JPS5889005A - Automatic operation controller for train - Google Patents
Automatic operation controller for trainInfo
- Publication number
- JPS5889005A JPS5889005A JP56187261A JP18726181A JPS5889005A JP S5889005 A JPS5889005 A JP S5889005A JP 56187261 A JP56187261 A JP 56187261A JP 18726181 A JP18726181 A JP 18726181A JP S5889005 A JPS5889005 A JP S5889005A
- Authority
- JP
- Japan
- Prior art keywords
- train
- command
- running
- line voltage
- overhead line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、列車自動運転制御装置に関し、特に、チョッ
パ制御等による回生ブレーキ機能を有する列車の回生ブ
レーキ有効度を極力高めることによ地下鉄電車や近郊通
勤電車に於いては、朝夕のラッシュ時と昼間の閑散時と
では列車運行本数が大幅に異なることは周知の通りであ
るが、列車が回生ブレーキを作動させた場合、ラッシュ
時lこは回生ブレーキにより架線に戻された電力を消費
する他の列車が常にあり、有効に電力回生が行なイ)れ
るが、閑散時には回生負荷となる他の列車が少ないため
、回生電力が有効に受は入れられず、回生効率が低下す
るという問題がある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic train operation control device, and in particular to a train automatic operation control device, which is particularly useful for subway trains and suburban commuter trains by maximizing the effectiveness of regenerative braking for trains that have a regenerative braking function using chopper control or the like. It is well known that the number of trains operating during the morning and evening rush hours and during the daytime off-peak hours differs significantly; There are always other trains that consume the generated power, so power regeneration is effectively carried out.However, during off-peak hours, there are few other trains that serve as the regenerative load, so the regenerated power cannot be effectively received, and the regenerated power is There is a problem that efficiency decreases.
この点を史に技術的に検討してみると、第1図はチョッ
パ式回生ブレーキ制御における列車速度−回生電力特性
曲線を示し、図中、実線◎−■から破線■−■に示され
る様に、回生ブレーキをかけている車両が発生する回生
電力の瞬時値(XW)は、一定の減速度の回生ブレーキ
が作用していても、列車速度の変化と共に時々刻々変化
し、速度と共に下がって行くことを示している。また、
回生電力の瞬時値は同じ列車であれば減速度βが大きい
方が高くなる。尚、図中、点■−■−■を結ぶ線を境界
線とする、その右上の領域は、チョッパ制御装置の動作
原理に基づく回生電力特性上の制約領域を成すもので本
発明とは直接関係ない。Examining this point from a technical perspective, Figure 1 shows the train speed vs. regenerative power characteristic curve in chopper type regenerative brake control, as shown by the solid line ◎-■ to the broken line ■-■. The instantaneous value (XW) of regenerative power generated by a vehicle applying regenerative braking changes from moment to moment as the train speed changes, and decreases with speed, even if regenerative braking with a constant deceleration is applied. It shows that you are going. Also,
For the same train, the instantaneous value of the regenerated power will be higher if the deceleration β is larger. In addition, in the figure, the upper right region whose boundary line is the line connecting points ■−■−■ constitutes a constraint region on the regenerative power characteristics based on the operating principle of the chopper control device, and is not directly related to the present invention. it doesn't matter.
(因に、この様な速度領域においては、回生ブレーキ量
が制限されるところでも、自動的に機械的ブレーキが補
足的に作用して、列車としては指令された減速度でブレ
ーキがかかることになり運用上の支障はない。)
次に第2図は回生ブレーキ作動中に架線電圧が上昇した
場合に主モーター電流を抑制することにより回生電流値
を抑制し、架線通電圧の発生を抑制する際の特性曲線の
1例を示す。第2図に示される例では、架線電圧が/A
fO■を上回るとモーター電流が制限され始め、架線電
圧の上昇と共に主モーター電流が減少せしめられる。す
なわち、回生ブレーキ力にて負担する等制減速度βが低
減されることになる。列車が回生ブレーキ中に、回生電
力を吸収する架線側の負荷がなくなると、架線電圧が上
昇するが、上述の様な方式により回生車両の方で回生電
力量を絞ることにより、架線電圧が過大になることを防
ぎ、給電系統全体の安定性が保たれることになる。(Incidentally, in such a speed range, even if the amount of regenerative braking is limited, the mechanical brake will automatically act supplementarily and the train will be able to brake at the commanded deceleration. (There is no operational problem.) Next, Figure 2 shows that when the overhead line voltage increases during regenerative braking, the main motor current is suppressed to suppress the regenerative current value and the generation of overhead line voltage. An example of the characteristic curve is shown below. In the example shown in FIG. 2, the overhead line voltage is /A
When fO■ is exceeded, the motor current begins to be limited, and the main motor current is reduced as the overhead line voltage increases. In other words, the uniform deceleration β borne by the regenerative braking force is reduced. When a train is under regenerative braking and the load on the overhead wire side that absorbs regenerative power is removed, the overhead wire voltage increases. However, by reducing the amount of regenerated power on the regenerative vehicle side using the method described above, the overhead wire voltage can be prevented from becoming excessive. The stability of the entire power supply system is maintained.
