しかし、常圧焼結法においてその焼結助剤の量を減少
させ、かつ十分緻密化が達成できれば、高強度で耐酸化
性の良い高温構造材料となシうるはずである。そこで本
発明者らはこの目的にそって窒化珪素焼結体の耐酸化性
を向上させるため、常圧焼結法におけるその焼結方法に
対して種々検討を行なった。その結果、窒化珪素粉末と
焼結助剤との混合物を成形し、得られた成形体を窒素ガ
スまたは窒素と非酸化性ガスとの混合ガスの雰囲気中で
/100−1130℃の温度で3時間以上熱処理した後
、窒素ガスまたは窒素と非酸化性ガスとの混合ガスの雰
囲気中で、/1r00−2.200℃の温度で焼結すれ
ば高い耐熱性と高温強度を有することを見出し本発明を
完成した。
Although the reactive sintering method allows sintering of complex shapes, the density is low, resulting in low strength and oxidation resistance. The pot press method still has the best strength and oxidation resistance, but it can only sinter into simple shapes. The pressureless sintering method yields high-strength products, but it requires the most sintering aids, and the reaction sintering method suffers from slight deterioration in strength under high temperatures, and its oxidation resistance is inferior to that of the reactive sintering method. is low. However, if the amount of the sintering aid can be reduced in the pressureless sintering method and sufficient densification can be achieved, it should be possible to create a high-temperature structural material with high strength and good oxidation resistance. Therefore, in order to improve the oxidation resistance of the silicon nitride sintered body in accordance with this objective, the present inventors conducted various studies on the sintering method using the pressureless sintering method. As a result, the mixture of silicon nitride powder and sintering aid was molded, and the resulting molded body was heated in an atmosphere of nitrogen gas or a mixed gas of nitrogen and non-oxidizing gas at a temperature of 100-1130°C. It was discovered that high heat resistance and high temperature strength can be obtained by sintering at a temperature of /1r00-2.200℃ in an atmosphere of nitrogen gas or a mixed gas of nitrogen and non-oxidizing gas after heat treatment for more than an hour. Completed the invention.

以下に本発明の詳細な説明する。一般に窒化珪素の焼結
は窒化珪素粉末に焼結助剤を添加することに上り液相を
形成させ、その液相から針状晶のβ−8i s N4が
析出することによυ高強度の窒化珪素焼結体が得られる
と考えられている。
The present invention will be explained in detail below. Generally, sintering of silicon nitride involves adding a sintering aid to silicon nitride powder to form a liquid phase, and acicular crystals of β-8i s N4 precipitate from the liquid phase, resulting in high strength υ. It is believed that a silicon nitride sintered body can be obtained.

そのうえ、常圧焼結法によると緻密で高強度の焼結体を
得るにはかなシ多量の焼結助剤を8賛とするため高温下
における機械的強度、耐酸化性を大きく低下させるとい
う問題があった。特に、窒化珪素焼結体の耐酸化性を向
上させるためには焼結助剤をより減少させ、かつ緻密な
焼結体を得ることが重要となる。そこで、本発明におい
ては空化珪素粉末と焼結助剤との混合物を成形し、得ら
れた成形体を窒素ガスまたは窒素と非酸化性ガスとの混
合ガスの雰囲気中で、1ioo−izzo℃の温度で3
時間以上熱処理した後、窒素ガスまたは窒素と非酸化性
ガスとの混合ガスの雰囲気中で/100−2200℃の
温度で焼結するという焼成工程を経ることにより従来の
常圧焼結法におけるより少ない焼結助剤で、緻密で高強
度で耐酸化性の高い焼結体が得られた。
Furthermore, it is difficult to obtain a dense and high-strength sintered body using the pressureless sintering method, which requires a large amount of sintering aid, which significantly reduces mechanical strength and oxidation resistance at high temperatures. There was a problem. In particular, in order to improve the oxidation resistance of the silicon nitride sintered body, it is important to further reduce the amount of sintering aid and to obtain a dense sintered body. Therefore, in the present invention, a mixture of emptied silicon powder and a sintering aid is molded, and the resulting molded body is heated to 100°C in an atmosphere of nitrogen gas or a mixed gas of nitrogen and a non-oxidizing gas. at a temperature of 3
After heat treatment for more than an hour, sintering is performed in an atmosphere of nitrogen gas or a mixed gas of nitrogen and non-oxidizing gas at a temperature of 100-2200℃, which is more effective than the conventional pressureless sintering method. A dense, high-strength, and highly oxidation-resistant sintered body was obtained with a small amount of sintering aid.

このような焼成工程によって緻密で高強度で耐酸化性の
高い焼結体が得られる理由は明らかではないが、およそ
次のような理由によるものではないかと推測される。す
なわち、窒化珪素の焼結過程はその焼結助剤の種類や祉
によって異なるが酸化マグネシウムのような酸化物の焼
結助剤を用いた場合、一般に次のようなことがいえる。
Although it is not clear why a dense, high-strength, and highly oxidation-resistant sintered body can be obtained through such a firing process, it is presumed that it is due to the following reasons. That is, the sintering process of silicon nitride varies depending on the type and function of the sintering aid, but in general, when an oxide sintering aid such as magnesium oxide is used, the following can be said.