一方、jiJ図は列車がある速度V、から回生ブレーキ
を作動させた場合の回生電力一時間特性曲線を示すもの
である。図中■、■、■、■、Uで示した点は、第1図
中の同一符号を付した点に対応するものである。減速度
β= q、o x+u/h/sで回生ブレーキをかけた
場合め回生電力量(xwh )は、図中、点■−■−■
−〇−■−〇を結ぶ線で囲まれた面積で示され、減速度
β−コ、OKm/h/sで回生ブレーキをかけた場合の
回生電力量(xwh )は、点■−■−■−a−aを結
ぶ線で囲まれた面積(斜線部)である。エネルギー保存
の法則により、減速度を高くしようと低くしようと列車
を同じ速度から停止に至らしめる際に変換される運動エ
ネルギー量は同じであるから、第1図のチョッパ制御自
体の持つ回生電力制限曲線■−■−〇によって生ずる差
異が充分小さいと考えれば、β−ダ。oxm/h/li
の場合の回生電力量と、β=コ、OKm/h/eの場合
の回生電力量とにそれぞれ対応する上記の面積はほぼ等
しいとみなされる。しかしながら、架線側の回生電力吸
収負荷が少なく負荷電力W、 (KW) L/か吸収し
得ない様な場合、β= o、oKWL/h/aで回生ブ
レーキを作動させた場合、第3図中のW、を上回る電力
領域は、架線電圧上昇が起こり、第2図で示す様な回生
電力絞り込み制御が行なわれる結果、回生電力が抑制さ
れ、回生電力量としては、点■−■−■−■−〇−■−
■を結ぶ線で囲まれる面積に相当するものとなる。すな
わち点■−■−■を結ぶ線−で囲まれた面積相当分の電
力蓋だけ減少する。一方、同一条件下で、β二よ0KI
II/h/8にて回生ブレーキをかけた場合は、woを
上回ることがないので、回生電力量は減少することはな
い。このことは、回生負荷が少ない閑散ダイヤ運転時J
こは列車の減速度を小さくして回生ブレーキをかければ
回生有効度が向上することを意味する。On the other hand, the jiJ diagram shows a regenerative power one-hour characteristic curve when the regenerative brake is activated from a certain speed V of the train. The points indicated by ■, ■, ■, ■, and U in the figure correspond to the points with the same reference numerals in FIG. When regenerative braking is applied at deceleration β = q, ox + u/h/s, the regenerative power amount (xwh) is indicated by points ■-■-■ in the figure.
It is shown by the area surrounded by the line connecting −〇−■−〇, and the amount of regenerated electric power (xwh) when regenerative braking is applied at the deceleration β−ko and OK m/h/s is the point ■−■− ■It is the area (shaded area) surrounded by the line connecting -a-a. According to the law of conservation of energy, the amount of kinetic energy converted when bringing a train from the same speed to a stop is the same regardless of whether the deceleration is high or low, so the regenerative power limit of the chopper control itself as shown in Figure 1 If we consider that the difference caused by the curve ■−■−〇 is sufficiently small, β−da. oxm/h/li
It is assumed that the above-mentioned areas corresponding to the regenerated electric energy in the case of β=ko and the regenerated electric energy in the case of OK m/h/e are almost equal. However, if the regenerative power absorption load on the overhead line side is too small to absorb the load power W, (KW) L/, and if the regenerative brake is operated at β = o, oKWL/h/a, then In the power range exceeding W in the middle, the overhead line voltage increases, and as a result of the regenerative power narrowing control shown in Fig. 2, the regenerative power is suppressed, and the regenerative power amount is reduced to the point ■-■-■ −■−〇−■−
It corresponds to the area surrounded by the line connecting ■. In other words, the power is reduced by an amount corresponding to the area surrounded by the point - - - the line connecting -. On the other hand, under the same conditions, β2 yo 0KI
When regenerative braking is applied at II/h/8, the amount of regenerated electric power does not decrease because it does not exceed wo. This means that J
This means that if the deceleration of the train is reduced and regenerative braking is applied, the effectiveness of regeneration will be improved.
ところが、従来の列車の運転手による運転方法は路線際
に設置されたカ行、惰行及bブレーキの各切換指令を与
えるべき地点標識を目安としていた。すなわち、第9図
(&)はこの様な従来の運転方法による列車運転曲線及
び減速直曲−の7例を示すが、固定された地点信号(標
R)である点20点(カ行−惰行切換点)、及び点Be
(惰行−ブレーキ切換点)に基づき運転しているので、
架m’gt圧が高くなると、架線電圧がE、の場合の一
点鎖線曲線で示す通り、点A −S、 −8,−Bを通
る運転曲線となり、架線電圧がR,より低いもの場付の
実線曲線上の点A−8,−s、−Bを通る運転111m
と比較すると、より高い速度で加速及び惰行し、より高
速の点S4からブレーキをかけ、しかも所定のB点で停
車するために第9図(b)に示される如く、より大きな
減速度β、を必要とすることになる。このことは、閑散
運転時において架線電圧が高い場合に、回生有効率が一
層悪くなる様な運転の仕方(第3回診M)をしているこ
とを意味している。また、必要以上に高速まで加速して
運転し、次の駅に早(着き過ぎるというのもカ行時に多
くのエネルギーを消費しすぎる事となってくる。However, in the conventional driving method used by train drivers, the guideline was based on point markers installed along the route to which commands for switching between power, coasting, and B brakes should be given. That is, FIG. 9 (&) shows seven examples of train operating curves and deceleration straight curves according to the conventional operating method. coasting switching point), and point Be
Since the operation is based on (coasting-brake switching point),
As the overhead line m'gt pressure increases, as shown by the dashed-dot line curve when the overhead line voltage is E, the operating curve passes through points A -S, -8, -B, and when the overhead line voltage is R, lower, Driving 111 m passing through points A-8, -s, -B on the solid curve of
In comparison, as shown in FIG. 9(b), in order to accelerate and coast at a higher speed, brake from a higher speed point S4, and stop at a predetermined point B, a larger deceleration β, will be required. This means that when the overhead wire voltage is high during quiet operation, the vehicle is operated in such a manner that the effective regeneration rate becomes even worse (third inspection M). Also, driving at higher speeds than necessary and arriving at the next station too early will consume too much energy when traveling.
本発明はこの様な従来の運転方式の欠点に鑑みてなされ
たもので、カ行時の電力節減及び回生有効率を高める運
転を、架線電圧に対応して自動的に行なわしめる方式を
提供するものである。The present invention has been made in view of the shortcomings of the conventional operation method, and provides a method for automatically performing operation in response to the overhead line voltage to save power and increase the regeneration efficiency when the vehicle is running. It is something.
まず、本発明が着目した点は、閑散運転ダイヤかどうか
を判別するよりは、架線電圧値を検出する方がより適確
であるということである。何故なら、回生負荷が少ない
状態では平均的に架線電圧も変電所の無負荷時送り出し
電圧に近くなり高くなっているからである。但し、架線
電圧は負荷の変動、架線のインピーダンスに基づき、地
点ごとに変動があるので常に上下変動しているので、列
車を安定に制御するには、−ある所定の期間(時間幅)
内における平均架線電圧値を検出するといった積算平均
架線電圧検知を行ない、この検知電圧の大きさにより、
列車に作用させるブレーキ減速度指令を変えるのが好ま
しい。また、上述の所定期間の平均電圧値としては例え
ば、当該列車がカ行している期間中における平均架線電
圧をとってもよいし、又は、たった今通過したー駅区間
の走行時間中(7回のカ行、惰行、回生ブレーキを含む
)の平均架線電圧をとってもよい。First, the present invention has focused on the fact that it is more accurate to detect the overhead wire voltage value than to determine whether it is a quiet operation timetable. This is because when the regenerative load is low, the overhead line voltage on average becomes high and close to the no-load sending voltage of the substation. However, the overhead line voltage varies from point to point based on load fluctuations and the impedance of the overhead line, so it constantly fluctuates up and down, so in order to stably control trains, it is necessary to
The integrated average overhead line voltage is detected by detecting the average overhead line voltage value within the area, and depending on the magnitude of this detected voltage,
It is preferable to change the brake deceleration command applied to the train. In addition, the average voltage value for the above-mentioned predetermined period may be, for example, the average overhead wire voltage during the period when the train is running, or the average voltage during the running time of the station section that the train has just passed (seven times). It is also possible to take the average overhead line voltage (including rolling, coasting, and regenerative braking).