まず、窒化珪素の緻密化にはその焼結温1屍が大きく影
響している。窒化珪素では1100℃以上になると粒子
の再配列による緻密化がわずかであるが起こり始め、/
 300℃を超えるような温度では緻密化速度はかなり
速い。しかし、この緻密化速度も焼結助剤の墓を減少さ
せると次記に遅くなシ、同じ温度でも緻密化に時間を挾
するようになる。このような緻密化過程と比較して、窒
化珪素の曲げ強度に大きく影響を及ばずα型からβ型へ
の転移が起きる温度はかなり異なり、α−β転移は/ 
100℃から起こシはじめ、1100℃を超えるような
温度になるとその転移速度は速くなる。特に、焼結助剤
が少ないとその緻密化速度はかなり遅く、α−β転移が
起こシ、β−8i a N4の針状晶が成長してしまう
ともはや緻密化はそれほど進行しないことが子側される
。すなわち、緻密化が速く進行する温度とα−β転移に
より針状晶が成長する温度のずれがあるため、/100
℃〜/!10℃の温度で3時間以上前処理を行なうこと
によりかなシ緻密化を進行させ、さらには焼結体中にβ
−8i3N4が均一に成長するように十分核生成を起こ
させたのち、/AOOtを超える温度でさらに十分な緻
密化と均一なβ−8i a N4の針状晶を成長させる
ことにより従来の常圧焼結法より少なり焼結助剤で緻密
で高強度の蹟化珪素焼結体が得られたものと考えられる
。またこのような前処理の効果は成形体の大きさ、形状
の影響を受け、大型品に対するほど前処理の効果は前処
理を施さないものに比較して大きい。なお、この前処理
の温度は緻密化に要するエネルギー、時間などを考慮す
ると望ましくは7300〜/60θ℃が適当である。
First, the densification of silicon nitride is greatly influenced by its sintering temperature. In silicon nitride, at temperatures above 1100°C, densification due to particle rearrangement begins to occur, albeit slightly.
At temperatures above 300°C, the rate of densification is quite fast. However, if the amount of sintering aid is reduced, this densification rate will become slower, and it will take more time for densification even at the same temperature. Compared to such a densification process, the temperature at which the α-to-β transition occurs without significantly affecting the bending strength of silicon nitride is quite different, and the α-β transition is
It starts to occur at 100°C, and the rate of transition becomes faster when the temperature exceeds 1100°C. In particular, if the amount of sintering aid is small, the densification rate will be quite slow, α-β transition will occur, and once β-8i a N4 needle crystals have grown, densification will no longer progress as much. being sidelined. In other words, since there is a difference between the temperature at which densification progresses rapidly and the temperature at which needle crystals grow due to α-β transition, /100
℃~/! Pretreatment at a temperature of 10°C for 3 hours or more promotes densification of the kana, and furthermore, β is added to the sintered body.
-8i3N4 is sufficiently nucleated to grow uniformly, and then further densified and uniform β-8i a N4 acicular crystals are grown at a temperature exceeding /AOOt. It is thought that a dense and high-strength silicon sintered body was obtained using less sintering aid than the sintering method. Further, the effect of such pretreatment is influenced by the size and shape of the molded article, and the larger the article, the greater the effect of pretreatment than when no pretreatment is applied. Note that the temperature of this pretreatment is desirably 7300-/60[theta]C in consideration of the energy, time, etc. required for densification.

次に本発明を実施例により更に詳細に説明するが、本発
明はその要旨を超えない限り以下の実施例に限定される
ことはない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例/ 平均粒径が7μmのα型を50%以上含む窒化珪素と焼
結助剤として平均粒径が7μmのMgOを用い第1衣に
示すような割合でボールミルによシ混合粉砕後、200
0 Ky/dの圧力で成形し、同表に示す条件によって
焼成し、得られた焼結体の密度、室温での曲げ強度およ
び酸化増量を測定し、第1表のような結果を得た。なお
曲げ強度は≠Xざx、2jm(スパン、20B)の試験
片でJIS B≠IQりにより測定し、酸化増量は試料
を大気中で/、200℃の高温に、2≠時間さらして酸
化しその増量を測定した。
Example / Silicon nitride containing 50% or more of the α type with an average particle size of 7 μm and MgO with an average particle size of 7 μm as a sintering aid were mixed and pulverized in a ball mill in the proportions shown in the first coating. 200
It was molded at a pressure of 0 Ky/d and fired under the conditions shown in the same table, and the density, bending strength at room temperature, and oxidation weight gain of the obtained sintered body were measured, and the results shown in Table 1 were obtained. . The bending strength was measured using JIS B≠IQ method using a test piece with a width of ≠X and a length of 2jm (span, 20B). The increase in perilla was measured.

第1表 注)A//R,A/、2Rは比較品。Table 1 Note) A//R, A/, and 2R are comparative products.

その他は本発明品である。The others are products of the present invention.