また、列車は所定の運転ダイヤ通りに走らねばならない
が、上述の様なブレーキ時の減速度の加減だけを適当に
やっていたのでは、駅間走行時間が変動し運転ダイヤを
乱してしまうことになる。In addition, trains must run according to a predetermined operating schedule, but if only the deceleration during braking was adjusted appropriately as described above, the travel time between stations would fluctuate and the operating schedule would be disrupted. It turns out.
そこで本発明においては、カ行から惰行、及び惰行から
ブレーキ動作へ移るときの運転モード切換地点を可変な
ものとすることにより、前述のブレーキ減速度の加減を
行なった場合でも所定の運転ダイヤ通りに列車走行せし
めるようにしている。Therefore, in the present invention, by making the driving mode switching point variable when moving from coasting to coasting and from coasting to braking, the predetermined driving schedule can be maintained even when the brake deceleration is increased or decreased as described above. We are trying to get trains to run.
しかしながら、一般に、′各駅間距離及びその間の路線
の勾配、曲り等の状況はそれぞれの駅間毎に異なってい
るので、カ行ノツチオフ(カ行−惰行切換)地点やブレ
ーキ作用(惰行−ブレーキ切換)地点の最適地点を架線
電圧値に対応して一義的に決めるような普遍的な数式を
求めることは不可能に近い。However, in general, the distance between each station and the slope, curve, etc. of the line between them are different for each station, so the point of notch-off (switching between coasting and coasting) and the braking action (switching between coasting and braking) are generally different. ) It is almost impossible to find a universal mathematical formula that uniquely determines the optimal point corresponding to the overhead wire voltage value.
第5図は、特定の駅間において、変電所間隔や路線勾配
等を考慮して所定の運行ダイヤで走行するため、積算平
均架線電圧に対応した減速度をシミュレーション計算で
得た特性曲線である。すなわち、所定の運行ダイヤで走
行するには、架線電圧の積算平均値が例えばE、の場合
、減速度I。Figure 5 is a characteristic curve obtained through simulation calculations of the deceleration corresponding to the integrated average overhead line voltage, in order to run on a predetermined schedule that takes into account substation intervals, route gradients, etc. between specific stations. . That is, in order to travel on a predetermined schedule, if the integrated average value of the overhead line voltage is, for example, E, the deceleration must be I.
でブレーキをかければよいことを示している。この場合
の減速度β、は第3図における回生電力W0を越えない
最適な指令値である。This indicates that you should apply the brakes. The deceleration β in this case is an optimal command value that does not exceed the regenerative power W0 in FIG.
第6図(a)は、第5図に示された特性曲線に基づき、
特定の駅間A−Bにおいて所定の運転ダイヤで運行する
ためのカ行ノツチオフ地点特性曲線(実線)及びブレー
キ開始地点特性曲線(破線)をシミュ、レーション計算
によってプロットした運転モード切換地点特性曲線図で
ある。すなわち、積算平均した架線電圧がE、のときは
、第5図より所望の減速度β、が求まり、一方、この減
速度β、(第6図(C))でB駅に到着するには、第6
図(b)の一点鎖線で示すように地点P2でカ行ノツチ
オフを行ない且つ地点B、でブレーキ動作を開始させれ
ばA−B駅間の所定運転ダイヤ通り走行することができ
る。同様にして積算平均架線電圧がE、の場合には第6
図(1))の実線の列車走行を行なわせればよい。FIG. 6(a) is based on the characteristic curve shown in FIG.
Driving mode switching point characteristic curve diagram plotting the line notch off point characteristic curve (solid line) and brake start point characteristic curve (broken line) for operating on a predetermined operation schedule between specific stations A-B by simulation and calculation. It is. That is, when the integrated average overhead line voltage is E, the desired deceleration β can be found from Fig. 5. On the other hand, in order to arrive at station B at this deceleration β (Fig. 6 (C)), , 6th
As shown by the dashed line in Figure (b), if the car is notched off at point P2 and the brake operation is started at point B, it is possible to travel according to the prescribed operating schedule between stations A and B. Similarly, if the integrated average overhead line voltage is E, the sixth
It is sufficient to cause the train to run along the solid line in Figure (1)).
第7図は、上述した第S図及び第6図(al −IC)
における特性1111mを利゛用して列車の自動運転制
御を行なうための本発明装置を示すブロック図であり、
図中、列車走行地点検出器lの出力は走行駅間W別器コ
及び運転モード切換指令発生装置3Jこ人力され、走行
駅間判別器λの出力は減速度特性曲線読出装置亭及び運
転モード切換地虞特性曲、iI続田装置まに入力されて
いる。続出装置ダ及」Sには積算平均架線電圧検出器6
が接続されており、この検出器乙には架線電圧検出器7
が接続されている。運転モード切換地点特性曲線続出装
置jの出力は運転モード切換指令発生装置3に入力され
、減速度特性曲線読出装置亭の出方は減速度指令値発生
装置tに入力されている。減速度指令値発生装置gは運
転モード切換指令発生装置3がらの出力も入力するよう
になっており、発生装置3及びSの各出力は車両制御装
置フに入力されている。Figure 7 shows the above-mentioned Figure S and Figure 6 (al-IC).
FIG. 2 is a block diagram showing a device of the present invention for controlling automatic operation of a train using characteristics 1111m in
In the figure, the output of the train running point detector 1 is inputted by the train running station distance detector W and the operation mode switching command generator 3J, and the output of the running station distance discriminator λ is inputted by the train running station discriminator λ and the operation mode switching command generator 3J. The switching feature song is input to the iI Tsukuda device. The integrated average overhead line voltage detector 6 is installed in the continuous device S.
is connected to this detector B, and an overhead line voltage detector 7 is connected to this detector B.
is connected. The output of the driving mode switching point characteristic curve output device j is input to the driving mode switching command generating device 3, and the output of the deceleration characteristic curve reading device is input to the deceleration command value generating device t. The deceleration command value generating device g also receives the output from the driving mode switching command generating device 3, and each output from the generating device 3 and S is input to the vehicle control device f.
尚、読出装置q及び夕は、それぞれ、第5図及び第6図
(a)の特性曲線が予め記憶されている。Note that the characteristic curves shown in FIG. 5 and FIG. 6(a) are stored in advance in the reading devices q and 6, respectively.
次に、第7図に示された本発明に係る列車自動運転制御
装置の好ましい一実施例の動作を説明する。Next, the operation of a preferred embodiment of the automatic train operation control system according to the present invention shown in FIG. 7 will be described.
まず、列車走行地点検出器/は列車が現在走行している
地点を検出する周知の装置で、この検出器/からの出方
は走行駅間判別器コに送られて、走行地点に応じて走行
駅間を読訴装置亭フぴ5に知らせる。一方、続出装置亭
及びSでは、検出器基から出力される積算平均架線電圧
信号も入力しているため、積算平均架線電圧が例えば第
5図及び第6図(a)における病であれば、まず運転モ
ード切換地点特性曲線続出装置Sは、当該駅間に関する
特性曲線(第6図(a))からA−B駅間内のカ行ノツ
チオフ所望地点P8及びブレーキ開始所望地点B、を読
み出して運転モード切換指令発生装置3に送り、一方、
減速度特性曲線読出装置lは、A−B駅間に関する特性
面a(第5図)から、電圧E1に対応する減速度β1を
読み出して減速度指令値発生装置ざへ送る。運転モード
切換指令発生装置3は読出装置Sから読み出されたカ行
ノツチオフ地点P、信号と列車走行地点検出器/からの
走行地点信号とをまず比較し、一致したときカ行ノツチ
オフ指令信号を車両制御装置?へ送って列車をカ行モー
ドから惰行モードに切り換える。First, the train running point detector/ is a well-known device that detects the point where the train is currently running. Notify the reading device Tei Fupi 5 of the distance between stations. On the other hand, since the cumulative average overhead line voltage signal output from the detector unit is also input to the Tsudashi equipment station and S, if the cumulative average overhead line voltage is the disease shown in FIGS. 5 and 6(a), for example, First, the driving mode switching point characteristic curve succession device S reads out the desired line notch-off point P8 and the desired braking start point B between stations A and B from the characteristic curve for the station interval (FIG. 6(a)). It is sent to the operation mode switching command generation device 3, and on the other hand,
The deceleration characteristic curve reading device 1 reads the deceleration β1 corresponding to the voltage E1 from the characteristic surface a (FIG. 5) relating to the station A-B, and sends it to the deceleration command value generating device. The operation mode switching command generating device 3 first compares the row notch-off point P and signal read out from the reading device S with the running point signal from the train running point detector/, and when they match, outputs the row notch-off command signal. Vehicle control device? to switch the train from running mode to coasting mode.