紀/表より明らかな如く、本発明による熱処理を施した
ILi/〜sioは比較品A//R,/2Rに比し優れ
た嵩密度、曲げ強度、特に優れた耐酸化性を示し、自動
車用ガスタービン、エンジン部祠、切削工具その他一般
高温用耐熱、耐摩耗、構造部品としてすぐれた材質を提
供するものである。
As is clear from the table, ILi/~sio heat-treated according to the present invention exhibits superior bulk density, bending strength, and especially superior oxidation resistance compared to comparative products A//R and /2R, and is suitable for automobiles. This material provides excellent heat resistance, wear resistance, and structural parts for gas turbines, engine parts, cutting tools, and other general high-temperature applications.

実施例λ 本実施例1では熱処理後冷却して、また再加熱したが、
熱処理後引き続いて本焼成に移っても同様の結果が得ら
れた。
Example λ In Example 1, it was cooled after heat treatment and then reheated.
Similar results were obtained even when the main firing was carried out after the heat treatment.

なお、実施例/2.2では焼結助剤としてMgOを用い
たが本発明はこれにこだわることなく、公知の各釉焼結
助剤を使用できるものである。
Although MgO was used as the sintering aid in Example 2.2, the present invention is not limited to this, and any known glaze sintering aid can be used.

Claims (1)

【特許請求の範囲】[Claims] 窒化珪素粉末と焼結助剤との混合物を成形し得られた成
形体を窒素ガスまたは窒素と非酸化性ガスとの混合ガス
の雰囲気中で/100〜/ j10℃の温度で3時間以
上熱処理した後、窒素ガスまたは窒素と非酸化性ガスと
の混合ガスの雰囲気中で、#00−.2.200℃の温
度で焼結することを特徴とする窒化珪素焼結体の製造法
A molded body obtained by molding a mixture of silicon nitride powder and a sintering aid is heat-treated at a temperature of /100 to /j10°C for 3 hours or more in an atmosphere of nitrogen gas or a mixed gas of nitrogen and a non-oxidizing gas. After that, #00-. 2. A method for producing a silicon nitride sintered body, characterized by sintering at a temperature of 200°C.
JP56188208A 1981-11-24 1981-11-24 Manufacture of silicon nitride sintered body Granted JPS5891072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188208A JPS5891072A (en) 1981-11-24 1981-11-24 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188208A JPS5891072A (en) 1981-11-24 1981-11-24 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS5891072A true JPS5891072A (en) 1983-05-30
JPS6152110B2 JPS6152110B2 (en) 1986-11-12

Family

ID=16219653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188208A Granted JPS5891072A (en) 1981-11-24 1981-11-24 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5891072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186474A (en) * 1984-03-02 1985-09-21 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body
JPS61215260A (en) * 1985-03-19 1986-09-25 日本碍子株式会社 Manufacture of silicon nitride ceramic
JPS62105958A (en) * 1985-11-01 1987-05-16 工業技術院長 Manufacture of fiber tissue silicon nitride sintered body
JPS63147868A (en) * 1986-12-09 1988-06-20 マツダ株式会社 Manufacture of antiabrasive sliding member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184315U (en) * 1986-05-13 1987-11-24
JPS6330953U (en) * 1986-08-18 1988-02-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186474A (en) * 1984-03-02 1985-09-21 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body
JPS61215260A (en) * 1985-03-19 1986-09-25 日本碍子株式会社 Manufacture of silicon nitride ceramic
JPS62105958A (en) * 1985-11-01 1987-05-16 工業技術院長 Manufacture of fiber tissue silicon nitride sintered body
JPS63147868A (en) * 1986-12-09 1988-06-20 マツダ株式会社 Manufacture of antiabrasive sliding member

Also Published As

Publication number Publication date
JPS6152110B2 (en) 1986-11-12

Similar Documents

Publication Publication Date Title
JPS62182163A (en) Silicon nitride ceramic sintered body and manufacture
JPH09268072A (en) Method for producing silicon nitride based sintered body
JPS5891072A (en) Manufacture of silicon nitride sintered body
JPS5953234B2 (en) Manufacturing method of high-strength silicon nitride sintered body
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
US5244621A (en) Process for shaping ceramic composites
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JPH0259471A (en) High-temperature, high-strength silicon nitride sintered body and its manufacturing method
JP2742619B2 (en) Silicon nitride sintered body
JPH0224789B2 (en)
JPH025711B2 (en)
JPS60145961A (en) Manufacture of high strength heat resistant ceramic sinteredbody
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPS63112471A (en) Silicon nitride ceramics and manufacturing method thereof
JPS63195170A (en) Manufacture of silicon nitride sintered body
JPH06116045A (en) Silicon nitride sintered compact and its production
JPS63303864A (en) Production of sialon sintered body
JPH03153574A (en) High-strength sialon-based sintered body
JPH0559073B2 (en)
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JPH0840774A (en) Silicon nitride sintered body
JPS61201667A (en) Manufacture of silicon nitride base ceramics
JPH04219373A (en) Manufacturing method of silicon nitride sintered body