列車の走行が更に進み、走行地点がB、に達したことが
判明したとき運転モード切換指令発生装置3からブレー
キ開始指令信号が車両制御装置デに送られてブレーキ動
作が開始されるとともに減速度指令値発生装置gへもブ
レーキ開始指令信号か送られて先に読み出されている減
速度β1を車両制御装置?へ指令して第を図fb)の実
線曲線に沿った列車制御が行なわれることとなる。これ
は第6図+1))の一点鎖線曲線に係る積算平均架線電
圧に2の場合も同様の制御が行なわれる。When the train travels further and it is determined that the traveling point B has been reached, a brake start command signal is sent from the driving mode switching command generating device 3 to the vehicle control device D, and the brake operation is started and the deceleration is started. A brake start command signal is also sent to the command value generator g, and the deceleration β1, which is read out first, is sent to the vehicle control device? The train is controlled along the solid curve shown in Figure fb). The same control is performed when the integrated average overhead line voltage related to the dot-dash line curve (+1)) in FIG. 6 is 2.
以上述べたように、本発明に係る列車自動運転制御装置
によれば、架線電圧及び走行地点を検出して運転モード
の切換を適宜性なうと共に、ブレーキ時にあっては適切
なブレーキ減速度を指令することにより最良の回生有効
率を得ることができ、かつ、必要以上の高速カ行を抑え
た最も省電力効果のある列車運転が実現される。As described above, according to the automatic train operation control device according to the present invention, the overhead line voltage and the running point are detected to appropriately switch the operation mode, and when braking, the appropriate brake deceleration is controlled. By issuing the command, it is possible to obtain the best regeneration efficiency rate, and achieve the most power-saving train operation by suppressing unnecessarily high-speed operation.
第1図は回生ブレーキ制御における速度−回生電力特性
曲線の一例を示す図、第2図は回生ブレーキ時の架線電
圧抑制制御特性曲線の一例を示す図、第3図は回生電力
一時間特性曲線の一例を示す図、第9図(a)E!:び
(b)はそれぞれ従来の固定地点制御方式における運転
曲線及びブレーキ減速度曲線の一例を示す図、第S図は
本発明に用いられる特定駅間における減速度−積算平均
架線電圧の特性曲線の一例を示す図、第6図(a) +
(1))、及び(C1は、それぞれ、本発明に用いら
れる特定駅間における運転モード切換地点特性曲縁、運
転曲縁、及びブレーキ減速度曲線の一例を示す図、第7
図は本発明に係る列車自動運転制御装置を示すブロック
図、である。
/・・列車走行地点検出器、コ・・走行駅間判別器、J
・・運転モード切換指令発生装置、亭・・減速度特性曲
線続出装置、S・・運転モード切換地点特性曲線読出装
置、6・・積算平均架線電圧検出器、7・・架線電圧検
出器、l・・減速度指令値発生装置、9・・車両制御装
置。
尚、図中、同一符号は同−又は相当部分をボす。
代理人 葛 野 信 −
焔1図
羊2図
焔3図
印
ち5図
減Fig. 1 is a diagram showing an example of a speed-regenerative power characteristic curve in regenerative braking control, Fig. 2 is a diagram showing an example of an overhead line voltage suppression control characteristic curve during regenerative braking, and Fig. 3 is a regenerative power one-hour characteristic curve. A diagram showing an example of FIG. 9(a) E! : and (b) are diagrams showing an example of an operating curve and a brake deceleration curve in the conventional fixed point control system, respectively, and Figure S is a characteristic curve of deceleration-cumulative average overhead wire voltage between specific stations used in the present invention. Figure 6 (a) showing an example of +
(1)) and (C1 are diagrams showing an example of the driving mode switching point characteristic curve edge, the driving curve edge, and the brake deceleration curve between specific stations used in the present invention, respectively.
The figure is a block diagram showing an automatic train operation control device according to the present invention. /... Train running point detector, K... Train running station discriminator, J
...Driving mode switching command generation device, Pai...Deceleration characteristic curve succession device, S...Driving mode switching point characteristic curve reading device, 6..Accumulated average overhead line voltage detector, 7..Overhead line voltage detector, l ... Deceleration command value generation device, 9... Vehicle control device. In the figures, the same reference numerals refer to the same or corresponding parts. Agent Shin Kuzuno - 1 figure of flame, 2 figures of sheep, 3 figures of flame, 5 figures reduced
Claims (1)
された列車に塔載され、所定駅間の走行時間が所定の運
行ダイヤ通りの値に保たれる列車自動運転制御装置であ
って、 架線電圧検出器と、この架線電圧検出器により所定期間
にわたって検出された電圧を積算してその平均架線電圧
を算出する積算平均架線電圧検出器と、列車走行地点検
出器と、該列車走行地点検出器の出力を入力しカ行ノツ
チオフ指令及びブレーキ開始指令のいずれかの指令を発
する運転モード切換指令発生装置と、該運転モード切換
発生装置の出力を入力しブレーキモードにおける減速度
を指令する減速度指令発生装置と、前記列車走行地点検
出器の出力端子に接続され列車が現在どの駅間を走行し
ているのかを判別する走行駅間判別器と、該走行駅間判
別器及び前記積算平均架線電圧検出器の出力を入力し、
各走行駅間距離と積算平均架線電圧との関係において前
記運行ダイヤ通りの列車走行を実現するために予め記憶
された最適なカ行ノツチオフ地点特性曲線データ及びブ
レーキ開始地点特性曲線データから前記列車走行駅間及
び積算平均架線電圧に応じて得られた運転モード切換地
点信号を前記運転モード切換指令発生装置へ出力する第
1の読出装置と、前記走行駅間判別器及び前記積算平均
架線電圧検出器の出力を入力し、前記積算平均架線電圧
に対して前記運行ダイヤ通りの列車走行を実現するため
に予め記憶された最適なブレーキモード減速度特性曲線
データから前記列車走行駅間及び積算平均架線電圧に一
ド切換指令発生装置及び減速度指令値発生装置の各出力
を受ける車両制御装置と、を備え、前記運転モード切換
指令発生装置は、列車走行地点が前記運転モード切換地
点に達したとき前゛記力行ノツチオフ指令又はブレーキ
開始指令をME車両゛制脚装置に送り、前記減速度指令
値発生装置は、前記ブレーキ開始指令を受けるまで前記
減速度指令信号を待機させ、前記ブレーキ開始指令を受
けたとき前記減速度指令信号を前記車両制御装置へ送る
ものである、ことを特徴とした列車自動運転制御装置。[Claims] f/) An automatic train operation control device that is installed on a train made up of electric cars equipped with a regenerative braking function, and that maintains the travel time between predetermined stations at a value according to a predetermined service schedule. An overhead line voltage detector, an integrated average overhead line voltage detector that calculates an average overhead line voltage by integrating voltages detected by the overhead line voltage detector over a predetermined period, and a train running point detector; A driving mode switching command generating device which inputs the output of the train running point detector and issues either a row notch off command or a brake start command; a deceleration command generating device that issues a command; a running station discriminator that is connected to the output terminal of the train running point detector and that determines between which stations the train is currently running; inputting the output of the integrated average overhead line voltage detector;
In order to realize the train running according to the operation schedule in relation to the distance between each running station and the integrated average overhead wire voltage, the train running is based on the optimum row notch-off point characteristic curve data and brake start point characteristic curve data stored in advance in order to realize the train running according to the above-mentioned operation schedule. a first reading device that outputs an operation mode switching point signal obtained according to the inter-station and integrated average overhead line voltage to the operating mode switching command generation device; the running station discriminator; and the integrated average overhead line voltage detector. input the output of , and calculate the cumulative average overhead line voltage between the stations where the train is running and from the optimal brake mode deceleration characteristic curve data stored in advance in order to realize the train running according to the operation schedule with respect to the cumulative average overhead line voltage. a vehicle control device that receives each output of a one-speed switching command generating device and a deceleration command value generating device, and the driving mode switching command generating device is configured to control the driving mode when the train traveling point reaches the driving mode switching point. A power running notch-off command or a brake start command is sent to the ME vehicle's leg restraint device, and the deceleration command value generator waits for the deceleration command signal until it receives the brake start command, and receives the brake start command. An automatic train operation control device characterized in that the train automatic operation control device sends the deceleration command signal to the vehicle control device when the train is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56187261A JPS5889005A (en) | 1981-11-19 | 1981-11-19 | Automatic operation controller for train |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56187261A JPS5889005A (en) | 1981-11-19 | 1981-11-19 | Automatic operation controller for train |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5889005A true JPS5889005A (en) | 1983-05-27 |
JPS6151483B2 JPS6151483B2 (en) | 1986-11-08 |
Family
ID=16202875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56187261A Granted JPS5889005A (en) | 1981-11-19 | 1981-11-19 | Automatic operation controller for train |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5889005A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010167A (en) * | 2014-06-20 | 2016-01-18 | 株式会社東芝 | Operation curve generation device, operation support device, automatic operation device, operation support system, automatic operation system, operation curve generation method and program |
US9254753B2 (en) | 2012-08-14 | 2016-02-09 | Mitsubishi Electric Corporation | Train-information management device and device control method |
US9387774B2 (en) | 2012-08-14 | 2016-07-12 | Mitsubishi Electric Corporation | Train-information management device and device control method |
-
1981
- 1981-11-19 JP JP56187261A patent/JPS5889005A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9254753B2 (en) | 2012-08-14 | 2016-02-09 | Mitsubishi Electric Corporation | Train-information management device and device control method |
US9387774B2 (en) | 2012-08-14 | 2016-07-12 | Mitsubishi Electric Corporation | Train-information management device and device control method |
JP2016010167A (en) * | 2014-06-20 | 2016-01-18 | 株式会社東芝 | Operation curve generation device, operation support device, automatic operation device, operation support system, automatic operation system, operation curve generation method and program |
Also Published As
Publication number | Publication date |
---|---|
JPS6151483B2 (en) | 1986-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6873888B2 (en) | Method and system for improving acceleration rates of locomotives | |
TWI490139B (en) | An operation control method of rail train for saving electricity | |
JP4188135B2 (en) | Method and system for monitoring and regulating power consumed by a transportation system | |
KR100556224B1 (en) | Train control system, train communication network system and train control apparatus | |
US20050171657A1 (en) | Method and system for improving acceleration rates of locomotives | |
CN208101719U (en) | Equipment with overhead transmission line He at least one rail vehicle | |
KR20080095814A (en) | Systems, sub-stations, and methods for restoring brake energy of rail vehicles, and rail vehicles for the system | |
JP2000078702A (en) | Power supply system for electric tractor | |
US10766367B2 (en) | Train control device | |
GB2460528A (en) | Fixed-position automatic stop control for an electric vehicle | |
RU2666499C1 (en) | Vehicle operation method | |
JPS5889005A (en) | Automatic operation controller for train | |
Tang et al. | Optimizing train speed profiles to improve regeneration efficiency of transit operations | |
JP2003220859A (en) | DC electric power storage device and railway electromechanical system | |
JPH1191414A (en) | Control device for substation | |
CN109987003B (en) | Power train sectioning control system and method thereof | |
KR102074142B1 (en) | Brake device for rail vehicle and method thereof | |
Oettich et al. | Improvements of energy efficiency of urban rapid rail systems | |
KR102027482B1 (en) | How To Operate With Speed Control Algorithm To Meet Charged Amount In A Wireless Power Transmission The Wireless Tram System | |
JP4180146B2 (en) | Power control device for diesel cars that can be combined with trains | |
CN108839572B (en) | Power management system | |
JP3499079B2 (en) | Electric car control device | |
Spiridonov et al. | Classification and evaluation of factors having impact on recuperative braking at urban electric transit | |
JP2001204102A (en) | Electric regenerative brake control device | |
Sone et al. | An innovative traction system from the viewpoint of braking |